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Wireless scheduling is a fundamental problem in wireless networks that

involves scheduling transmissions of multiple users in order to support data

flows with as high rates as possible. This problem was first addressed by

Tassuilas and Ephremides, resulting in the celebrated Back-Pressure network

scheduling algorithm. This algorithm schedules network links to maximize

throughput in an opportunistic fashion using instantaneous network state in-

formation (NSI), i.e., queue and channel state knowledge across the entire

network.

However, the Back-Pressure (BP) algorithm suffers from various draw-

backs - (a) it requires knowledge of instantaneous NSI from the whole net-

work, i.e. feedback about time-varying channel and queue states from all

links of the network, (b) the algorithm requires solving a global optimization
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problem at each time to determine the schedule, making it highly central-

ized. Further, Back-pressure algorithm was originally designed for wireless

networks where interference is modeled using protocol interference model. As

recent break-throughs in full-duplex communications and interference cance-

lation techniques provide greatly increased capacity and scheduling flexibility,

it is not clear how BP algorithm can be modified to improve the data rates

and reduce the delay.

In this thesis, we address the drawbacks of Back-Pressure algorithm to

some extent. In particular, our first work provides a new scheduling algorithm

(similar to BP) that allows users to make individual decisions (distributed)

based on heterogeneously delayed network state information (NSI). Regard-

ing the complexity issue, in our second work, we analyze the performance of

the greedy version of BP algorithm, known as Greedy Maximal Scheduling

(GMS) and understand the effect of channel variations on the performance of

GMS. In particular, we characterize the efficiency ratio of GMS in wireless net-

works with fading. In our third and fourth work, we propose and analyze new

scheduling algorithms that can benefit from new advancements in interference

cancelation techniques.
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Chapter 1

Introduction

Modern data networks are increasingly being supported on the wire-

less medium. In this regard, there are two primary trends which emerge.

Firstly, there is an ever increasing demand for higher data rates, which is

caused both due to increasing number of users on such networks as well as

a trend towards applications that are more data-intensive. Over the last few

years, we have moved from cellular networks dedicated to voice traffic to WiFi

networks supporting internet traffic over a small geographic area to the band-

width demands posed by a plethora of applications on modern ‘smartphones’,

and this trend shows no signs of abating. Due to the nature of the wireless

medium, the resources available to support this extra traffic are limited, and

this puts added importance on the need for optimizing the protocols that are

used for scheduling and routing the information. A more subtle trend in wire-

less communications is a move towards decentralization. The old paradigms of

cellular networks with a centralized controller are increasingly giving way to

more distributed network architectures like those seen in wireless sensor net-

works (WSNs), wireless mesh networks (WMNs) and mobile ad-hoc networks

(MANETs). We thus require network algorithms that are not only capable of

supporting high data-rates, but also do so in a distributed manner.
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Managing data in wireless networks, as opposed to traditional wireline

networks, is complicated by two effects unique to the wireless medium – chan-

nel fading and interference. Channel fading, at a high level, refers to the fact

that the wireless channel between two users is not constant (like in correspond-

ing wireline systems), but fluctuates in time; knowledge of these fluctuations,

by means of channel sensing, allows an algorithm to schedule transmissions in

an opportunistic manner (i.e., transmit more when the channel quality is good,

and remain silent when not). Due to the shared nature of the medium, the

successful reception of a user’s transmissions, even when the channel quality

is high, depends on its interactions with transmissions from other users. This

phenomenon is known as interference, and naturally necessitates a central-

ized scheduling approach in order to coordinate transmissions to/from various

users.

With this background in mind, the fundamental wireless scheduling

problem can be viewed as one of scheduling transmissions in the network in the

presence of fading and interference in order to support data flows with as high

rates as possible. This problem is tackled first by Tassiulas and Ephremides,

and they a propose a online scheduling algorithm, Back-Pressure, that makes

scheduling decisions based on instantaneous network state information (NSI),

i.e., queue and channel state knowledge across the entire network. The authors

show that the proposed algorithm can stabilize the queues as long as the

arrivals are inside the throughput region.

Though Back-Pressure scheduling guarantees the best possible through-
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put performance for flows in networks, it suffers from few major drawbacks –

(a) the algorithm requires solving a global optimization problem at each time

to determine the schedule, making it highly centralized, and (b) it requires

knowledge of instantaneous NSI from the whole network, i.e. feedback about

time-varying channel and queue states from all links of the network and (c) it

is not delay optimal and (d) is only limited to protocol interference models.

Towards addressing these limitations, researchers have developed dis-

tributed implementations of the Max-weight algorithm [14–16, 36, 40, 50, 56],

which use local NSI to achieve optimal/near-optimal throughput performance.

Additionally, there have been studies on scheduling in the presence of partial,

noisy or delayed channel state information (CSI). These include scheduling

with limited channel sensing capabilities and channel-probing costs [17–19],

and scheduling with limited/uncertain channel-state feedback [20–26]. There

have been studies on scheduling with hop-delay optimality [61, 70] and the

authors propose modified versions of BP to ensure hop-delay optimality along

with throughput optimality.

In this thesis, we mainly focus on the throughput metric and are in-

terested in developing new scheduling algorithms and analyzing existing algo-

rithms that have low-complexity (so that they can be implementable in real

time) and use either delayed or local NSI to make scheduling decisions. Fur-

ther, we would investigate the problem of scheduling when wireless networks

can leverage newly developed interference cancelation techniques in the liter-

ature.

3



1.1 Main Contributions

The main contributions of this thesis are as follows,

1. We address the problem of distributed scheduling in wireless networks

with Markovian channels and heterogeneously delayed NSI. We pro-

pose a threshold-type distributed scheduling algorithm that is provably

throughput-optimal. We further characterize the effect of delayed NSI

on the network throughput region.

2. We analyze the performance of a well-known low-complexity algorithm,

Greedy-Maximal Scheduling (GMS), to the case of general wireless net-

works with fading structure. We define Fading-Local pooling factor

for graphs with fading and showed that it characterizes the fraction of

throughput that can be achieved by GMS. We further illustrate using

examples that fading can either help or hurt the performance of GMS.

3. We analyze the performance of greedy version of Shortest-Path aided

BP algorithm (SPBP) [61] both in terms of achievable throughput and

average hop-delay. We further show that the greedy SPBP can achieve

hop-delay optimality in few wireless networks where cut-through switch-

ing (CTS) is feasible.

4. We address the problem of scheduling in wireless networks with nodes

that can implement advanced interference mitigation techniques. In par-

ticular, we propose new queue-structures and algorithms that can extract

4



the benefits of ergodic interference alignment (IA). We further provide

low-complexity algorithms and characterize the loss in throughput.

The below table summarizes our contributions to the current literature.

Algorithm Drawbacks Contribution
Instantaneous Algorithmic : Heterogeneous delayed NSI
Global NSI Analytical : Thruput loss with delayed NSI
Computational Analytical : Performance of GMS in fading

Back-Pressure Complexity Numerical : Fading can help or hurt GMS
(BP) Explores Analytical : Performance of Greedy SPBP

all the paths Applications : Cut-through switching
Restricted to few Algorithmic : Modified BP to use Ergodic IA
interference models Analytical : Loss with sub optimal algorithms

Table 1.1: Our contributions to the current literature

1.2 Organization of the thesis

In chapter 2, we present our results on distributed scheduling in wire-

less networks, where only heterogeneously delayed NSI is available. In chapter

3, we present our results on the performance of the popular low-complexity

distributed GMS algorithm in the presence of fading. We analyze the per-

formance of greedy version of Shortest-Path aided BP (SPBP) algorithm for

multi-hop networks and identify networks where it performs optimally in chap-

ter 4. In chapter 5, we extend the BP algorithm for wireless networks with

advanced interference cancelation techniques (in particular, ergodic interfer-

ence alignment technique). We provide future directions and conclusions in

5



chapter 6.
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Chapter 2

Distributed scheduling in wireless networks
with heterogeneous delayed NSI

2.1 Introduction

An important problem which arises while scheduling in the presence

of channel fading and network interference, and which remains unexplored in

the literature, is the fact that there is often a widespread mismatch in the

information that nodes possess. Each node has complete information about

its own queue and channel state, but has progressively “coarser” informa-

tion about other nodes’ NSI as the distance to these node increases. This

happens because: (i) prohibitive overheads in measuring and communicating

NSI, (ii)fading occurring faster than communicating NSI, leading to delayed

channel-state information and/or (iii) propagation delays due to geographic

separation of nodes. In this regard, the work of Ying and Shakkottai [27, 28]

investigates distributed scheduling with delayed network state information,

i.e., with delayed topology [28] and delayed wireless channel state information

[27]. In particular, the latter paper considers networks with symmetric delays

in channel state and queue information, i.e., every node has instantaneous CSI

for itself, and CSI from other nodes delayed by a globally fixed number of time

slots. In this setting, all the nodes share a common view of the network – i.e.,

7



the network state with a fixed, uniform delay – which the nodes can use to

implement threshold-type scheduling based on individual instantaneous CSI

and achieve throughput-optimality.

The assumption of symmetric delayed state information is often not

satisfied in general networks which could have heterogeneous delays in channel

state information. For instance, two nodes in a network could possess channel

state information from a third node delayed by different amounts. This can

easily result in widely differing estimates at the first two nodes for the third

node’s network/channel state. A challenging problem thus is how to use the

heterogeneously delayed NSI to schedule. Unlike the case of homogeneous de-

layed CSI with additional individual CSI [27], the scheduling algorithm now

needs to account for the fact that the nodes can possess inconsistent network

state information – each node can potentially have a completely different view

of the network state. It is a priori unclear how distributed scheduling can be

performed when nodes have such inconsistent (i.e., heterogeneously delayed)

channel information. This work aims to both (a) characterize the throughput

region with inconsistent NSI, and (b) develop scheduling algorithms that use

a minimal amount of heterogeneously delayed network state information and

are yet throughput-optimal. Having done this, it also examines the “value”

or “cost” of network state information, in regard to throughput, by quantita-

tively estimating throughput improvement/degradation when the nodes have

“finer/coarser” delayed NSI structures respectively.
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2.1.1 Our Contributions

In this work, we consider the problem of distributed wireless scheduling

in the presence of arbitrary interference set constraints and Markovian channel

fading, where each transmitter knows the other transmitters’ NSI with arbi-

trary, heterogeneous delays. This disparity in the delays of NSI available to

the transmitters can potentially result in inconsistent views of the global cur-

rent network state, causing conflicting/poor local scheduling decisions among

the transmitters. Given such a NSI structure, how can all the transmitters

in the network use their possibly inconsistent individual information to make

scheduling decisions for good overall throughout? Our main contributions in

this regard are as follows:

1. We characterize the network throughput region when each transmitter

possesses instantaneous local NSI (i.e., NSI from itself) and heteroge-

neously delayed NSI from other transmitters. For this purpose, we intro-

duce a special, restricted class of static-split scheduling policies, in which

each transmitter uses only critical delayed CSI from other nodes, along

with its own channel state information, to make transmission decisions.

An important observation here is that these static-split scheduling rules,

in the conventional sense, are not necessarily throughput-optimal – de-

terministic scheduling at all nodes still achieves corner points of the rate

region, but time sharing across the corner points is no longer possible

with each node using only local information. Rather, the throughput re-
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gion results by time sharing using global, common randomness together

with static-split strategies.

2. We develop a decentralized, threshold-based throughput-optimal schedul-

ing algorithm for the network, in which nodes use only critical NSI to

schedule. In every time slot, each node uses (delayed) network queue

length information along with critical delayed CSI from other nodes to

compute a suitable local threshold, and decides to schedule transmission

by comparing the threshold with its own channel state. Further, we show

that delayed queue length and channel state information, when used at

each node to dynamically pick local threshold-scheduling rules, acts as

a source of global, common randomness for all the transmitters, helping

to achieve stability across the entire throughput region.

3. With respect to the canonical heterogeneous NSI setting, we quantify

the loss (gain) in throughput that results from all transmitters having

the maximum (minimum) possible homogeneously delayed NSI from

other transmitters. This quantifies the value of delayed NSI in terms of

its impact on the system throughput region, and is accomplished using

techniques from mixing of Markov chains.
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2.2 Scheduling with Heterogeneously Delayed NSI: An
Example

Let us consider an illustrative example to help understand the essential

difficulties and challenges in scheduling when the NSI available to each user

is delayed in a heterogeneous fashion. Suppose we have three wireless users

A, B and C, attempting to transmit packet data to a common receiver in a

time-slotted manner. We assume that the users are located sufficiently close

to each other so as to make their transmissions interfere, i.e., if the number of

users attempting to transmit in a time slot is more than one, no packets reach

the receiver. The channel between each user and the receiver is time-varying,

and in the event of a successful transmission, the channel state or rate of the

lone attempting user specifies how many packets can be sent to the receiver

in that time slot.
p

p

1 100

Figure 2.1: User C channel Markov chain

Each user possesses instantaneous channel (and queue backlog) state

information about its own channel and receives delayed channel (and queue

backlog) state information from other users for the purpose of making trans-

mit/no-transmit decisions. Let us assume for simplicity that the channels for

users A and B take rates 1 or 100 (packets per time slot) each with probability

11



1
2 independently in each time slot; however user C’s channel state evolves as a

Markov chain between rates 1 and 100 with crossover probability 𝑝 = 1
4 (Fig.

2.1). User A gets channel state information from users B and C delayed by 1

time slot, user B gets channel state information from users A and C delayed

by 1 and 2 time slots respectively, and user C gets channel state information

from users A and B delayed by 1 time slot. Fig. 2.2 depicts this NSI structure

at time 𝑡 – a circle in the row of Tx A at time 𝑡 − 1 indicates that it is the

latest information B has about A’s channel state, and so on.

Tx A

Tx B

Tx C

t-1t-2 t

Time slots 

Figure 2.2: Heterogeneous NSI for the 3-user network: Squares, circles and
triangles represent the most recent channel state information available to user
A, B and C respectively.

Note that due to this information structure, at each time users A and

B have different “views” of user C’s current channel state owing to disparate

channel state information delays. For instance, if user C’s channel two time

slots ago was at rate 100 and one time slot ago was at rate 1, user A is led

to believe that user C’s current channel is very likely to have rate 1, whereas

user B’s belief would be that user C’s channel is most probably at rate 100. In

such events, how must the users act so that they can avoid excessive collision

and achieve desired data transmission rates? It turns out, as we show later
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on, that the following threshold-based transmission rule, for each user, is a

throughput optimal scheduling strategy: In every time slot,

1. All the three users compute individual “threshold values” (to be used

later) as functions of their respective delayed queue length information

and certain “critical” subsets of their available delayed channel state

information – user A works out a threshold value as a function of the

one-step delayed channel states of user B and user C, and so on.

2. Each user looks at the value(s) of its critical set of delayed NSI, compares

the corresponding threshold value and its own current channel state,

and attempts transmission only if its current channel state exceeds the

threshold.

Now, consider the case when both user A and user B have user C’s

channel state information with a delay of 2 time slots. Compared to the

earlier set of delays, user A has one step “coarser” channel state information

about user C, so we expect a degradation in the overall set of achievable data

rates that all the users can support. In fact, it can be shown that

1. The best average sum rate achievable in the latter system is 56.69 pack-

ets/time slot, whereas

2. The best average sum rate achievable in the former system is 62.88

packets/time slot – an increase of about 11% in the sum rate with one

additional step of channel state information.
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In this work, we provide a theory for wireless scheduling with hetero-

geneously delayed channel state information that answers the following useful

questions:

1. What are all the long-term average rates (i.e., the throughput region)

that such a wireless system with an arbitrary delayed NSI structure can

support?

2. How can each user make scheduling (transmission) decisions – just based

on its limited amount of delayed information about other users’ channel

states – to be able to support any given feasible data rate? Moreover,

which are the time slots whose channel state information is “crucial” or

“essential” for making throughput-optimal decisions?

3. By how much does the throughput region of the system change with

better or worse delayed channel state information?

2.3 System Model

This section is concerned with setting up the system model we use to

develop our results. This includes describing the network model, traffic model

and the structure of interference between wireless users. A key component of

the model is the information structure of delayed network state information

available to each user to schedule transmissions, which is described here. We

conclude by defining the performance metric of throughput that we consider

in this work.

14



• Network Model: We consider a wireless network consisting of 𝐿 transmi-

tter-receiver pairs denoted by 𝐿. We model the (time-varying) capacity

of each link 𝑙 using a discrete-time Markov chain, denoted by {𝐶𭑙[𝑡]}, on

the finite state space 𝐶 = {𝑐1, 𝑐2, 𝑐3, ..., 𝑐𭑀}, where 𝑐1 ≤ ⋯ ≤ 𝑐𭑀 are

nonnegative integers. Furthermore, we require that the link’s capacity

is independent and identically distributed, with transition probabilities

𝑃𭑖𭑗 ∶= Pr[𝐶𭑙[𝑡 + 1] = 𝑐𭑗|𝐶𭑙[𝑡] = 𝑐𭑖] for the respective Markov chain. The

above channel model is assumed for notational simplicity, and our results

hold even for the case of networks where each link can be modeled by

a separate Markov chain (different state space and different transition

probabilities). The only condition for our results to hold is that channels

are independent across various transmitter-receiver pairs (users).

We assume that the channel state Markov chain parameterized by the

transition probabilities {𝑃𭑖𭑗}𭑖,𭑗 is irreducible and aperiodic 1. Thus the

channel state process has a stationary distribution and we denote the

stationary probability of being in a state 𝑐𭑗, 𝑗 ∈ {1, 2, 3...,𝑀} by 𝜋𭑗.

Finally, each link 𝑙 has an associated queue of length 𝑄𭑙[𝑡], which holds

data packets to be transmitted across the link.

1 This assumption is to ensure that the system state Markov chain (defined in Section
2.3.2) is irreducible and aperiodic, by suitably augmenting the state space.
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• Interference Model:

We model radio interference in the network using a packet capture model.

Specifically, for each link 𝑙, let 𝐼𭑙 denote the set of links in the network

that interfere with 𝑙. Note that 𝐼𭑙 can be an arbitrary but fixed set of

interfering links for link 𝑙, which can be used to model geographically

close transmitters, transmitters using the same shared time/frequency

resource etc. We say that a collision occurs with a transmission sched-

uled on link 𝑙 if, in the same time slot, a transmission is scheduled on

a link 𝑙′ ∈ 𝐼𭑙. When there is no collision at link 𝑙 in time slot 𝑡, then

min(𝐶𭑙[𝑡], 𝑄𭑙[𝑡]) packets are successfully received across the link. How-

ever, when a collision occurs on link 𝑙, we assume that min(𝛾𭑙𝐶𭑙[𝑡], 𝑄𭑙[𝑡])

packets are received successfully across the link. For each 𝑙, we assume

there exists 𝛾𭑙 ∈ [0, 1] such that {𝛾𭑙𝑐1, … , 𝛾𭑙𝑐𭑀} are all integers (i.e., at

each time 𝑡, 𝛾𭑙𝐶𭑙[𝑡] is an integer). In general, it suffices to have all the

𝛾𭑙𝑐𭑖 be rational numbers, for then the notion of a packet (equivalently,

the queue length) can be suitably redefined to satisfy this assumption.

We can consider an alternative model where if a collision occurs on link

𝑙, then 𝐶𭑙[𝑡] packets are successfully received with probability 𝛾𭑙, else no

packets are received. In this case, 𝛾𭑙𝐶𭑙[𝑡] need not be integer since in any

event, an integer number of packets (0 or 𝐶𭑙[𝑡]) is successfully received.

Setting 𝛾𭑙 = 0 for all 𝑙 corresponds to a “perfect collision” interference

model, where no packets get through in the event of simultaneous trans-

missions, whereas 𝛾𭑙 > 0 models reception of packets in a probabilistic
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manner. Though the results in this work are proved for the former, de-

terministic interference model, all of them can be shown to hold for the

latter, probabilistic interference model as well.

• Traffic Model: We assume single-hop flows in the network, and that

each node does not have multiple simultaneous connections. Each link

in the network has a traffic process denoted by 𝐴𭑙[𝑡], that describes the

number of packets that arrive at sender node of link at time 𝑡. For every

link 𝑙, we assume that 𝐴𭑙[𝑡] is an integer-valued process independent

across time slots 𝑡, with 0 ≤ 𝐴𭑙[𝑡] ≤ 𝐴max < ∞ almost surely, and set

𝜆𭑙 ∶= 𝐸[𝐴𭑙[𝑡]] < ∞. We further assume that Pr[𝐴𭑙[𝑡] = 0] > 0 and

Pr[𝐴𭑙[𝑡] = 1] > 0.2

2.3.1 NSI Structure and Scheduling Policies

We assume that each transmitter accesses network state information

parameterized in terms of its information delays from other transmitters.

Specifically, at time 𝑡, transmitter 𝑙 has channel and queue state informa-

tion history of link 𝑙 upto and including time 𝑡, but has only delayed channel

state information and queuing history of other links in the network. Let 𝜏𭑙(ℎ)

denote the delay incurred in communicating the channel and queue state in-

formation of link ℎ to the transmitter node of link 𝑙. Thus, each transmitter

node 𝑙 has a vector of delay values ⃗𝜏𭑙 that characterizes the available delayed

2 These assumptions are to ensure that the system state Markov chain (defined in Section
2.3.2) is irreducible and aperiodic, by suitably augmenting the state space.
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NSI at 𝑙. We denote by 𝜏𭑚𭑖𭑛 and 𝜏𭑚𭑎𭑥 the minimum and maximum channel

(and queue) state information delay across the network, i.e.,

𝜏𭑚𭑖𭑛 = min𭑙,ℎ∈𭐿∶𭑙≠ℎ𝜏𭑙(ℎ); 𝜏𭑚𭑎𭑥 = max𭑙,ℎ∈𭐿∶𭑙≠ℎ𝜏𭑙(ℎ).

We denote the set {𝐶𭑙[𝑡 − 𝜏], 𝐶𭑙[𝑡 − 𝜏+ 1], ...., 𝐶𭑙[𝑡]} by 𝐶𭑙[𝑡](0 ∶ 𝜏) and

the set {𝐶𭑙[𝑡]}𭑙∈𭐿 by 𝐶[𝑡]. We denote the information available at transmitter

𝑙 by {𝑃𭑙(𝐶[𝑡](0 ∶ 𝜏𭑚𭑎𭑥)), 𝑃𭑙(𝑄[𝑡](0 ∶ 𝜏𭑚𭑎𭑥))}, where

𝑃𭑙(𝐶[𝑡](0 ∶ 𝜏𭑚𭑎𭑥)) ∶= {𝑃⃗𭑙𭑚(𝐶[𝑡](0 ∶ 𝜏𭑚𭑎𭑥))}𭑚∈𭐿, with

𝑃⃗𭑙𭑚(𝐶[𝑡](0 ∶ 𝜏𭑚𭑎𭑥)) ∶= {𝐶𭑚[𝑡 − 𝜏]}𭜏𭑙(𭑚)
𭜏=𭜏𭑚𭑎𭑥 ,

and likewise for 𝑃𭑙(𝑄[𝑡](0 ∶ 𝜏𭑚𭑎𭑥)). A scheduling policy is a map for each

link 𝑙 that maps its network state information {𝑃𭑙(𝐶[𝑡](0 ∶ 𝜏𭑚𭑎𭑥)), 𝑃𭑙(𝑄[𝑡](0 ∶

𝜏𭑚𭑎𭑥))} to a transmit/no-transmit scheduling decision.

2.3.2 Performance Objective: Throughput/Stability

We define the state of the network at time 𝑡 as the process 𝑌[𝑡] =

{𝑄𭑙[𝑡](0 ∶ 𝜏𭑚𭑎𭑥), 𝐶𭑙[𝑡](0 ∶ 𝜏𭑚𭑎𭑥)}𭑙∈𭐿, and specifically denote this state process

under a scheduling policy 𝐹 by 𝑌𭐹[𝑡].

Given the arrival rate vector {𝜆𭑙}𭑙∈𭐿 and a scheduling policy 𝐹, we say

that the network is stochastically stable if the system state Markov chain 𝑌𭐹[𝑡]

is positive recurrent. We say that an arrival rate vector {𝜆𭑙}𭑙∈𭐿 is supportable

if there exists a scheduling policy that makes the network stochastically stable.

18



2.4 Distributed Scheduling with Heterogeneously De-
layed NSI

In this section, we first characterize the throughput region of the wire-

less system, i.e., the set of all supportable arrival rates. Traditionally the

throughput region is the set of arrival rates that can be supported by Static

Service Split (SSS) scheduling rules – a restricted class of queue-length oblivi-

ous and channel-state aware strategies [3, 5, 20, 27]. Although we use a similar

approach, a crucial distinction arises when considering static-split scheduling

in our setting. In the classical framework of static-split rules, determinis-

tic scheduling rules achieve the corner points of the throughput region, and

time sharing using randomized static-split rules then attains the entire region.

However, in our decentralized setting, though deterministic scheduling using

local information at each node still achieves all the corner points of the rate

region, time sharing among these corner points is not possible using only local

information at each node. Instead, global, common randomness is required for

time-sharing and for achieving the entire throughput region. Thus, static-split

scheduling, in the conventional sense, is not necessarily throughput-optimal for

our setting.

Consider a simple example of two nodes sharing a unit-rate collision

channel – in each time slot, one packet can be transmitted by each node, but a

collision occurs if both nodes simultaneously transmit. As shown in Figure 2.3,

the rate point (1, 0) (resp. (0, 1)) can be achieved by deterministic scheduling

at the nodes, i.e., if node 1 (resp. node 2) always transmits and node 2 (resp.
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node 1) always stays silent. The dotted line denotes rate pairs (𝛼, 1 − 𝛼)

achieved by time sharing between the corner points (1, 0) and (1, 0). This

is possible when the nodes use global, common randomness (e.g., a common

sequence of coin tosses with the probability of heads being 𝛼), and captures

the traditional notion of randomized static split rules.

On the other hand, when the nodes can only use local information (e.g.,

individual, independent coin flips), it is not hard to see that points beyond

the curved line in Figure 2.3 cannot be achieved. Indeed, a point on this

curved line results when each node 𝑖 ∈ {1, 2} transmits independently with

probability 𝑝𭑖, which represents static split scheduling carried out individually

at each node.

Note that SSS rules need not necessarily preclude joint decisions via

common randomness. Yet, the point of the above example is to emphasize the

fact that common randomness is, in a sense, indispensable when performing

distributed scheduling. In other words, one cannot hope to achieve the entire

throughput region by applying static split rules using only local coin flips at

each node; rather, the SSS rules need to be able to access global, common

randomness.

Given this distinguishing feature of static-split scheduling in our setting,

we show in Section 2.4.1 that by combining appropriate “static” scheduling at

each transmitter with the use of global common randomness, we show that all

points in the throughput region can be achieved. Next, in Section 2.4.2, we

further simplify the structure of the static scheduling policies, by identifying
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Figure 2.3: Static-split scheduling rules, in our setting, are not necessarily
throughput-optimal in the conventional sense. For two transmitters sharing a
unit-rate collision channel, the corner points (1, 0) and (0, 1) are achieved by
individual static-split scheduling at each transmitter. However, with just local
information and randomization, rates beyond the curved boundary cannot be
achieved. To time share between the corner points and attain rates on the
dotted line requires global common randomness.

the “critical set” of available delayed NSI sufficient for each transmitter to

achieve any valid rate point.

Finally, in Section 2.4.3, we give a throughput-optimal, distributed

scheduling algorithm for all transmitters, that uses critical delayed queue and

channel states as a source of global common randomness along with scheduling

with suitable static rules at the transmitters. In this regard, the idea leveraged

from the above example is the following: if both nodes can access delayed

queue length information, say (𝑄1(𝑡 − 10),𝑄2(𝑡 − 10)), at every time slot 𝑡,

it is possible to time share between the two corner points. This can be done,

for instance, when node 1 transmits whenever 𝑄1(𝑡 − 10) ≥ 𝑄2(𝑡 − 10) and

node 2 transmits whenever 𝑄1(𝑡 − 10) < 𝑄2(𝑡 − 10). The key advantage
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of a queue-based policy, as opposed to a fixed common random coin, is that

the joint distribution of the queues automatically adapts, and the resulting

algorithm achieves any point in the interior of the throughput region. Thus,

this is in the spirit of traditional Back-Pressure algorithms, but in the context

of deriving the “correct” common randomness.

2.4.1 Throughput Characterization

Towards describing the throughput region, i.e., the set of all support-

able arrival rate vectors {𝜆𭑙}𭑙∈𭐿, consider a collection of functions {𝑓𭑙}, one

for each link/transmitter 𝑙 ∈ 𝐿, where each 𝑓𭑙 ∶ 𝑃𭑙(𝐶[𝑡](0 ∶ 𝜏𭑚𭑎𭑥)) → {0, 1}.

These maps {𝑓𭑙}𭑙∈𭐿 parameterize a static-split or stationary scheduling pol-

icy – oblivious of queue state information, and of channel state information

past 𝜏𭑚𭑎𭑥 – as follows: at each time 𝑡, every link 𝑙 computes the binary value

𝑓𭑙(𝑃𭑙(𝐶[𝑡](0 ∶ 𝜏𭑚𭑎𭑥))) and attempts to transmit (i.e., schedule itself) whenever

this binary value is 1.

If the delayed channel state information at time 𝑡 is 𝐶[𝑡 − 𝜏𭑚𭑎𭑥] = 𝑐,

then the expected rates at time 𝑡 that all links receive when each transmit-

ter 𝑙 applies the static-split scheduling policy 𝑓𭑙 is defined to be 𝑆(𝑐, 𝑓) =

{𝑆𭑙(𝑐, 𝑓)}𭑙∈𭐿, as follows:

𝑆𭑙(𝑐, 𝑓) =𝐸[𝐶𭑙[𝑡]𝑓𭑙(𝑃𭑙(.))(𝛾𭑙 + (1 − 𝛾𭑙) ∏
𭑚∈𭐼𭑙

(1 − 𝑓𭑚(𝑃𭑚(.))))

| 𝐶[𝑡 − 𝜏𭑚𭑎𭑥] = 𝑐],
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where 𝑃𭑙(.) = 𝑃𭑙(𝐶[𝑡](0 ∶ 𝜏𭑚𭑎𭑥)). We now define 𝜂(𝑐) as follows,

𝜂(𝑐) = 𝐶𝐻𭑓(𝑆(𝑐, 𝑓)).

Thus, 𝜂(𝑐) ⊂ 𝐑𭐿 is the convex hull of all the possible expected transmission

rates that achieved by static-split scheduling policies in time slot 𝑡, when the

common NSI up to time 𝑡−𝜏𭑚𭑎𭑥 is 𝑐. Finally, our candidate for the throughput

region of the system is the region Λ ∈ 𝐑𭐿 defined by

Λ = {𝜆 ∶ 𝜆 = �
𭑐∈𭐶𭐿

𝜋(𝑐)𝑥(𝑐), 𝑥(𝑐) ∈ 𝜂(𝑐) ∀𝑐 ∈ 𝐶𭐿}.

In other words, Λ is the Minkowski sum of the sets {𝜂(𝑐)}𭑐∈𭐶𭐿 weighted by

the respective probabilities 𝜋(𝑐). The corner points of Λ correspond directly

to static-split scheduling rules, and in general, each point in Λ represents the

expected rates delivered to all links obtained by time sharing across static-split

scheduling rules. Note that this time sharing across nodes’ scheduling deci-

sions, as described in the example above, can be achieved with global, common

randomization, e.g., a common sequence of coin flips available to all the nodes.

Thus, Λ is an inner bound for the throughput region of the system. However,

the following result establishes that the throughput region is no more than Λ.

Lemma 2.4.1. Under the above NSI structure, the traffic process {𝐴[𝑡]}𭑡 is

supportable if (1 + 𝜖)𝐸[𝐴[𝑡]] ∈ Λ for some 𝜖 > 0, and only if 𝐸[𝐴[𝑡]] ∈ Λ.

The key step in the proof of Lemma 2.4.1 (similar to Lemma 7 in [27])

is to build a time shared stationary policy corresponding to any given rate
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point 𝜆 ∈ Λ. This is carried out by using the steady-state queue-length distri-

bution, of an arbitrary scheduling policy that stabilizes 𝜆, as the distribution

of a source of global, common randomness. This randomization is then used

by each transmitter to pick a suitable static-split scheduling rule, and enable

the transmitters to appropriately time share their transmit decisions to stabi-

lize 𝜆. The proof technique also hints at the fact that shared delayed queue

and channel state information thus can, in fact, act as a source of common

randomness – a fact that is exploited crucially in Section 2.4.3 to design a

throughput-optimal scheduling policy. We refer the reader to the appendix for

the detailed proof of the lemma.

2.4.2 Critical NSI

As defined in the system model (Section 2.3), 𝜏𭑙(ℎ) represents the delay

with which the latest queue state and channel state information of link ℎ is

available at link 𝑙. We expect that for link 𝑙 at time slot 𝑡, all the latest delayed

channel state information from other users (i.e., {𝐶𭑘[𝑡 − 𝜏𭑘(𝑙)] ∶ 𝑘 ∈ 𝐿, 𝑘 ≠ 𝑙})

is the information most useful with regard to the current channel states of the

other users. In what follows, we introduce the important concept of critical NSI

for the network – essentially all the latest delayed channel state information

observed by every user in the network – which is later used to develop a

throughput-optimal scheduling policy in which each user makes scheduling

decisions just based on the critical NSI available to itself.

Given 𝐶[𝑡](0 ∶ 𝜏𭑚𭑎𭑥), the critical set of information related to link 𝑙 is
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defined as the the channel state information at times {𝑡 − 𝜏𭑘(𝑙)}𭑘∈𭐿∶𭑘≠𭑙. Let

us denote the critical NSI of the network at time 𝑡 as 𝐶𝑆(.), which can be

expressed mathematically as follows

𝐶𝑆(𝐶[𝑡](0 ∶ 𝜏𭑚𭑎𭑥)) ∶= {{𝐶𭑙[𝑡 − 𝜏𭑘(𝑙)]}𭑘∈𭐿∶𭑘≠𭑙}𭑙∈𭐿.

For every 𝑙 ∈ 𝐿, we define the critical NSI available at transmitter 𝑙 as

follows:

𝐶𝑆𭑙(𝐶[𝑡](0 ∶ 𝜏𭑚𭑎𭑥)) ∶= 𝐶𝑆(𝐶[𝑡](0 ∶ 𝜏𭑚𭑎𭑥)) ⋂

𝑃𭑙(𝐶[𝑡](0 ∶ 𝜏𭑚𭑎𭑥)).

Recalling the example in Section 4.2, we have the 𝜏𭑚𭑎𭑥 = 2, and critical

set at time 𝑡 is {𝐶𭐴[𝑡− 1], 𝐶𭐵[𝑡− 1], 𝐶𭐶[𝑡− 1], 𝐶𭐶[𝑡− 2]}. Thus at time 𝑡, the

critical set available at transmitter A is {𝐶𭐴[𝑡−1], 𝐶𭐵[𝑡−1], 𝐶𭐶[𝑡−1], 𝐶𭐶[𝑡−

2]}, at B is {𝐶𭐴[𝑡 − 1], 𝐶𭐵[𝑡 − 1], 𝐶𭐶[𝑡 − 2]}, and at C is {𝐶𭐴[𝑡 − 1], 𝐶𭐵[𝑡 −

1], 𝐶𭐶[𝑡 − 1], 𝐶𭐶[𝑡 − 2]}.

We now describe the queue dynamics at each transmitter node. Each

transmitter maintains a queue of packets corresponding to its destination.

Once a packet is sent, this node does not flush the packets from its queues

until an acknowledgment is received indicating successful reception. This ac-

knowledgment (ACK) is received with some delay, and this delay is consistent

with the critical channel state information delays. By this, we mean that the

information contained in the acknowledgment, either explicitly (in the header)

or implicitly (via the observation that presence of the ACK/NACK “encodes”

25



the interfering links’ critical NSI) does not contain additional NSI as com-

pared to the nodes’ critical NSI. This is to ensure that by learning based on

queue lengths and ACKs, nodes cannot get more NSI than the critical NSI.

This consistency of ACK “state” information can be characterized explicitly

where each transmitter node has potentially a different ACK delay, which is

“naturally” consistent with the critical NSI in the system. However, in this

work, for notational simplicity, we assume that the acknowledgment is received

only after 𝜏𭑚𭑎𭑥 time slots (thus trivially ensuring that the ACK information is

consistent with the critical NSI). The queue dynamics therefore is represented

as follows,

𝑄𭑙[𝑡 + 1] = (𝑄𭑙[𝑡] + 𝐴𭑙[𝑡] − 𝑆𭑙[𝑡 − 𝜏𭑚𭑎𭑥])+,

where 𝑆𭑙[𝑡] denotes the number of packets successfully transmitted at time 𝑡.

2.4.3 A Threshold-based Throughput-optimal Scheduling Algorithm:

The two ideas discussed so far – (a) that global, common randomness

helps span the stability region (Section 2.4.1), and (b) that critical delayed

NSI at each transmitter is as good as all available delayed NSI (Section 2.4.2),

are used in this section to design a threshold-based decentralized scheduling

algorithm. This algorithm uses shared, delayed queue-length information as

a source of common randomness, and along with local threshold-type static

scheduling with only critical NSI at each transmitter, achieves throughput-

optimality, i.e., stabilizes the network for all arrival rates in the interior of the

throughput region Λ. Note that this is done without any explicit knowledge of

26



the arrival rates; thus the shared queue lengths distribute themselves in such

a way as to provide the “right” time sharing fractions necessary to stabilize

any valid vector of arrival rates.

The algorithm we propose consists of two steps. At each time slot,

• Step 1: All the transmitters compute threshold functions based on com-

mon NSI available at all transmitters. These threshold functions, one for

each transmitter, map the respective transmitter’s critical NSI to a cor-

responding threshold value, and are computed by solving the following

optimization problem:

argmax
𭑇

�
𭑙∈𭐿

𝑄𭑙(𝑡 − 𝜏𭑚𭑎𭑥)𝑅𭑙,𭜏𭑚𭑎𭑥
(𝑇), (2.1)

where

𝑅𭑙,𭜏(𝑇) ∶= 𝐸[𝐶𭑙[𝑡]1𭐶𭑙[𭑡]≥𭑇𭑙(.)(𝛾𭑙 + (1 − 𝛾𭑙) ∏
𭑚∈𭐼𭑙

1𭐶𭑚[𭑡]<𭑇𭑚(.))|𝐶[𝑡 − 𝜏]],

(2.2)

and 𝑇𭑙(.) ∶= 𝑇𭑙(𝐶𝑆𭑙(𝐶[𝑡](0 ∶ 𝜏𭑚𭑎𭑥))).

• Step 2: Each transmitter observes its current critical NSI, evaluates its

threshold function (found in Step 1) at this critical NSI, and attempts

to transmit if and only if its current channel rate exceeds the threshold

value, i.e., when

𝐶𭑙[𝑡] ≥ 𝑇𭑙(𝐶𝑆𭑙(𝐶[𝑡](0 ∶ 𝜏𭑚𭑎𭑥))).

27



The main result of this section is the following, which states that the

above distributed scheduling algorithm stabilizes any arrival rate vector in the

system throughput region Λ.

Theorem 2.4.2. The proposed algorithm is throughput-optimal.

Proof outline. We provide a sketch of the proof here – the detailed proof can

be found in the appendix. The crux of the proof lies in the following lemma,

which shows that solving an optimization problem locally in each time slot

results in (globally) throughput-optimal scheduling.

Lemma 2.4.3. Consider the optimization problem

argmax
𭐹(.)

�
𭑙∈𭐿

𝑄𭑙(𝑡 − 𝜏𭑚𭑎𭑥)𝑅𭑙,𭜏𭑚𭑎𭑥
(𝐹(.)), (2.3)

where

𝑅𭑙,𭜏(𝐹(.)) ∶= 𝐸[𝐶𭑙[𝑡]𝐹𭑙(.)(𝛾𭑙 + (1 − 𝛾𭑙) ∏
𭑚∈𭐼𭑙

(1 − 𝐹𭑚(.)))|𝐶[𝑡 − 𝜏]],

and 𝐹𭑙(.) ∶= 𝐹𭑙(𝑃𭑙(𝐶[𝑡](0 ∶ 𝜏𭑚𭑎𭑥))) ∈ {0, 1} for each 𝑙 ∈ 𝐿. If each transmitter

𝑙 at time 𝑡 is scheduled to transmit whenever the optimizing 𝐹*
𭑙 (𝑃𭑙(𝐶[𝑡](0 ∶

𝜏𭑚𭑎𭑥))) = 1, then any 𝜆⃗ that satisfies (1 + 𝜖)𝜆⃗ ∈ Λ for 𝜖 > 0 is supportable.

Next, we show that the optimizing solution (i.e., the functions 𝐹*
𭑙 (.) of

the individual NSI for all 𝑙 ∈ 𝐿)

1. Satisfies a threshold property, i.e.,

𝐹*
𭑙 (𝑃𭑙(𝐶[𝑡](0 ∶ 𝜏𭑚𭑎𭑥))) = 1𭐶𭑙[𭑡]≥𭑇*

𭑙 (𭑃𭑙(𭐶[𭑡](0∶𭜏𭑚𭑎𭑥))),
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2. Depends only on the critical set of NSI for each 𝑙 ∈ 𝐿, i.e.,

𝑇*
𭑙 (𝑃𭑙(𝐶[𝑡](0 ∶ 𝜏𭑚𭑎𭑥))) = 𝑇*

𭑙 (𝐶𝑆𭑙(𝐶[𝑡](0 ∶ 𝜏𭑚𭑎𭑥))).

The proof is completed by first noting that the proposed algorithm finds the

best threshold-based scheduling decisions where each transmitter’s thresholds

are based only on its currently available NSI. And then using the two key

properties of the time-varying channels - Markov property across time and

independence property across the links in the network.

2.5 Impact of Delayed NSI on the Throughput Region

With increasing delays in NSI between users, the information structure

available to the users for scheduling becomes “coarser”, hence we expect that

system throughput is degraded. In this section, we present our second main

result, which describes the extent to which the throughput region shrinks with

larger delays in acquiring NSI from other users.

Let us denote the throughput region with NSI delays { ⃗𝜏𭑙}𭑙∈𭐿 (which

we call our “canonical heterogeneous case”) by Λ. For an integer 𝜏 ≥ 0, let Λ𭜏

denote the throughput region assuming that each link has its own instanta-

neous NSI and knows the NSI of other links in the network with a fixed delay

of 𝜏. We note that

Λ𭜏𭑚𭑎𭑥
⊆ Λ ⊆ Λ𭜏𭑚𭑖𭑛

.
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The following theorem – our second main result – quantifies the loss

(gain) in the interior of the throughput region by using the minimum (max-

imum) homogeneously delayed NSI compared to the canonical heterogeneous

case.

Theorem 2.5.1. For integers 𝜏1, 𝜏2 ≥ 0, let

𝛼(𝜏1, 𝜏2) ∶=
2𝐿𝑘𭑜𝛽(𝜏1, 𝜏2)
∑𭑗 𝑐𭑗 min𭑖 𝑃

𭜏1
𭑖𭑗
, (2.4)

where 𝑘𭑜 = (1 + 𝑀|𝐼|(1 − 𝛾))(∑𝑐𭑖), 𝛽(𝜏1, 𝜏2) = max|𝑃𭜏1
𭑖𭑗 − 𝑃𭜏2

𭑘𭑗|, 𝛾 = min 𝛾𭑙

and |𝐼| denotes the maximum size of an interfering set of transmitters. Then,

(1 − 𝛼)Λ𭜏𭑚𭑖𭑛
⊆ Λ ⊆ (1 − 𝛼)−1Λ𭜏𭑚𭑎𭑥

,

where 𝛼 ∶= 𝛼(𝜏𭑚𭑖𭑛, 𝜏𭑚𭑎𭑥) .

Theorem 2.5.1 is important for the following reasons:

1. It provides a lower bound on the fraction of the best-NSI throughput that

can be attained as delays in NSI increase. Furthermore, the bound de-

pends in a straightforward manner on the probability transition matrices

of the system channels and the maximum number of interfering channels.

2. From the perspective of system design, the result of the theorem is use-

ful since it specifies how much delay in the NSI can be tolerated while

guaranteeing a minimum desired throughput capability for the system.
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Proof. We prove a more general result which implies the above theorem: Given

𝜏1 and 𝜏2 such that 𝜏1 ≤ 𝜏2, we have Λ𭜏2
⊇ (1 − 𝛼(𝜏1, 𝜏2))Λ𭜏1

.

For a NSI structure where each transmitter knows its current infor-

mation and delayed information (by 𝜏1) of other links in the network, we

have a scheduling policy based on thresholds (from Theorem 2.4.2) that is

throughput-optimal. We will need the following useful lemma [7].

Lemma 2.5.2. (Adapted from [7]) At any time 𝑡, given the common NSI

(𝑄[𝑡](𝜏1 ∶ 𝑡), 𝐶[𝑡](𝜏1 ∶ 𝑡)), let 𝑇*
1 be the optimal set of thresholds calculated using

the proposed algorithm and 𝑇2 be set of thresholds computed using a scheduling

policy 𝑆𭜌 such that the following condition holds (for some 𝜌 ∈ [0, 1]):

�
𭑙∈𭐿

𝑄𭑙(𝑡 − 𝜏2)𝑅𭑙,𭜏1
(𝑇2) ≥ (1 − 𝜌)�

𭑙∈𭐿
𝑄𭑙(𝑡 − 𝜏2)𝑅𭑙,𭜏1

(𝑇*
1).

Then, the scheduling policy 𝑆𭜌 can stabilize any arrival rate 𝜆⃗ ∈ (1 − 𝜌)Λ𭜏1
.

Let 𝑇*
2 be the set of thresholds computed using the proposed algorithm

with the “degraded” NSI (𝑄[𝑡](𝜏2 ∶ 𝑡), 𝐶[𝑡](𝜏2 ∶ 𝑡)). Thus, 𝑇*
2 need not be

an optimal set of thresholds for scheduling with the “non-degraded” partial

NSI (𝑄[𝑡](𝜏1 ∶ 𝑡), 𝐶[𝑡](𝜏1 ∶ 𝑡)). Also, the proposed algorithm which uses only

degraded partial NSI (𝜏2 instead of 𝜏1) can stabilize the system for all arrival

rates 𝜆⃗ ∈ Λ𭜏2
. We can write

𝑅𭑙,𭜏1
(𝑇*

2) = 𝐸[𝐶𭑙[𝑡]1𭐶𭑙[𭑡]≥𭑇*
2,𭑙
(𝛾𭑙 + (1 − 𝛾𭑙) ∏

𭑚∈𭐼𭑙

1𭐶𭑚[𭑡]<𭑇*
2,𭑚

)|𝐶[𝑡 − 𝜏1]] .
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Since the random variables 𝐶𭑙[𝑡] and 𝐶𭑚[𝑡] are independent, we can rewrite

the above expression as
𝑅𭑙,𭜏1

(𝑇*
2) =𝛾𭑙𝐸[𝐶𭑙[𝑡]1𭐶𭑙[𭑡]≥𭑇*

2,𭑙
|𝐶𭑙[𝑡 − 𝜏1]] + (1 − 𝛾𭑙)𝐸[𝐶𭑙[𝑡]1𭐶𭑙[𭑡]≥𭑇*

2,𭑙
|𝐶𭑙[𝑡 − 𝜏1] ×

∏
𭑚∈𭐼𭑙

𝐸[1𭐶𭑚[𭑡]<𭑇*
2,𭑚

|𝐶𭑚[𝑡 − 𝜏1]].

Let 𝑃𭜏
𭑖𭑗 denote the 𝜏-step transition probability of the channel state

Markov chain from state 𝑐𭑖 to state 𝑐𭑗. Rewriting the above expression in

terms of 𝑃𭜏
𭑖𭑗, we have

𝑅𭑙,𭜏1
(𝑇*

2) =𝛾𭑙 (
𭑀
�
𭑖=1

𝑐𭑖𝑃
𭜏1
.𭑖 1𭑐𭑖≥𭑇*

2,𭑙
)+

(1 − 𝛾𭑙)(
𭑀
�
𭑖=1

𝑐𭑖𝑃
𭜏1
.𭑖 1𭑐𭑖≥𭑇*

2,𭑙
) ∏

𭑚∈𭐼𭑙

(
𭑀
�
𭑖=1

𝑃𭜏1
.𭑖 1𭑐𭑚≥𭑇*

2,𭑙
) .

(2.5)

We now state another lemma that bounds the difference between 𝑅𭑙,𭜏1
(𝑇*

2)

and 𝑅𭑙,𭜏2
(𝑇*

2).

Lemma 2.5.3. |𝑅𭑙,𭜏1
(𝑇*

2) − 𝑅𭑙,𭜏2
(𝑇*

2)| < 𝑘𭑜𝛽(𝜏1, 𝜏2).

Using Lemma 2.5.3, we have that

�
𭑙∈𭐿

𝑄𭑙(𝑡 − 𝜏2)𝑅𭑙,𭜏1
(𝑇*

2) ≥�
𭑙∈𭐿

𝑄𭑙(𝑡 − 𝜏2) ×

(𝑅𭑙,𭜏2
(𝑇*

2) − 𝑘𭑜𝛽(𝜏1, 𝜏2)).

With the fact that 𝑇*
2 is an optimal set of thresholds for the proposed algorithm

with NSI (𝑄[𝑡](𝜏2 ∶ 𝑡), 𝐶[𝑡](𝜏2 ∶ 𝑡)), we have

�
𭑙∈𭐿

𝑄𭑙(𝑡 − 𝜏2)𝑅𭑙,𭜏1
(𝑇*

2) ≥�
𭑙∈𭐿

𝑄𭑙(𝑡 − 𝜏2) ×

(𝑅𭑙,𭜏2
(𝑇*

1) − 𝑘𭑜𝛽(𝜏1, 𝜏2)).
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Employing Lemma 2.5.3 once again, we have

�
𭑙∈𭐿

𝑄𭑙(𝑡 − 𝜏2)𝑅𭑙,𭜏1
(𝑇*

2)

≥ �
𭑙∈𭐿

𝑄𭑙(𝑡 − 𝜏2)(𝑅𭑙,𭜏1
(𝑇*

1) − 2𝑘𭑜𝛽(𝜏1, 𝜏2))

≥ �
𭑙∈𭐿

𝑄𭑙(𝑡 − 𝜏2)𝑅𭑙,𭜏1
(𝑇*

1) − (𝐿𝑄𭑚𭑎𭑥)2𝑘𭑜𝛽(𝜏1, 𝜏2)

= �
𭑙∈𭐿

𝑄𭑙(𝑡 − 𝜏2)𝑅𭑙,𭜏1
(𝑇*

1)
⎛⎜

⎝

1 − (𝐿𝑄𭑚𭑎𭑥)2𝑘𭑜𝛽(𝜏1, 𝜏2)
�
𭑙∈𭐿

𝑄𭑙(𝑡 − 𝜏2)𝑅𭑙,𭜏1
(𝑇*

1)
⎞⎟

⎠

.

Note that

�
𭑙∈𭐿

𝑄𭑙(𝑡 − 𝜏2)𝑅𭑙,𭜏1
(𝑇*

1) ≥ �
𭑙∈𭐿

𝑄𭑙(𝑡 − 𝜏2)(min𝑅𭑙,𭜏1
(.)) ≥ 𝑄𭑚𭑎𭑥 �

𭑗
𝑐𭑗 min𝑃𭜏1

𭑖𭑗 .

where the second inequality follows from the fact that summation is larger

than maximum and 𝑅𭑙,𭜏1
(.) can be lower bounded by ∑𭑗 𝑐𭑗 min𭑖 𝑃

𭜏1
𭑖𭑗 . Using

the above inequality, we have that

�
𭑙∈𭐿

𝑄𭑙(𝑡 − 𝜏2)𝑅𭑙,𭜏1
(𝑇*

2)

≥ �
𭑙∈𭐿

𝑄𭑙(𝑡 − 𝜏2)𝑅𭑙,𭜏1
(𝑇*

1)(1 − 2𝐿𝑘𭑜𝛽(𝜏1, 𝜏2)
∑𭑗 𝑐𭑗min𝑃𭜏1

𭑖𭑗
)

= (1 − 𝛼(𝜏1, 𝜏2))�
𭑙∈𭐿

𝑄𭑙(𝑡 − 𝜏2)𝑅𭑙,𭜏1
(𝑇*

1).

Using Lemma 2.5.2 now yields Λ𭜏2
⊇ (1−𝛼(𝜏1, 𝜏2))Λ𭜏1

as desired.

Finally, as a corollary of Theorem 2.5.1, we characterize the throughput

region Λ∞ as a fraction of the canonical throughput region Λ𭜏. This represents

the throughput in the “worst” possible delayed NSI case when each user has

no NSI from any other user. For the sake of simplicity, we assume 𝑃𭑖𭑗 > 0 for
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all 𝑖 and 𝑗. Even if 𝑃𭑖𭑗 are not all positive, we can find an integer 𝑚𭑜 (since

the Markov chain is aperiodic, irreducible and finite) such that 𝑃𭑚𭑜
𭑖𭑗 > 0 for

all 𝑖 and 𝑗.

Corollary 2.5.4.

𝑎) 𝛼(𝜏𭑚𭑖𭑛, 𝜏𭑚𭑎𭑥) ≤
4𝐿𝑘𭑜(1 −𝑀𝛿)𭜏𭑚𭑖𭑛

∑𭑗 𝑐𭑗 min𭑖 𝑃
𭜏𭑚𭑖𭑛
𭑖𭑗

,

𝑏) lim
𭜏𭑚𭑎𭑥→∞

𝛼(𝜏𭑚𭑖𭑛, 𝜏𭑚𭑎𭑥) ≤
2𝐿𝑘𭑜(1 −𝑀𝛿)𭜏𭑚𭑖𭑛

∑𭑗 𝑐𭑗 min𭑖 𝑃
𭜏𭑚𭑖𭑛
𭑖𭑗

,

where 𝛿 = min𭑖𭑗 𝑃𭑖𭑗.

Proof. The proof is based on the exponential convergence property [29] of

finite-state Markov chains and detailed proof is presented in appendix.

2.6 Simulations

In this section, we carry out numerical experiments using our proposed

scheduling algorithms to illustrate the value of delayed network state informa-

tion for throughput performance, and the efficacy of the Markov chain mixing

bounds with homogeneously delayed NSI shown in Section 2.5.

2.6.1 Methodology

For our simulations, we consider a wireless network with 𝐿 = 10 links.

Complete interference is assumed with perfect collisions, i.e., 𝐼𭑙 = ℒ {𝑙}

and 𝛾𭑙 = 0 ∀𝑙. Thus, for a transmission to be successful on a link 𝑙, we

need all the other links in the network to be “silent”, otherwise no packet
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is transmitted. The channel state process for each link 𝑙 is assumed to be

a two-state Markov chain on the state space {0, 1}, with uniform crossover

probabilities 𝑝. Throughout this section, we assume symmetric traffic at all

links, i.e., 𝐴𭑙[𝑡] ∼ Bernoulli(𝜆) ∀𝑙. Thus all the flows are single hop. The

proposed algorithm in Section 2.4.3 is implemented in each time slot by solving

the optimization (2.1) as a brute-force search over all possible thresholds 𝐓.

2.6.2 Throughput Performance with Delayed NSI

We simulate in Matlab, the proposed algorithm (Section 2.4.3) on the

10-links wireless network described above for various values of the channel

crossover probability 𝑝 and NSI delays 𝜏. For each value of 𝑝, Figure 2.4

depicts the maximum sum-throughput, i.e., 10×𝜆, that the proposed algorithm

achieves as a function of increasing homogeneous NSI delay 𝜏 = 0, 1, … , 10.

The maximum sum-rate when all nodes have instantaneous NSI (i.e.,

𝜏 = 0) is 1. In this case, our algorithm reduces to performing standard Max-

Weight scheduling, and results in each of the the 10 nodes exclusively transmit-

ting 1
10 -th of the time. Thereafter, as the information delay 𝜏 increases from 0

to 10, the sum-capacity decreases owing to more degradation in the nodes’ NSI

structure. This sum-throughput degradation with delay occurs faster when 𝑝

is closer to 0.5. Note that 𝑝 = 0.5 represents channel states that are i.i.d.

across time slots, so there is nothing to be gained from using delayed channel

state information. Hence, the more rapid degradation of sum-rate closer to

the i.i.d. channel regime is consistent with the fact that the dependence of
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Figure 2.4: Sum-throughput performance of the proposed algorithm for a
10-node wireless network with full collision interference. Traffic is symmetric
with rate 𝜆𭑙 = 𝜆, and channels are 2-state Markov with rates {0, 1} pack-
ets/slot. Each curve depicts optimal sum-rate achievable for various homoge-
neous NSI delays 𝜏 = 0, 1, … , 10, for a different value of channel state crossover
probability 𝑝.
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current channel state decreases with 𝑝 increasing to 0.5.

2.6.3 Throughput Region Mixing-based Bounds

We next turn to evaluating the efficacy of our bound 𝛼(⋅, ⋅) from Theo-

rem 2.5.1. Note that, from Section 2.5, the quantity (1−𝛼(𝜏,∞)) lower bounds

the factor by which the throughput region with “infinitely delayed NSI” (i.e.,

NSI with a very large delay) Λ∞ is smaller relative to the throughput region

Λ𭜏 with a homogeneous NSI delay 𝜏. Thus, (1 − 𝛼(𝜏,∞)) = 1 denotes that

Λ𭜏 = Λ∞, i.e., there is no further throughput degradation beyond a NSI delay

of 𝜏.

Figure 2.5 plots the calculated values of (1 − 𝛼(𝜏,∞)) versus 𝜏 for

various values of channel state crossover probabilities 𝑝. Observe that for

𝑝 = 0.5, i.e., channel states independent across time slots, this quantity is

always 1, which agrees with the fact that throughput with delayed NSI over

independent channel states does not depend on the amount of delay. Also,

note that the closer 𝑝 is to 0.5, the faster (1 −𝛼(𝜏,∞)) approaches 1, i.e., the

more rapidly the throughput region shrinks to Λ∞ as noted in the previous

section.

Figure 2.5 shows that the bounds of Theorem 2.5.1 are indicative of the

level of NSI delay beyond which there is effectively little degradation of the

system throughput. From Figure 2.5, when 𝑝 = 0.4 observe that the bound is

1 for all 𝜏 > 5. At the same time, from the simulation results of Figure 2.4, we

notice that for 𝜏 ≥ 3 there is no further degradation in throughput. Thus, the

37



bound derived in Theorem 2.5.1 provides an estimate of the NSI delay beyond

which there is no further degradation in throughput.
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Figure 2.5: Plot of (1 − 𝛼(𝜏,∞)) versus homogeneous NSI delay 𝜏. Each
curve represents a different value of channel state crossover probability 𝑝. The
quantity (1−𝛼(𝜏,∞)) lower-bounds the factor by which the throughput region
with “infinitely delayed NSI” (i.e., NSI with a very large delay) Λ∞ is smaller
relative to the throughput region Λ𭜏 with a homogeneous NSI delay 𝜏. Thus,
(1 − 𝛼(𝜏,∞)) = 1 denotes that Λ𭜏 = Λ∞, i.e., there is no further throughput
degradation beyond a NSI delay of 𝜏.

2.7 Discussion: Implementation Complexity

We remark that the throughput-optimal algorithm developed in Section

2.4.3 is computationally complex. The solution which we provide is in terms of

an integer program with a high complexity if solved in a brute-force manner.

We have numerically evaluated the run times of our algorithm using Matlab
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simulations (but without any approximations to reduce compelxity). The run

time of algorithm for network sizes with 5, 10, 15 and 20 links are 4, 110, 3900

and 81400 ms respectively. Note that the time taken roughly grows exponen-

tially with the number of links in the network. A simple further approximation

is to ignore the far-away links delayed channel state information and just use

the expected values instead. With this approximation, as the network scales

the complexity at an individual node will not scale after a point in network

size but will incur a loss in throughput. However, the above calculations do

not use this approximation and are computed using the “brute-force” exact

solution. It is possible that there could be sophisticated methods that reduce

this complexity; instead, we have studied complexity reductions via structural

properties of the solution. In particular, our approach towards complexity

reduction in this work is the following:

1. We characterize the minimal/critical information necessary (and suffi-

cient) for throughput-optimality (Section 2.4.2). This is significant as

the complexity is exponential in the size of the information set.

2. We show that threshold-type policies are sufficient for throughput-optimality

(Section 2.4.3). Note that in general, the throughput-optimal policy in

each time slot at each node is a mapping from observed delayed chan-

nel and queue state to a scheduling decision (i.e., transmit/no-transmit).

However, we show that threshold-type mappings, i.e., transmit only if

the current channel state exceeds a threshold, are sufficient for achiev-

ing throughput-optimality. This reduces the complexity of the algorithm
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from exponential to linear in the number of channel states, though we

note that the complexity remains exponential in the network size.

3. To obtain further complexity reductions, we consider alternative (sub-

optimal) schemes based on the use of “degraded common information”

(Section 2.5). The technical challenge here is in characterizing the loss in

throughput, and we develop novel Markov chain mixing-based techniques

to do so.

2.8 Conclusion

In this chapter, we have addressed the problem of distributed scheduling

in wireless networks with Markovian channels and heterogeneously delayed

NSI. We have proposed a threshold-type distributed scheduling algorithm that

is provably throughput-optimal. We have shown that thresholds depend only

up on the critical set of NSI. We have also characterized the effect of delayed

NSI on the network throughput region.
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Chapter 3

On the effect of channel fading on greedy
scheduling

3.1 Introduction

In this work, we analytically investigate the effect of fading on the

throughput performance of a natural and popular scheduling algorithm: Greedy

Maximal Scheduling (GMS) [33, 51, 54, 67]. As with any scheduling algorithm,

GMS is a way to determine which wireless links can transmit at any given

time, based on their mutual interference characteristics and their current level

of fading. In particular, GMS involves first associating a weight with each link

– which depends on the load of the link and its channel condition. Then, GMS

involves iteratively turning on the heaviest link that does not interfere with

links already turned on. This is repeated every time slot.

GMS has empirically shown to have very good throughput and delay

performance; recent theoretical advances [31, 37, 39, 51, 52, 62] characterize its

throughput. All of these works assume that there is no fading; ie that the

rate a link can support is invariant as long as all the links that interfere with

it are not simultaneously on. Our work investigates what happens to this

performance in the more realistic setting with intrinsic channel fading as well.
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In particular, we compare the relative throughput of GMS as compared to

that of an optimal scheduler.

Our results demonstrate that the effect of fading is quite subtle; in par-

ticular, in some instances fading can degrade the relative performance of GMS,

while in other cases it can improve it. The former reflects the fact that fading

provides an extra degree of freedom and complexity in the system, which GMS

may not be able to handle as well as in a system without this fading. The

latter reflects the, perhaps more subtle, fact that the sub-optimality of GMS

(even without fading) is tied to the existence of special global system config-

urations that result in poor performance. The presence of fading “breaks up”

these global configurations – not allowing them to occur too often – allowing

GMS to perform relatively better.

Specifically, our contributions are as follows: For a given wireless net-

work with fading channels,

1. We define a new quantity, called Fading-Local Pooling Factor (F-LPF),

analogous to LPF defined in [51] that characterizes the performance of

Greedy Maximal Scheduling (GMS) in wireless networks with fading

channels. Furthermore, we show that Fading-LPF is a lower bound on

the fraction of throughput that can be stabilizable by the GMS when

the arrivals and channels are independent and identically distributed

over time.

2. With arbitrary arrival and channel state process, we show that Fading-

42



LPF is an upper bound on the fraction of throughput that can be sta-

bilizable by the greedy schedule. More specifically, we construct an ad-

versarial arrival and channel process with long term averages that lie

outside the scaled throughput region and show that GMS policy cannot

stabilize the queues.

3. We further provide lower and upper bounds on Fading-LPF that are

easy to evaluate. We provide two example networks with specific fading

structure and use the derived bounds to demonstrate that fading can

either enhance or degrade the relative performance of GMS as compared

to the non-fading scenario.

4. With fading, we can represent the channel model as a collection of global

channel-states, where each state is associated with an independent set

and an occurance probability. A natural question that arises is the fol-

lowing: Is the acheivable rate-region with fading simply the (channel-

probability weighted) average of the per-state scaled rate regions, with

the scaling parameter simply being the conventional LPF for each state?

We show that this is in general not true. However, we derive a region

that can be stabilized by the GMS in wireless networks with fading chan-

nels. This region is characterized based on the interference degree of the

subgraphs (generated from original network) and the fading distribution.
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3.1.1 Related Work:

Transmission scheduling has been a key challenge in modern wireless

systems. The MaxWeight algorithm, proposed in [42], has been the inspiration

for many approaches to address this in various wireless systems (see [67] for

several variants). However, this algorithm suffers from centralization as well

as computational complexity.

Thus, there has been significant research in finding sub-optimal (i.e.,

achieving a subset of the throughput region) distributed scheduling algorithms

with low complexity. The authors in [54] propose one such policy called Greedy

Maximal Scheduling, whose time complexity is linear in the number of links,

and has a distributed implementation [52]. There are other sub-optimal, ran-

domized algorithms that have been proposed with similar performance as GMS

[36, 40].

The authors in [33] have been the first to study the performance of GMS

under a general interference model. They have identified conditions (so called

’Local Pooling’) under which there is no loss in the network throughput region

with GMS. The notion of Local Pooling has been extended to a multi-hop

regime by [62].

This condition being identified as too restrictive, the authors in [51]

have defined a new quantity called Local Pooling Factor (LPF) that exactly

characterizes the fraction of throughput region achieved by GMS, and show

that over tree networks with a 𝐾−hop model for interference, GMS achieves
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the entire throughput region. Additional characterizations, including a per-

link LPF [38] and bounds to characterize the stability region [39], have been

proposed in literature.

The authors in [31] exactly characterize, using graph theoretic methods,

the set of network graphs (with only the primary interference constraints)

where GMS is optimal (LPF = 1). Finally, the authors in [37] have studied

the performance of GMS with the SINR interference model, and have shown

that GMS exhibits zero LPF in the worst case.

All the above results assume that there are no channel variations (fad-

ing). In this work, we study the effect of channel variation on the performance

of GMS.

3.2 System Model and Back Ground

We consider a wireless network consisting of 𝐾 links labeled as {1, 2, 3, ...,𝐾}.

Let 𝐾 denote the set of links in the network. Each link 𝑙 consists of a transmit-

ter and receiver. We assume time to be slotted. Each time slot is composed

of two parts. The first (control) part is reserved for making the transmission

decision and second part for transmitting the packet. At time slot 𝑡, we denote

the channel capacity of link by 𝐶𭑙[𝑡]. We assume that the capacity varies from

slot to slot, and is constant during a time slot. We consider collision interfer-

ence/protocol model and denote the set of links that interfere with link 𝑙 by 𝐼𭑙.

We say that the transmission on link 𝑙 at time 𝑡 is successful, if no link in the

𭐼𭑙 transmits during the same time 𝑡. The maximum number of packets that
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can be successfully transmitted in time slot 𝑡 on link 𝑙 is bounded by 𝐶𭑙[𝑡].

We assume single hop flows in the network. Let 𝐴𭑙[𝑡] denote the number

of packets that arrive at transmitter of link 𝑙 at time slot 𝑡. We assume that

arrival processes is bounded and average rate of arrivals for link 𝑙 is denoted

by 𝜆𭑙.

For simplicity we first consider ON/OFF channels (i.e 𝐶𭑙[𝑡] = 0 or 1)

and later show that our results can be extended to channels with finite num-

ber of channel states. For the ON/OFF setting, global state (GS) refers to

specifying the set of links that are in ’ON’ state. Let 𝐺𝑆(𝑡) denote the set

of links that are in ’ON’ state in time slot 𝑡. Let 𝜋(𝐽) denote the fraction of

time the network is in global channel state 𝐽, where links in set 𝐽 are ’ON’

and links in the set 𝐾\𝐽 are in ’OFF’ state. Let 𝜋 := {𝜋(𝐽), 𝐽 ⊂ 𝐾} denote

the fading structure.

Assumptions. :

A1 (Long-term Averages): We assume that the long-term time averages of

arrivals and channel states satisfy the following:

1
𝑇

𭑇
�
𭑡=0

𝐴𭑙[𝑡] → 𝜆𭑙 as 𝑇 → ∞. (3.1)

and
1
𝑇

𭑇
�
𭑡=0

1𭐺𭑆(𭑡)=𭐽 → 𝜋(𝐽) as 𝑇 → ∞. (3.2)

A2 (Randomness): We assume that arrivals are mutually independent

i.i.d processes with 𝜆𭑙 = 𝐸[𝐴𭑙[𝑡]]. Similarly the channels are independent

across time and form a stationary process with 𝜋(𝐽) = 𝐸[1𭐺𭑆(𭑡)=𭐽].
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While both assumptions A1 and A2 specify the same long-term av-

erages, we note that assumptions in A1 allow for arrival and channel state

processes to be dependent across time and across links in a deterministic, and

possibly adversarial manner. The necessity for the above sets of assumptions

will be clear as we state our main results in Section 3.3.

3.2.1 Preliminaries

As discussed earlier, there is a rich history of analysis of GMS algo-

rithms for the non-fading case [31, 33, 37–39, 51]. In this section we build on

this notation in literature to allow for time-varying (fading) channels.

We define Interference graph 𝐼𝐺 for a set of links as follows: Each

link is represented by a node and an edge is drawn between two nodes if

transmissions on the corresponding links in the original graph interfere with

each other. This model captures many existing wireless models and is quite

general. We define the Independent set on this graph as set of nodes with

no edges between them. Let 𝑄𭑙[𝑡] denote the number of packets present at

the transmitter at time 𝑡 waiting to get scheduled on link 𝑙. Let 𝑆𭑙[𝑡] ∈ {0, 1}

denote the schedule decision for link 𝑙 at time 𝑡. At each time 𝑡, a schedule ⃗𝑆[𝑡]

is determined based on the global queue state and channel state information

at time 𝑡, that is (𝑄⃗[𝑡]), ⃗𝐶[𝑡]). We also assume that arrivals occur at the end

of time slot, thus we have the following queue dynamics:

𝑄𭑙[𝑡 + 1] = (𝑄𭑙[𝑡] − 𝐶𭑙[𝑡]𝑆𭑙[𝑡])+ +𝐴𭑙[𝑡], (3.3)
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where 𝑎+ = max(0, 𝑎).

Given the arrival traffic rate {𝜆𭑙}𭑙∈𭐿 and a scheduling policy, we say

that the network is stable under scheduling policy if the mean of the sum of

queue lengths is bounded. We say that an arrival rate vector {𝜆𭑙}𭑙∈𭐿 is sup-

portable if there exists any scheduling policy that can make the network stable.

We call the set of all arrival vectors that are supportable by throughput region

and denote it as Λ𭑓, where 𝑓 denotes that the channels are fading.

We say that a scheduling policy is throughput optimal if it can stabilize

the network for all arrival rates inside the throughput region.

Definition 1: ([51]) The interference degree 𝑑𭐼(𝑙) of link 𝑙 is the max-

imum number of links in the set {𝑙 ∪ 𝐼𭑙}that can be active at the same time

with out interfering with each other. The interference degree 𝑑𭐼(𝐺) of a graph

𝐺 = {𝑉,𝐸} is the maximum interference degree across all its links in 𝐸

Consider a wireless system with 4 links. Let 𝐼1 = {2}, 𝐼2 = {1, 3, 4},

𝐼3 = {2, 4} and 𝐼4 = {2, 3}. The interference graph is shown in the Figure 3.1

with the corresponding 𝑑𭐼(𝑙). The interference degree of this example graph

is 2.

Definition 2: Given an interference graph, an independent set corre-

sponds to set of nodes (links in the original graph) such that there is no edge

between any two nodes in the set (no two links interfere in the original graph).

Further, it is maximal if it is not a subset of any other independent set. For a

set of links 𝐿, define a matrix 𝑀𭐿 whose columns represent the maximal inde-
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Figure 3.1: Interference Graph where nodes denote the links and edges denote
the interference constraints.

pendent sets on the set 𝐿, with |𝐿| rows one for each link. We assume links are

naturally ordered and rows in 𝑀𭐿 are assigned according to the defined order.

For 𝐽 ⊂ 𝐿, let 𝑀𭐽,𭐿 denote the matrix with |𝐿| rows and is constructed from

𝑀𭐽 as follows: columns from 𝑀𭐽 are used and zero row vectors are added for

links which do not belong to set 𝐽. Let 𝐶𝐻(𝑀𭐽,𭐿) denote the convex hull of

all column vectors of matrix 𝑀𭐽,𭐿.

For the above example with 4 links, let 𝐽 = {1, 2, 3} and 𝐿 = {1, 2, 3, 4},

we have

𝑀𭐽 = ⎛

⎝

1 0
0 1
1 0

⎞

⎠
and

𝑀𭐽,𭐿 = ⎛⎜⎜

⎝

1 0
0 1
1 0
0 0

⎞⎟⎟

⎠

Note that the set Λ𭐿 ∶= {𝜆⃗ ∶ 𝜆⃗ < 𝜇⃗; 𝜇⃗ ∈ 𝐶𝐻(𝑀𭐿)} characterizes the
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throughput region of set of 𝐿 links if no fading were present. We now define

the throughput region with the fading structure,

Definition 3: The throughput region Λ𭑓 for a given network with fading

pattern 𝜋(𝐽) is described as follows,

Λ𭑓 = {𝜆⃗ ∶ 𝜆⃗ > 0, 𝜆⃗ ≤ �
𭐽

𝜋(𝐽) ⃗𝜂𭐽 where ⃗𝜂𭐽 ∈ 𝐶𝐻(𝑀𭐽,𭐾)}.

Definition 4: ([51]) The efficiency ratio 𝛾*
𭑝𭑜𭑙 under a given scheduling

policy is defined as follows,

𝛾*
𭑝𭑜𭑙 = sup{𝛾 ∶ the policy can stabilize for allthe arrival rate vectors𝜆 ∈ 𝛾Λ𭑓}.

Definition 5: Given 𝑥(𝐽) ∈ [0, 1], we define a new region Λ𭑓( ⃗𝑥) as

follows,

Λ𭑓( ⃗𝑥) = {𝜆⃗ ∶ 𝜆⃗ > 0, 𝜆⃗ ≤ �
𭐽

𝑥(𝐽)𝜋(𝐽) ⃗𝜂𭐽 where ⃗𝜂𭐽 ∈ 𝐶𝐻(𝑀𭐽,𭐾)}.

Note that throughput region is same as Λ𭑓(1).

3.2.2 GMS Algorithm [54]

We now describe the Greedy Maximal Scheduling(GMS) Algorithm.

GMS essentially finds a maximal schedule in a greedy fashion. Each node in

the interference graph is assigned weight equal to 𝑓(𝑄𭑙(𝑡)𝐶𭑙(𝑡)), where 𝑓(.)

is a strictly increasing function that is zero at 0 and tends to infinity as

𝑄𭑙(𝑡)𝐶𭑙(𝑡) → ∞. It then proceeds as follows: it finds the node with max-

imum weight in the whole network and adds it to GMS schedule (ties are
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broken arbitrarily), it further discards all the neighboring nodes along with

the selected node and repeats the above procedure on the reduced graph, till

there are no more nodes left in the interference graph.

3.3 Main Results

In this work, we characterize the performance of GMS algorithm for

wireless networks with time-varying channels. We define the fading local pool-

ing factor, 𝜎*
𭐿(𝜋), for a set of links 𝐿(⊆ 𝐾) with fading structure 𝜋 as follows:

𝜎*
𭐿(𝜋) = inf{𝜎 ∶ ∃ ⃗𝜙1, ⃗𝜙2 ∈ Φ(𝐿) such that 𝜎 ⃗𝜙1 ≥ ⃗𝜙2}, (3.4)

where,

Φ(𝐿) = { ⃗𝜙 ∶ ⃗𝜙 = �
𭐽∶𭐽⊆𭐾

𝜋(𝐽) ⃗𝜂𭐽 where ⃗𝜂𭐽 ∈ 𝐶𝐻(𝑀𭐽∩𭐿,𭐿)}, (3.5)

and Fading-Local Pooling Factor (F-LPF) for a network 𝐺, 𝜎*
𭐺(𝜋), with fading

structure 𝜋 as follows:

𝜎*
𭐺(𝜋) = min𭐿∶𭐿⊆𭐾𝜎*

𭐿(𝜋), (3.6)

Note that the above definition reduces to the known definition of LPF

for a graph [51] when there is no fading, i.e, when 𝜋(𝐾) = 1.

The F-LPF can be understood as follows: Consider arrivals only to

links of set 𝐿 (assume arrivals to other links are 0); when the links in set 𝐽

are ’ON’ (others are ’OFF’), GMS will pick a maximal schedule among the

’ON’ links, i.e. a column of 𝑀𭐽∩𭐿,𭐿. Thus vector ⃗𝜂𭐽 is the long run average
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of these maximal schedules when system is in state 𝐽; so ⃗𝜂𭐽 ∈ 𝐶𝐻(𝑀𭐽∩𭐿,𭐿).

Thus Φ(𝐿) is the set of all long-run average service vectors that could appear

due to GMS when the arrivals are restricted only to set of links in 𝐿. For any

two vectors ⃗𝜙1, ⃗𝜙2 ∈ Φ(𝐿), it may thus happen that GMS results in ⃗𝜙2 service

vector, when it should have been ⃗𝜙1 (for the optimal case). Thus 𝜎*
𭐿(𝜋) is the

worst possible ratio difference among all the possible service vectors of Φ(𝐿).

Dual Characterization and Implications: In the same spirit as [33, 38],

the Fading- Local Pooling Factor has a dual characterization, as noted in

Lemma B.3.1, and displayed below. The F-LPF, 𝜎*
𭐿(𝜋), is given by the solution

to the following optimization problem:

𝜎*
𭐿(𝜋) = max

𭑥,𭑎(𭐽),𭑏(𭐽)
�

𭐽∶𭐽⊆𭐿
𝜋𭐿(𝐽)𝑎(𝐽) (3.7)

s.t : 𝑥′𝑀𭐽,𭐿 ≥ 𝑎(𝐽)𝑒′ ∀𝐽 ⊆ 𝐿

𝑥′𝑀𭐽,𭐿 ≤ 𝑏(𝐽)𝑒′ ∀𝐽 ⊆ 𝐿

�
𭐽∶𭐽⊆𭐿

𝜋𭐿(𝐽)𝑏(𝐽) = 1, (3.8)

where 𝑒 is a column vector of all ones, (⋅)′ is the vector transposition operation

and 𝜋𭐿 denotes the marginal distribution on set of links 𝐿 induced by 𝜋.

Observe that each fading state 𝐽 induces a network defined by ON

edges (i.e., all OFF links are removed from the network). Thus, one could ask

if with fading channels, the F-LPF can be determined simply by computing

the “standard” LPF (denoted by 𝜎*(𝐽)) for each of these induced networks,

and then averaging these quantities (weighted by the steady-state fractions of
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times for each of the fading states) over all possible fading states? In other

words, is the following true?

𝜎*
𭐿(𝜋)

?= �
𭐽∶𭐽⊆𭐿

𝜋𭐿(𝐽)𝜎*(𝐽)

where 𝜎*(𝐽) is the standard LPF [51] for the network that is induced by state

𝐽.

An important insight that emerges from the dual characterization is

that such averaging does necessarily not hold, in particular because the

possibly adversarial nature of the fading channel does not permit averaging.

Note that the adversary cannot change the long-term fractions of the global

states – it can merely change the temporal correlations. Inspite of this, aver-

aging does not hold, as clearly shown in Example B in Section 3.3.2).

In a tree network with fading as in Example B (see Section 3.3.2), while

the LPF for each state is ’1’, the F-LPF is less than 4/5 which is lower than

any convex averaging of the states! This discussion implies that the regular

LPF does not immediately extend to the case with fading. This motivates

us to explicitly develop the local pooling factor in the presence fading, and

understand its implications.

Contributions:

3.3.1 Characterization in terms of F-LPF:

Our first contribution, Theorem 3.3.1, characterizes the efficiency ratio

of GMS algorithm in the presence of fading.
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Theorem 3.3.1. a) (Upper Bound) Under a given network topology and chan-

nel state distribution with Assumption A1 on the arrivals and fading channels,

the efficiency ratio of GMS (𝛾*) is less than or equal to 𝜎*
𭐺(𝜋).

b) (Achievability) Under a given network topology and channel state

distribution 𝜋 with Assumption A2 on the arrivals and fading channels, the

efficiency ratio of GMS (𝛾*) is greater than or equal to 𝜎*
𭐺(𝜋).

Implications: The above result enables us to understand the perfor-

mance of GMS compared to the optimal scheduler in the presence of fading.

In particular, computing bounds on 𝜎*
𭐺(𝜋) leads to insights on the positive and

negative aspects of fading (discussed further in Theorems 3.3.2 and 3.3.3). Ob-

serve first that as long as the long-term averages on the arrivals and channels

are satisfied (Assumption A1), we can construct an arrival and channel process

that ensures that the efficiency cannot exceed the F-LPF 𝜎*
𭐺(𝜋). Further, for

typical arrival and channel processes with sufficient randomness (in this work

i.i.d. assumptions have been imposed, however this can be weakened), the

converse holds wherein 𝜎*
𭐺(𝜋) is achievable.

Proof Discussion: For the first part, we extend the ideas in [51], to

construct an adversarial arrival and fading process pattern when arrival rates

are outside the (𝜎*
𭐺(𝜋)+𝜖)Λ𭑓 and show that a set of queues are unstable under

GMS policy. For the second part, we use the approach in [33, 51] as follows:

we show that if 𝜆⃗ is inside (𝜎*
𭐺(𝜋)−𝜖)Λ𭑓 then GMS policy can stabilize all the

queues in the network. We look at the deterministic fluid limit of the system

54



and exhibit a Lyapunov function whose drift is negative under the GMS policy.

We have that fluid model is stable and therefore that the original system is

stable. Please refere to appendix for full details.

Theorem 3.3.2 (Upper Bound). For every 𝐽 ⊆ 𝐾 and any (𝜇⃗𭐽, ⃗𝜈𭐽,𝐻𭐽) such

that 𝜇⃗𭐽, ⃗𝜈𭐽 ∈ 𝐶𝐻(𝑀𭐽), ⃗𝜈𭐽 ≤ 𝐻𭐽𝜇⃗𭐽, we have that

𝜎*
𭐺(𝜋) ≤ max𭑙

∑𭐽⊆𭐾 𝜋(𝐽)𝐻𭐽𝜇𭐽(𝑙)
∑𭐽⊆𭐾 𝜋(𝐽)𝜇𭐽(𝑙)

,

where 𝜇𭐽(𝑙) = 0 if 𝑙 𝐽.

Implications: While 𝜎*
𭐺(𝜋) is defined only though an optimization prob-

lem, the upper bound permits an explicit solution. This bound is useful, as

evidenced in Example B provided in Section 3.3.2. In particular this upper

bound is useful to illustrate that the F-LPF is not a simple convex combina-

tion of the standard LPF averaged over the fading states, and that adversarial

fading can indeed worsen the performance of GMS.

Proof Discussion: Though the proof follows from straightforward al-

gebraic computations, the value of the theorem lies in the smart selection of

(𝜇⃗𭐽, ⃗𝜈𭐽,𝐻𭐽) vectors that satisfy the inequality stated in the above theorem.

In the worst case the bound yields 1; however we can use the existing re-

sults in literature [31] to get good bounds. Thus, the tightness of the upper

bound depend up on the ability to identify good vectors that satisfy the above

constraints.
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Theorem 3.3.3 (Lower Bound).

𝜎*
𭐿(𝜋) ≥

∑𭐽⊆𭐿 𝜋𭐿(𝐽)𝑛(𝑀𭐽)
∑𭐽⊆𭐿 𝜋𭐿(𝐽)𝑁(𝑀𭐽)

, (3.9)

where 𝑛(𝑀) = min𭑗 ∑𭑖 𝑀𭑖𭑗, 𝑁(𝑀) = max𭑗 ∑𭑖 𝑀𭑖𭑗. 𝜋𭐿 denotes the marginal

distribution on set of links 𝐿 induced by 𝜋 and can be computed as follows,

𝜋𭐿(𝐽) = �
𭐼∶𭐼⊆𭐾,𭐼∩𭐿=𭐽

𝜋(𝐼)

.

Implications: The ability to compute a lower bound leads to the inter-

esting observation that fading can help improve efficiency. This is because, by

turning links ’OFF’, fading “breaks up” some of the bad global states that can

lead to poor GMS performance. This is explicitly brought out in Example A

in the context of a six-link network.

Proof Discussion: The lower bound is derived using the dual formula-

tion of the F-LPF, see (3.7). We find a point in the dual search space that

satisfies all the constraints in the dual characterization, thus yielding a lower

bound on the primal problem. Observe that 𝑛(𝑀𭐽) corresponds to the mini-

mum number of links that needs to be ’ON’ in any maximal schedule on set of

𝐽 links and 𝑁(𝑀𭐽) denotes the maximum number of links that could be ’ON’

among all the maximal schedules on set of 𝐽 links. Thus, the lower bound can

be computed easily and can be shown to be tight for some wireless networks.

As an interesting aside, note that the lower bound provided is always better

than the inverse of the interference degree of graph 𝐺 (see Corollary 1).
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Figure 3.2: Interference graphs for the two examples: Hexagon network and
Line network

We now present two examples: A and B, one in which fading reduces

the relative performance of GMS and the other in which fading enhances the

relative performance of GMS respectively to illustrate the value of the above

results.

3.3.2 Examples: Benefit and Detriment with Fading

Example A: A network where fading structure improves the relative

performance of GMS: Consider a graph with six links 𝐾 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓}.

The interference graph for the six links is shown in the Figure 3.2. Each link

is either is state ’ON’ or ’OFF’. We consider the following fading structure, 𝜋,

for 𝐽 ⊆ 𝐾

𝜋(𝐽) = 𝑝|𭐽|(1 − 𝑝)6−|𭐽|,
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Figure 3.3: Bounds on the fading local pooling factor for the Hexagon network

where |𝐽| denotes the size of set 𝐽. Note that 𝑝 = 1 corresponds to the

no-fading case.

Using our results, we compute the lower bound and upper bounds on

local pooling factor 𝜎*
𭐺(𝜋) and is plotted in Figure 3.3.

It is known [51] that the non-fading LPF for the above example is

equal to 2/3. From the graph, we observe that for smaller values of 𝑝, F-LPF

for above hexagon network with fading is greater than LPF with out fading

structure. As p tends to zero, the fraction of time network remains a cycle

also tends to be small and it is known that GMS is optimal for tree networks.

Therefore, it fits well with intuition to see that fading enhances the F-LPF for

graphs with cycles.
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Example B: A network where fading structure worsens the relative

performance of GMS: Consider the graph with 3 links 𝑎, 𝑏, 𝑐 as shown above.

The interference sets for each link is: 𝐼𭑎 = {𝑏}, 𝐼𭑏 = {𝑎, 𝑐}and 𝐼𭑐 = {𝑏}.

We assume each link is either in state ’ON’(1) or ’OFF’(0). So the global

channel state ′110′ denotes that link 𝑎 and 𝑏 are in ’ON’ state and link 𝑐 is in

’OFF’ state. The fading structure is defined as follows: 𝜋(′110′) = 𝜋(′011′) =

𝜋(′111′) = 1/3.

For each global channel state, the possible maximal independent sets

are as follows:

𝑀𭑎𭑏,𭑎𭑏𭑐 = ⎛

⎝

1 0
0 1
0 0

⎞

⎠
and

𝑀𭑏𭑐,𭑎𭑏𭑐 = ⎛

⎝

0 0
1 0
0 1

⎞

⎠
and

𝑀𭑎𭑏𭑐 = ⎛

⎝

1 0
0 1
1 0

⎞

⎠
Any vector that belongs to Φ({𝑎𝑏𝑐}) can be represented as follows,

⃗𝜙 = 1
3
𝑀𭑎𭑏[𝛼 1 − 𝛼]′ + 1

3
𝑀𭑏𭑐[𝛽 1 − 𝛽]′ + 1

3
𝑀𭑎𭑏𭑐[𝛾 1 − 𝛾]′. (3.10)

Let ⃗𝜙1 be obtained using (𝛼, 𝛽, 𝛾) = (1, 0, 0) and ⃗𝜙2 be obtained using

(𝛼, 𝛽, 𝛾) = (1/2, 1/2, 3/4). Evaluating the above expression using the above
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values, we have ⃗𝜙1 = 1
3 [1 1 1]

′ and ⃗𝜙2 = 5
12 [1 1 1]

′. Observing the fact that
4
5

⃗𝜙2 = ⃗𝜙1, using Theorem 3.3.2, we have that local pooling factor for the

wireless network with the above fading structure is less than or equal to 4
5 .

But, it is known that the local pooling factor of GMS for tree networks (with

no fading) is 1.

This result though sounds counter-intuitive, stems from the fact that

we allow the fading to be arbitrary. Thus fading can act as adversary and as

demonstrated, can degrade the performance of GMS algorithm.

3.3.3 Characterization in terms of Interference degree

So far, we have characterized the performance of GMS through a single

scaling factor of the entire throughput region. Note that each fading state 𝐽

induces a network defined on the set of edges that are in ’ON’ state and GMS

can stabilize the network if arrivals are inside the region 𝜎*(𝐽)Λ𭐽. It is natural

to ask for the fading scenario, i.e. network with distribution 𝜋(𝐽), if GMS

could stabilize the region ∑𭐽 𝜋(𝐽)𝜎*(𝐽)Λ𭐽? We answer the above question in

two parts.

In the first part, we show the interesting result that GMS cannot stabi-

lize the above averaged region. In other words, there exists an arrival process

with rate outside the region Λ𭑓( ⃗𝑥) for 𝑥(𝐽) = 𝜎*(𝐽) (standard LPF) that can

make the network unstable under GMS algorithm. We illustrate this using a

simple example described below.

Counter Example: Consider the network with 3 nodes as in Example B.
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Note that the standard LPF [31] for all the three fading states is 1. Thus the

region Λ𭑓(𝜎*(𝐽)) is exactly same as the actual throughput region Λ𭑓. However,

we have shown earlier that F-LPF is strictly less than 0.8. Thus there exists

an arrival process with rates outside the region 0.8Λ𭑓 that cannot be stabilized

by the greedy maximal schedule.

Given the previous negative result, in the second part we show that

GMS can stabilize the region Λ𭑓( 1
𭑑𭐼(𭐽)). Note that this region is strictly inside

the region Λ𭑓( ⃗𝑥) with 𝑥(𝐽) = 𝜎*(𝐽). More formally, our result is as follows:

Theorem 3.3.4. Under a given network topology and channel state distri-

bution with Assumption A1 on the arrivals and fading channels, GMS can

stabilize the network if the arrival rates are inside the region Λ𭑓( ⃗𝑥), where

𝑥(𝑆) = 1
𭑑𭐼(𭑆) .

Implications: The above theorem provides an elegant characterization

of the rate region that can be stabilizable by the GMS algorithm. Also, we

find that that the above region is not a subset of the achievable region stated

in Theorem 1b (i.e 𝜎*
𭐺(𝜋)Λ𭑓). We illustrate the above observation through a

simple example described below.

Consider the wireless network with 3 nodes and fading distribution

similar to example B. Note that the interference degree for fading state ′110′

is 𝑑𭐼(′110′) = 1, for state ′011′ is 𝑑𭐼(′011′) = 1 and for the fading state ′111′ is

𝑑𭐼(′111′) = 0.5. Any arrival rate vector that belongs to the new region defined

61



using the interference degree can be expressed as below,

𝜆⃗ = 1
3
𝑀𭑎𭑏[𝛼 1 − 𝛼]′ + 1

3
𝑀𭑏𭑐[𝛽 1 − 𝛽]′ + 1

3
1
2
𝑀𭑎𭑏𭑐[𝛾 1 − 𝛾]′, (3.11)

where 𝛼, 𝛽 and 𝛾 are positive constants that are bounded by 1. Using (𝛼, 𝛽, 𝛾) =

(0, 1, 0), we have that rate vector (0, 5
6 , 0) is inside the new region character-

ized by the interference degree. However, note that we have shown the F-LPF

is upper bounded by 4
5 for example B network. Thus, all arrival rates that are

inside the region 4
5Λ𭑓 satisfy the constraint that 𝜆2 < 4

5 and hence rate vector

(0, 5
6 , 0) belongs to the new region and not the region characterized by F-LPF.

Proof Discussion: We consider the continuous time model with de-

terministic arrival and channel state processes. We then exhibit a Lyapunov

function, sum of squares of queue lengths, whose derivative is strictly less than

zero under the GMS policy whenever the arrival rate is strictly inside the new

region. Therefore, the fluid model is stable and thus using the results from

[32] we conclude that the original network model is stable.

3.4 Extensions to Multiple Fading States

We now extend our results for ’ON/OFF’ channels to channel models

where each link capacity is time-varying and takes values from a finite state

space. Let us denote the set of values in the state space by {0, 𝑐1, 𝑐2, ....., 𝑐𭑚}.

The global state 𝐺𝑆(𝑡) of the system now refers to the exact channel state

of each link. Let 𝜋(𝑋1, 𝑋2, ..., 𝑋𭐾) denote the fraction of time the net-

work is in global channel state (𝑋1, 𝑋2, 𝑋3, ....𝑋𭐾). Let us denote the state
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(𝑋1, 𝑋2, 𝑋3, ...., 𝑋𭐾) by 𝑋.

Let 𝑀𭑋 denote the matrix consisting of 𝐾 rows one for each link. Each

column now represents a possible maximal independent set on the set of links

with non-zero channel states. For a given column, the entries of a given row

is set to zero if link 𝑙 (corresponding to row) does not belong to independent

set, or is set to equal to channel value 𝑋𭑙 if it belongs to independent set. For

example, consider the Interference graph in Figure 3.1 with each link taking 3

channel states {0, 1, 2}. Then 𝑀(1,2,1,0) is given by,

𝑀(1,2,1,0) = ⎛⎜⎜

⎝

1 0
0 2
1 0
0 0

⎞⎟⎟

⎠

The throughput region Λ𭑓 for the above general network model with

fading pattern 𝜋(𝑋) is given by:

Λ𭑔
𭑓 = {𝜆⃗ ∶ 𝜆⃗ > 0 , 𝜆⃗ ≤ �

𭑋
𝜋(𝑋) ⃗𝜂𭑋 where

⃗𝜂𭑋 ∈ 𝐶𝐻(𝑀𭑋)}.

We now define the F-LPF for a set of links 𝐿 as follows:

𝜎*
𭐿(𝜋) = inf{𝜎 ∶ ∃ ⃗𝜙1, ⃗𝜙2 ∈ Φ𭑔(𝐿) such that 𝜎 ⃗𝜙1 ≥ ⃗𝜙2}, (3.12)

where,

Φ𭑔(𝐿) = { ⃗𝜙 ∶ ⃗𝜙 = �
𭑋

𝜋(𝑋) ⃗𝜂𭑋 where ⃗𝜂𭑋 ∈ 𝐶𝐻(𝑀𭑋𭐿
)}, (3.13)
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𝑋𭐿 is constructed from 𝑋 by setting the values of links that do not belong to

set 𝐿 in 𝑋 to zero.

Theorem 1 can be shown to hold for the general model with the above

modified definition of F-LPF. The proof of Theorem 1 for the ’ON/OFF’

channels can be easily modified to above system with general channels and is

therefore omitted.

3.5 Conclusion & Discussion

In this chapter, we studied the problem of scheduling in wireless net-

works with interference constraints where the capacity of links changes over

time. We have analyzed the performance of a well-known algorithm, Greedy-

Maximal Scheduling (GMS), to the case of general wireless networks with

fading structure. We defined Fading-Local pooling factor for graphs with fad-

ing and showed that it characterizes the fraction of throughput that can be

achieved by GMS. We have derived useful yet easily computable bounds on

F-LPF through alternate formulations.
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Chapter 4

Distributed scheduling in wireless networks
with cut-through routing

4.1 Introduction

Over the last few years, new radio technology has emerged enabling

nodes to simultaneously transmit and receive [44] over the same frequency

band. The key idea is that the wireless node has knowledge of the trans-

mitted signal – this information is used to cancel the self-interference on the

receive side, and thus successfully decode a packet while also simultaneously

transmitting a packet. This technology, commonly referred to as full-duplex

wireless, has been enabled through a combination of advances in antenna/RF

circuits along with advanced digital processing, for self-interference cancella-

tion [44, 46, 55, 58].

From a networking perspective, this technology is exciting for two rea-

sons: (i) the fact that nodes can transmit and receive dramatically increases

capacity by relaxing the MAC constraints in scheduling, and (ii) the fact that

this gain occurs due to self-interference cancellation implies that knowledge

of the packet matters. The second point is especially important – this means

that at any node, if we somehow have a copy of a packet, this knowledge
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can be used to potentially extract any other packet that might be “mixed”

with the known packet. Another implication is that packet routing paths

matter in determining the MAC region capacity (along the route, nodes have

copies of the packet), thus creating an “inversion” with respect to the classi-

cal network stack. We specifically leverage this effect to perform cut-through

switching (CTS, whose feasibility was first demonstrated in [44, 46]), where a

node simultaneously receives and re-transmits the same packet by canceling

interference from downstream nodes along the route that are re-transmitting

the same message. This effectively creates a “long jump” for a packet, where

it is able to simultaneously move across several nodes in a path within a single

time-slot.

As noted in [46], cut-through paths (long jumps) are appealing from an

end-to-end delay perspective. Further, we observe in this work (see Section 4.2

for an example) that in fact, the inversion between the MAC and routing can

potentially increase the MAC-layer capacity region (and not just delay) of

full-duplex wireless systems. However, a key challenge is to manage such long

jumps such that the network interference due to a larger “packet footprint”

does not degrade the overall throughput-region by blocking cross-flows. The

associated algorithmic challenge is to develop routing and scheduling algo-

rithms that result in good performance. Our contributions are as follows:

For a given multi-hop wireless network with CTS ability,

1. We propose a new low-complexity, local-information based joint rout-

ing/scheduling algorithm (that prioritizes CTS routes) for multi-hop
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wireless networks. We analyze the throughput performance of the pro-

posed algorithm and show that the efficiency ratio is greater than inverse

of interference degree (Theorem 4.4.1).

2. If the arrivals to the wireless system are inside a particular fraction

(inverse of the interference degree of underlying interference graph) of

throughput region, we provide an upper bound on the total expected

hop-delay, defined in Section 4.3.4, of the proposed algorithm (Theorem

4.4.2).

3. We further characterize the derived upper bound on the total expected

hop-delay of the proposed algorithm and relate it to the lower bound

on the total expected hop-delay of any algorithm that can stabilize the

network (see Theorem 4.4.3). We use this result to provide a sufficient

condition for hop-delay optimality of our proposed algorithm.

4. We also provide simulation results to justify that the proposed algorithm

in-fact exploits the benefits of CTS capability of wireless networks both

in terms of achievable data rates and packet delays.

4.1.1 Related Work

Over the last decade, the backpressure algorithm [42] has been the focus

of intense study for scheduling and routing over wireless multi-hop networks.

While this algorithm is throughput-optimal, it is known to suffer from several

deficiencies including high computation complexity and centralized control.
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The research effort over the last several years has focussed on addressing some

of these deficiencies [39, 53, 56]. However, these algorithms (distributed and/or

low-complexity) are in general not throughput optimal. A popular approxima-

tion approach with a distributed implementation [52] is the Greedy Maximal

Scheduling algorithm (GMS) [54] (alternately, a Maximal Weight Independent

Set algorithm). In a single-hop network context, this algorithm (or its vari-

ants) have been studied to derive throughput guarantees [51], and extended

to fading channels [57]. In a multi-hop context, results include throughput

guarantees [59, 60] and optimality conditions [62].

Switching tracks, in the context of performance beyond stability for

joint routing and scheduling algorithms, work includes [45, 61] where central-

ized algorithms are developed (that modify back-pressure so as to bias toward

short routes) and show that (through simulations) that they result in better

end-to-end delay performance without degrading the throughput performance

of back-pressure.

In parallel, radio technology has continued to evolve. Over the last

few years, an exciting development [44, 58] has been the development of var-

ious analog and digital techniques that enable a wireless node to receive and

transmit data at the same time. Further, the authors in [46] noted that such

full-duplex wireless radios can be used to implement data forwarding via cut-

through switching (CTS) in multi-hop wireless networks to potentially reduce

end-to-end delays. While the study in [46] demonstrated the feasibility of CTS

in full-duplex wireless, the authors did not propose routing/scheduling algo-
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Figure 4.1: Wireless Graph with and with out CTS

rithms (nor address capacity region issues). In the earlier work on multi-hop

wireline networks, it was shown empirically that [47] significantly helps reduce

the latency in the system.

However, it is a priori not clear whether the existing low-complexity,

distributed scheduling algorithms perform well (or exploit CTS) in wireless

networks with full-duplex/cut-through capability, which is the focus of this

work.
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4.2 Example and Motivation

Consider the wireless network 𝐺 (line network) as shown in Figure 4.1.

The nodes in the graph represent wireless radios and edges between nodes

represent possible pairwise (direct) communication (edges are bi-directional

and transmission by nodes result in packets on all links incident on the node).

First, let us consider a half-duplex setting (primary conflict) where each node

can only either transmit or receive from another node. The objective is to

deliver packets from the leftmost (node 1) to the rightmost node (node 𝑁).

In this setting, we can argue that one every third link in the network can

simultaneously support transmissions. To see this, suppose node 1 transit

packet ’A’, and node 2 is the intended receiver. Node 3 cannot transmit

simultaneously to node 4, because this transmission would result in a collision

at node 2 (recall links are bidirectional, and nodes broadcast packets). Thus,

both nodes ’2’ and ’3’ cannot transmit, resulting in a long-term throughput of

1/3.

With full-duplex communications but without cut-through capability,

two consecutive links can successfully support traffic simultaneously; however,

the following two links need to be idle. To see this, in a time-slot suppose

that node 1 transmits packet ’A’ to node 2, node ’2’ transmits different packet

’B’ to node ’3’, and node ’3’ attempts to transmit a packet ’C’ to node 4 (see

Figure 4.1). This scenario is not feasible because node 2 cannot decode packet

’A’ from node 1 due to the interference by packet C (links are bi-directional,

hence packet ’C’ will collide with packet ’B’ at node 2). A similar argument will
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result in the observation that the closest node that can successfully transmit

without causing ’backward’ interference is node 5. This implies that along a

line, for every four links, only two carry useful packets, resulting in an average

throughput of 1/2.

Finally, consider the wireless network 𝐺𭐾, which denotes the wireless

network 𝐺 with cut-through switching capability parameter 𝐾 ≥ 2. The CTS-

parameter 𝐾 denotes the number of hops a packet is allowed to cut-through1.

For the wireless network with parameter 𝐾, 𝐺𭐾, it can be shown (the argu-

ment is similar to that used in the previous paragraph for full duplex without

cut-through; the key point being that two nodes need to not transmit after

each cut-through stretch) that the condition 𝜆𭑓 < 𭐾
𭐾+2 (for large enough 𝑁)

is necessary and sufficient to stabilize the network.

The above example clearly demonstrates that cut-through routing in-

deed increases the data rates beyond that of full-duplex (without CTS) achiev-

able in a wireless network. This is not surprising as CTS essentially reduces the

interference observed in the original network, as packet is able to successfully

cut across multiple links with out self interference.

Apart from throughput, the other performance metric that is of interest

in wireless systems is end-to-end delay. End-to-end delay of a packet consists

of two parts: one is queueing delay and other is hop-delay. Queueing delay

comprises of sum of the time that the packet spends waiting in the queues (to

1We impose a deterministic bound on the number of hops a packet can cut-through to
account for propagation delay effects that build-up as the jump length increases.
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be served later) and hop-delay comprises of time the packet is being transmit-

ted on a link. It is known that lower hop-delay [61] leads to smaller end-to-end

delay at low to moderate traffic loads.

Note that for the above line network 𝐺𭐾 with 𝑁 nodes, the mini-

mum hop-delay of packets (whose source node is 1 and destination node is

𝑁) is ⌈𭑁−1
𭐾 ⌉. Further this can be achieved using a centralized scheduler. The

above example also shows that cut-through routing (apart from increasing the

throughput region) can help reduce the hop-delay in wireless networks.

However, it is a priori not clear if the existing distributed algorithms

exploit the CTS ability of wireless networks. In this regard, we develop a

distributed algorithm (based on [61]) that prioritizes routes with shortest path

length (or in our case CTS links) for multi-hop wireless networks.

In this work, we also provide hop-delay guarantees for the proposed

algorithm (apart from throughput guanrantees), which is interesting as this

is the first work that bounds the hop-delay component for a distributed algo-

rithm. In particular, using our theoretical results, we show that the proposed

algorithm is hop-delay optimal for the line network defined above with K-hop

cut through switching. Full details will be presented in Section 5.3, Example

1. The throughput and hop-delay performance of the proposed algorithm for

the above example is simulated and is presented below in Fig. 4.2 and Fig.

4.3 (for more simulation details, see section 4.5).

From the above simulation results, it can be seen that our algorithm
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Figure 4.2: Line Network: Performance of proposed algo.

indeed exploits both the throughput and hop-delay gains due to cut-through

switching in the case of line network.

We now consider a more general spatial network with full-duplex con-

straints, where we have multiple routes from source node to destination node.

For detailed network model, see Section 5.3, Example 3. We use our theoreti-

cal results to compute the hop-delay bounds of the proposed algorithm and is

plotted in Fig.4.4 . From the plot, it can be seen that the proposed algorithm

is hop-optimal at arrival rates less than 𝐶/2. We also present simulation re-

sults on the above described spatial network and observe that the proposed

73



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

2

3

4

5

6

7

8

9

10

Arrival Rate

A
v
e
r
a
g
e
 
H
o
p
−
D
e
l
a
y

 

 

HD

FD

CTS, K = 2

CTS, K = 3

CTS, K = 5

Figure 4.3: Line Network: Expected hop-delay of proposed algo.

algorithm is indeed expected hop-delay optimal at low loads as predicted using

our theoretical bounds.

4.3 System Model and Preliminaries
4.3.1 Network and Traffic Model

We model a wireless network via the graph 𝐺 = (𝑉,𝐸), where 𝑉 cor-

responds to the set of nodes (wireless radios) and 𝐸 corresponds to the set of

links. In our model, the links are bi-directional. For every link 𝑙 = (𝑚, 𝑛), let

𝐼𭑙 denote the set of links that interfere with its transmission. In other words,
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for a packet to be successfully sent over link 𝑙, all the links in the set 𝐼𭑙 need

to be turned OFF. As we discuss below, these links need not correspond to

the “physical” links between nodes, and can include virtual links (that model

CTS capability).

We assume that the time is slotted and packets are of equal size. We

further assume that each link’s capacity is one, i.e only 1 packet can be suc-

cessfully transmitted if interfering links are switched OFF. Let 𝐴𭑓[𝑡] denote

the number of packets that arrive at the source node of flow 𝑓, 𝑠(𝑓), and needs

to be sent to the destination node 𝑑(𝑓). Let 𝐹 denote the set of all the flows

in the network. For simplicity, we assume that the arrival processes 𝐴𭑓[𝑡] are
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independent and identically distributed across flows and time slots. Further,

we assume that the arrivals in each slot are bounded (denote by 𝐴max). Let

𝜆𭑓 denote the arrival rate of flow 𝑓, i.e. 𝜆𭑓 = 𝐸[𝐴𭑓[𝑡]].

4.3.2 Cut through switching

Let us denote the CTS ability by a parameter 𝐾, where 𝐾 denotes the

number of hops a packet can be successfully cut-through in a wireless network.

Given the above described wireless network 𝐺 = {𝑉,𝐸}, K-CTS ability can

be considered as adding extra edges between nodes that are with in 𝐾−hop

distance with appropriately defined interference set for these links. However,

note that multiple links (in networks with CTS) may have the exact same

sender node and transmitter node but have different intermediate nodes that

were cut through by the links.

Let 𝐺𭐾 = {𝑉,𝐸𭐾} denote the new graph obtained from wireless net-

work by adding the K-CTS ability. Note that the link 𝑙 = (𝑚, 𝑛1, 𝑛2, 𝑛3, ..., 𝑛) ∈

𝐸𭐾 if node 𝑛 is with in 𝐾 hops of node 𝑚. Further, for link 𝑙 ∈ 𝐸𭐾, we define

𝐼𭑙 to be the union of the set of links that interfere with the original links on its

path, i.e {(𝑚, 𝑛1), (𝑛1, 𝑛2), ...., (𝑛𭑡, 𝑛)}. Thus, a packet send via cut-through

routing across multiple links, from source node of first hop link to destination

node of last-hop link in cut-through route, requires all the links that interfere

with any of the links on the route to be turned OFF for successful transmission.
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4.3.3 Preliminaries

Given the interference constraints, we can construct a conflict graph

with nodes and directed edges as follows. Each node in the conflict graph

corresponds to a link (or CTS link) in the original network and every directed

edge in the conflict graph captures the interference between link A and B.

In other words, there exist a directed edge from node A to node B, if trans-

mission on link corresponding to node A in the original network interferes

with the reception of packets on link corresponding to node B. Note that the

conflict graph captures the asymmetric interference in wireless systems, where

interference between links may not be mutual.

An independent set on the above conflict graph is defined as a set of

nodes with no directed edges between them. Further a maximal independent

set is an independent set to which adding a new node makes it no longer an

independent set.

Observe that an independent set on the above conflcit graph can be

mapped to a set of links that can successfully transmit with out any interfer-

ence on the original network. Further it can also be mapped to a rate-vector,

that corresponds to above schedule. We denote the set of all such rate-vectors

that are generated using the independent sets on the conflict graph as admiss-

able rate-vectors. We denote the set of available admissible rate-vectors in the

network 𝐺𭐾 by Π(𝐺𭐾). Note that 𝜋 ∈ Π(𝐺𭐾) is a 0-1 column vector of length

|𝐸𭐾|.
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A scheduling policy is an algorithm that decides the set of links to be

activated (allowed to transmit) in each time slot. The network is said to be

stable under the pair: (scheduling policy, {𝜆𭑓}), with the arrival rate {𝜆𭑓}𭑓∈𭐹,

if the expected vlaue of the sum of queue lengths is bounded. Further, we

denote the arrival rate vector {𝜆𭑓}𭑓∈𭐹 to be supportable if one can construct

a scheduling policy that renders the network to be stable.

The throughput region Λ𭑓 (where 𝑓 denotes the set of flows in the

network) is the collection of all supportable arrival rate vectors. A throughput

optimal scheduling policy is defined as a policy that can stabilize the network

for any arrival rate inside the throughput region.

For a given scheduling policy, the efficiency ratio ([51]) 𝛾*
𭑝𭑜𭑙 is defined

as follows,

𝛾*
𭑝𭑜𭑙 = sup{𝛾 ∶ the policy can stabilize for all

the arrival rate vectors𝜆 ∈ 𝛾Λ𭑓}

4.3.4 TEH-Delay Metric

For a given scheduling policy, the Total Expected Hop-Delay (TEH-

Delay) [61] 𝐻(.) is defined as follows,

𝐻(𝜆𭑓) = �
𭑓

�
ℎ

ℎ𝜆𭑓,ℎ, (4.1)

where 𝜆𭑓,ℎ is the rate of flow 𝑓 that reach the destination in ℎ hops. As

described in [61], this has an alternate interpretation as the expected total

number of transmissions required to support the load by the given scheduling
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policy. Further note that ∑ℎ 𝜆𭑓,ℎ = 𝜆𭑓 and the Expected Hop-Delay of the

network is simply equal to 1
∑ 𭜆𭑓

𝐻(𝜆𭑓).

4.3.5 Interference Degree ([51])

For a link 𝑙, the associated interference degree (denoted by 𝑑𭐼(𝑙)) is

defined as the largest number of links in {𝑙} ∪ 𝐼𭑙 that can be concurrently

active without mutual interference. Further, for a graph 𝐺 = (𝑉,𝐸), we have

𝑑𭐼(𝐺) = max𭑙∈𭐸 𝑑𭐼(𝑙). We have the following inequality in networks with CTS.

Lemma 1. 𝑑𭐼(𝐺) ≤ 𝑑𭐼(𝐺𭐾) ≤ 𝐾𝑑𭐼(𝐺)

Proof. The first inequality 𝑑𭐼(𝐺) ≤ 𝑑𭐼(𝐺𭐾) follows from the fact that every

link in 𝐺 is also present in 𝐺𭐾. For the second inequality, note that a cut-

through link can be no longer than 𝐾 hops, and the number of links that can

be active when those 𝐾 links are inactive is no more then 𝐾𝑑𭐼(𝐺).

4.3.6 Greedy/Maximal Weight Independent Set (MWIS) Algorithm
[54]

Given a wireless network with an interference graph and the associated

node weights, the algorithm results in a schedule consisting of a collection of

nodes (links in the original graph). The node selection procedure is greedy:

the node with the maximum weight is selected (if more than one, any one

is chosen) and added to the schedule. Then, all its neighboring nodes are

eliminated. This two-step procedure is repeated until no more nodes remain.
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Further, in [52], the authors present a simple decentralized algorithm that can

implement MWIS in a wireless network.

4.3.7 Backpressure Routing and Maximal Scheduling (BRMS) [62]

At each time slot, the BRMS algorithm [62] first assigns weights to

each link 𝑒 = (𝑚, 𝑛) in the network similar to the back-pressure algorithm

[42] (i.e 𝑚𝑎𝑥𭑗 (𝑄𭑚𭑗[𝑡] − 𝑄𭑛𭑗[𝑡])), where 𝑄𭑖𭑗[𝑡] denotes the number of packets

queued at wireless node 𝑖 that are destined for node 𝑗 at time 𝑡. The algo-

rithm then implements the MWIS algorithm with these assigned weights and

schedules/routes accordingly.

4.4 Algorithm and Performance

In this section, we build on the shortest-path aided back pressure (SP-

BP) algorithm and notation in [61] to propose a local information based greedy

algorithm, and provide performance guarantees both in terms of throughput

and hop delay. At each time step, the proposed algorithm essentially assigns

weights for each link similar to SP-BP algorithm, and finds the route/schedule

to be used in a greedy fashion.

We now describe the queue structure used for our algorithm. We as-

sume that each node in the wireless network maintains a queue for each possi-

ble destination and possible hop budget (which our algorithm assigns to each

packet). In other words, at node 𝑛, we have queues labelled 𝑛, 𝑑, ℎ for all 𝑑 ∈ 𝑉

and ℎ ≥ 𝐻𭑛→𭑑
𭑚𭑖𭑛 (𝐾)., where 𝐻𭑛→𭑑

𭑚𭑖𭑛 (𝐾) denotes the minimum number of time
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slots needed to transmit the packet from node 𝑛 to node 𝑑 with no queueing

delay in network graph 𝐺𭐾. Let 𝑄𭑛𭑑ℎ denote the number of packets in the

queue 𝑛, 𝑑, ℎ that are destined for node 𝑑 and have a hop budget of ℎ hops.

Similarly let 𝑄𭑛𭑑 denote the number of packets at node 𝑛 that are destined

for node 𝑑.

Let us denote the service activation vector by 𝑆 = (𝑆𭑒𭑑ℎ, 𝑒 ∈ 𝐸𭐾, 𝑑 ∈

𝑉, 0 < ℎ < 𝑁). Note that 𝑆𭑒𭑑ℎ takes only one of two values from the set {0, 1}.

We say that a link activation vector is feasible only if the underlying link

activation vector belongs to Π(𝐺𭐾), i.e {𝜋𭑒 = ∑𭑑,ℎ 𝑆𭑒𭑑ℎ} ∈ Π(𝐺𭐾). Let us

denote the set of feasible service activation vectors by 𝑆. Also, a packet, queued

at node 𝑛 and destined for node 𝑑 with hop budget ℎ, that is successfully sent

over link 𝑙 = (𝑛.𝑚) is assumed to be placed in to the queue labelled 𝑚, 𝑑, ℎ−1.

Let 𝑑𭑛𭑑ℎ(𝑆) denote the net amount of service applied to queue 𝑛, 𝑑, ℎ

under the service activation vector 𝑆. Let 𝐹𭑆(𝑡) denote the number of slots in

which service activation vector 𝑆 was used during the time interval [0, 𝑡].

Observe that we have the following queue dynamics,

𝑄𭑛𭑑ℎ[𝑡] = 𝑄𭑛𭑑ℎ[𝑡 − 1] + 𝐴𭑓,ℎ[𝑡]𝐼𭑠(𭑓)=𭑛,𭑑(𭑓)=𭑑 −𝐷𭑛𭑑ℎ[𝑡],

where 𝐴𭑓,ℎ[𝑡] is obtained using the traffic splitting algorithm and 𝐷𭑛𭑑ℎ[𝑡] is

given by the following,

𝐷𭑛𭑑ℎ[𝑡] = �
𭑆∈𭑆

𝑑𭑛𭑑ℎ(𝑆)𝐹𭑆(𝑡).
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We now describe the proposed routing/scheduling algorithm, Greedy

SP-BP by modifying [61] (which is a centralized algorithm).

PROPOSED ALGORITHM: GREEDY SP-BP

1. Traffic Splitting: At time 𝑡, packets that arrive in to system 𝜆𭑓[𝑡]

are placed in the queue {𝑠(𝑓), 𝑑(𝑓), ℎ*
𭑓[𝑡]}, where ℎ*

𭑓 is found using the

following optimization problem:

ℎ*
𭑓[𝑡] ∈ arg minℎ≥𭐻𭑠(𭑓)→𭑑

𭑚𭑖𭑛 (𭐾)𝛽ℎ + 𝑄𭑠(𭑓),𭑑(𭑓),ℎ, (4.2)

2. Assign weight to each link (including cut-through links) as follows:

𝑊𭑚,𭑛[𝑡] = max(0,max𭑑,ℎ𝑊
𭑛,𭑑,ℎ
𭑚,𭑑,ℎ+1) ,where (4.3)

𝑊𭑛,𭑑,ℎ
𭑚,𭑑,ℎ+1 = 𝑄𭑚,𭑑,ℎ+1[𝑡] − 𝑄𭑛,𭑑,ℎ[𝑡]. (4.4)

3. Obtain the link activation vector 𝜋*
𭑒 using the Maximal Weight Indepen-

dent Set (MWIS) algorithm with the assigned weights for each link from

step 2.

4. For each link 𝑒 = (𝑚, 𝑛), obtain the corresponding service activation

vector 𝑆*
𭑒𭑑ℎ from 𝜋*

𭑒,

𝑆*
𭑒𭑥𭑦 = 1 if𝜋*

𭑒 = 1 and𝑥, 𝑦 = arg max𝑊𭑛,𭑑,ℎ
𭑚,𭑑,ℎ+1 (4.5)
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Theorem 4.4.1. For a given wireless network graph 𝐺 with cut-through ability

𝐾, the efficiency ratio of the proposed Greedy SP-BP algorithm is greater than
1

𭑑𭐼(𭐺𭐾) .

Proof Ideas & Implications The proof technique we use is now standard in

literature, and is as follows: we consider the set of arrivals inside the 1
𭑑𭐼(𭐺𭐾)

fraction of the throughput region. We then define a Lyapunov function and

show that under the considered set of arrivals and the proposed Greedy SP-BP

algorithm, the drift is negative whenever the maximum queue exceeds a fixed

threshold value. Using the Foster-Lyapunov condition, we have that the queue

lengths in the system are bounded. The key idea that is used is the fact that

weight of the schedule generated using maximal weight independent set is

always greater than 1
𭑑𭐼(𭐺𭐾) fraction of any other possible schedule. The proof

details are omitted due to space constraints.

Theorem 4.4.2. For a given wireless network with arrival rate vector 𝜆𭑓

inside 𝛾Λ, where 𝛾 ∈ [0, 1
𭑑𭐼(𭐺𭐾) ], and given 𝜖 > 0, the average hop delay

under the proposed Greedy SP-BP algorithm (for large 𝛽) is upper bounded

by 1
∑ 𭜆𭑓

𝐻𭑈𭐵(𝜆𭑓, 1
𭑑𭐼(𭐺𭐾)) + 𝜖, where the total hop-delay function 𝐻𭑈𭐵(𝜆𭑓, 𝛾) is
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defined using the below optimization OPT1,

𝐻𭑈𭐵(𝜆𭑓, 𝛾) = min�
𭑓

�
0<ℎ<𭑁

ℎ𝜆𭑓,ℎ

s.t. �
𭑓

𝜆𭑓,ℎ𝐼𭑠(𭑓)=𭑛,𭑑(𭑓)=𭑑 + 𝜇𭑖𭑛
𭑛,𭑑,ℎ

≤ 𝜇𭑜𭑢𭑡
𭑛,𭑑,ℎ ∀(𝑛, 𝑑, ℎ),

𝜇𭑛,𭑑,ℎ
𭑚,𭑑,ℎ+1 = 0, ifℎ < 𝐻𭑚𭑖𭑛

𭑛→𭑑,

(�
𭑑

�
ℎ

𝜇𭑛,𭑑,ℎ−1
𭑚,𭑑,ℎ ) ∈ 𝛾𝐶𝐻(Π(𝐺𭐾)),

�
ℎ

𝜆𭑓,ℎ = 𝜆𭑓

𝜆𭑓,ℎ ≥ 0, 𝜇𭑛,𭑑,ℎ
𭑚,𭑑,ℎ+1 ≥ 0.

(4.6)

where 𝜇𭑖𭑛
𭑛,𭑑,ℎ = ∑𭑚∶(𭑚,𭑛)∈𭐿 𝜇𭑛,𭑑,ℎ

𭑚,𭑑,ℎ+1[𝑡] and 𝜇𭑜𭑢𭑡
𭑛,𭑑,ℎ = ∑𭑖∶(𭑛,𭑖)∈𭐿 𝜇𭑖,𭑑,ℎ−1

𭑛,𭑑,ℎ [𝑡]

denote the average number of packets entering and leaving the queue 𝑛, 𝑑, ℎ

respectively.

Proof Ideas & Implications The proof technique used is similar to one used in

[61], however appropriately modified to take in to account of the sub-optimality

of the proposed Greedy SP-BP algorithm. The proof details are omitted due

to space constraints.

This result is interesting as this is the first (to the best of our knowledge)

one to characterize the hop count performance (a surrogate for delay) of a

distributed algorithm in context of multi-hop wireless networks.

A natural question that arises is as follows: How does the hop-delay

performance of the proposed algorithm compare to the optimal hop-delay that

can be achieved with any centralized algorithm ?. The next result of our answers
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the above question and provides a sufficient condition that guarantees the

hop-delay optimality of the proposed Greedy SP-BP algorithm.

Theorem 4.4.3. Given the arrival rates inside the throughput region, i.e,

{𝜆𭑓} ∈ Λ𭑓 and 0 < 𝛾 < 1, we have the following,

𝐻̂(𝛾𝜆𭑓) ≤ 𝐻𭑈𭐵(𝛾𝜆𭑓, 𝛾) ≤ 𝛾𝐻̂(𝜆𭑓),where (4.7)

𝐻̂(𝜆𭑓) is given by the following optimization OPT2,

𝐻̂(𝜆𭑓) = min�
𭑓

�
0<ℎ<𭑁

ℎ𝜆𭑓,ℎ

s.t. �
𭑓

𝜆𭑓,ℎ𝐼𭑠(𭑓)=𭑛,𭑑(𭑓)=𭑑 + 𝜇𭑖𭑛
𭑛,𭑑,ℎ

≤ 𝜇𭑜𭑢𭑡
𭑛,𭑑,ℎ ∀(𝑛, 𝑑, ℎ),

𝜇𭑛,𭑑,ℎ
𭑚,𭑑,ℎ+1 = 0, ifℎ < 𝐻𭑚𭑖𭑛

𭑛→𭑑,

(�
𭑑

�
ℎ

𝜇𭑛,𭑑,ℎ−1
𭑚,𭑑,ℎ )

𭑚,𭑛

∈ 𝐶𝐻(Π(𝐺𭐾)),

�
ℎ

𝜆𭑓,ℎ = 𝜆𭑓

𝜆𭑓,ℎ ≥ 0, 𝜇𭑛,𭑑,ℎ
𭑚,𭑑,ℎ+1 ≥ 0.

(4.8)

Proof Ideas & Implications The key ideas used were to identify the feasible

sets for the defined optimization programs OPT1 and OPT2. The details are

omitted due to space constraints.

The above theorem allows us to compare the average number of hops

taken by the proposed Greedy SP-BP algorithm to the minimal number of

hops required by any centralized/distributed, online/offline algorithm. Hence,

this can be used to evaluate how far the Greedy SP-BP algorithm is from
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the optimal algorithm that takes the minimal number of hops to transmit the

packet from source to destination.

A sufficient condition for hop-delay optimality that comes out of the

above inequality is as follows: For a given 𝜆𭑓 and wireless network with de-

fined intereference structure, the proposed algorithm is hop-delay optimal if

𝐻̂(𝜆𭑓) = 𝛾𝐻̂(1
𭛾𝜆𭑓). In other words, the proposed algorithm achieves hop-

delay optimality at a given arrival rate 𝜆𭑓 if the optimal average hop delay at

𝜆𭑓 and 𭜆𭑓
𭛾 are equal. We now describe a few applications of the above result,

where we can explicitly compute the upper bounds on the hop-dealy of the

proposed algorithm.

Applications of Theorem 3: Example 1 Consider the line network example

(described in section II) with K-hop cut-through switching. Let us assume

that we only have a single flow in the network, whose source is node 1 and

destination is node 𝑁. We will now use the above result (Theorem 3) to find

the upper bound on the number of hops taken by the proposed algorithm,
1

𭜆𭑓
𝐻𭑈𭐵(𝜆𭑓, 𝛾).

For the above simple line network with single flow, it is easy to see that

the optimal hop-delay (over all centralized algorithms), 1
𭜆𭑓

𝐻̂(𝜆𭑓), is constant

and is independent of the arrival rate. Further it is also equal to the minimum

hop distance between the source and destination 𝐻𭑠(𭑓)→𭑑
𭑚𭑖𭑛 (𝐾) (which in this

case is ⌈𭑁−1
𭐾 ⌉). Using Theorem 3, we have that the upper bound on the total

hop-delay on the proposed algorithm (for large 𝛽) can be bounded by the
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following inequality,

𝐻𭑠(𭑓)→𭑑
𭑚𭑖𭑛 (𝐾)𝛾𝜆𭑓 ≤ 𝐻𭑈𭐵(𝛾𝜆𭑓, 𝛾) ≤ 𝛾𝐻𭑠(𭑓)→𭑑

𭑚𭑖𭑛 (𝐾)𝜆𭑓. (4.9)

From the above inequalities, we observe that 𝐻𭑈𭐵(𝜆𭑓, 𝛾) is equal to 𝐻̂(𝜆𭑓).

In other words, the upper bound on the average number of hops taken by the

packets using the proposed algorithm is equal to ⌈𭑁−1
𭐾 ⌉. As the minimum

number of hops required for a packet to travel from source to destination is

greater than ⌈𭑁−1
𭐾 ⌉, we have that the proposed algorithm (for large values of

parameter 𝛽) is indeed hop-optimal. The same result can be observed from

our simulation results in the next section.

Applications of Theorem 3: Example 2 Consider a ring network with 2𝑁

wireless nodes as shown in the below figure. Let nodes be labelled as 1, 2, ...2𝑁.

Assume we have bi-directional links and full-duplex intereference constraints

and further allow cut-through switching up to 𝐾 = 2 hops. Let us assume

again, we only have a single flow in the network from node 1 to node 2𝑀+ 1.

Let the capacity of all the links be 1. In other words, we can successfully

transmit one packet across the link if the transmission is interference free.

Note that the minimum hop-distance between the source node and

destination node via ’route 1’ ( as shown in Fig. 4.5) is 𝑀 and via ’route

2’ is 𝑁 − 𝑀. Also note that the interference degree for the above network

(𝑑𭐼(𝐺2) is 2. Observe that for the above ring network with single flow, the

total hop-delay is lower bounded as follows:
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Figure 4.5: Ring network with N=4, M=1.

𝐻(𝜆𭑓) ≥ 𝜆𭑓𝑀 if𝜆𭑓 ≤ 0.5 (4.10)

and

𝐻(𝜆𭑓) ≥
1
2
𝑀+ (𝜆𭑓 − 1

2
)(𝑁 −𝑀) if𝜆𭑓 > 0.5 (4.11)

Also, it is easy to see that the above lower bound can be achieved using

an arrival-rate aware centralized algorithm (that essentially splits the traffic

across the two routes and uses the ’route 2’ only when 𝜆𭑓 > 0.5). Given

optimal total hop-delay function 𝐻̂(𝜆𭑓), we now use our result in Theorem

3, to compute the upper bound on the average hop-delay performance of the

proposed Greedy SP-BP algorithm and is plotted in Fig. 4.6.

From the Fig. 4.6, observe that the proposed algorithm is hop-delay

optimal, for all arrival rate less than 1
4 .
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Figure 4.6: Avg. Hop-Delay performance of proposed algorithm (Upper
Bound) Vs. Optimal Hop-Delay

Applications of Theorem 3: Example 3 Conisder a spatial network with mul-

tiple paths from source to destination as shown in the Fig. 4.7. Let 𝑅 denote

the total number of routes in the network. Let also assume that 𝑐𭑖 < 𝑐𭑗 if

𝑖 < 𝑗. Also assume that the number of nodes in route 1 (other than 𝑆 and

𝐷) be ℎ1 − 1, number of nodes on route 2 be ℎ2 − 1 and so on. Assume that

transmissions on path 𝑖 do not interfere with transmissions on path 𝑗. Let us

assume that we have full-duplex constraints for transmissions on links on the

same path.

Note that minimum number of hops (hop-delay) a packet needs to

take to reach destination on route 1 is ⌈ℎ1
2 ⌉, on route 2 is ⌈ℎ2

2 ⌉ and so on.
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Figure 4.7: Spatial Network with multiple routes from source to destination,
R =3

Observe that a hop-delay optimal algorithm uses the routes with the smaller

path lengths and uses the longer paths only when it cannot support the arrival

rates on shorter paths. Let 𝐶𭑘 denote the quantity ∑𭑘
𭑖=1 𝑐𭑖. For 𝑅 = 3, the

optimal total hop-delay function 𝐻̂(𝜆𭑓) can be expressed as follows,

𝐻̂(𝜆𭑓) =
⎧⎪
⎨⎪
⎩

𝜆𭑓
ℎ1
2 if 𝜆𭑓 ≤ 𭐶1

2
𭑐1ℎ1

4 + (𝜆𭑓 − 𭐶1
2 )ℎ2

2 if 𭐶1
2 < 𝜆𭑓 ≤ 𭐶2

2
𭑐1ℎ1+𭑐2ℎ2

4 + (𝜆𭑓 − 𭐶2
2 )ℎ3

2 if 𭐶2
2 < 𝜆𭑓 ≤ 𭐶3

2

(4.12)

Using the above optimal hop-delay function 𝐻̂(𝜆𭑓), we now use our

result in Theorem 3, to compute the upper bound on the average hop-delay

performance of the proposed Greedy SP-BP algorithm and is plotted in Fig.4.4.
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4.5 Simulations

In this section, we simulate the performance of the proposed Greedy

SP-BP algorithm on simple wireless networks with and with out CTS ability.

We compare the performance (achievable throughput, delay and hop delay) of

our algorithm against the existing Back pressure based Routing with Maximal

Independent Set (BRMS) Scheduling algorithm [62]. We now describe the

simulation set up.

4.5.1 Line Network with K-CTS (Example 1)

We consider a line network 𝐺 with 10 nodes. We assume that we only

have a single flow 𝑓 in the network, whose source node is left most node and

destination node is right most node on the line network. Let 𝜆 denote the

arrival rate of flow 𝑓. We consider the three following interference constraints:

half-duplex, full-duplex and K-hop cut-through switching.

We run the simulations for 𝑇 = 20, 000 time slots and the total queue-

backlog in the network is calculated by averaging the backlog in the last

2000 slots. The below plots show the performance of BRMS algorithm and

Greedy SP-BP algorithm (with large 𝛽 = 100) in Half-Duplex, Full-Duplex,

CTS(K=2) and CTS(K=3) interference constraints. In particular, we plot

the total queue-backlog in the network (also proportional to average delay by

Little’s law) and the average hop-delay for the considered arrival process.

The Figures 4.11 and 4.12 shows the performance of the proposed

Greedy SP-BP algorithm for above described line network (with K=3) with

91



0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

50

100

150

200

250

300

350

400

450

500

Arrival Rate

T
o

ta
l 
Q

u
e

u
e

 B
a

c
k
lo

g
 (

E
[Q

])

 

 

HD, BRMS

FD, BRMS

CTS(2), BRMS

CTS(3), BRMS

HD, Prop Alg.

FD, Prop Alg.

CTS(2), Prop Alg.

CTS(3), Prop Alg.

Figure 4.8: Line Network: Performance of Proposed algorithm vs. BRMS. Ob-
serve that both proposed alg. and BRMS achieve maximum possible through-
put.
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Figure 4.9: Line Network: Performance of Proposed algorithm vs. BRMS at
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different values of algorithmic parameter 𝛽.
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Figure 4.11: Line Network: Average total queue backlog of Proposed Greedy
SP-BP algorithm with various values of parameter 𝛽

4.5.2 Spatial Network (Example 3)

We consider the spatial network (as defined in Example 3, Section 5.3)

with the following parameters 𝑐1 = 2, 𝑐2 = 4, 𝑐3 = 2, ℎ1 = 4, ℎ2 = 10, ℎ3 =

24,𝐶 = 0.5, ℎ = 2. The performance of the proposed Greedy SP-BP (with

𝛽 = 10) versus BRMS is shown below.
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Figure 4.12: Line Network: Average Hop Delay of Proposed Greedy SP-BP
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Figure 4.13: Spatial Network: Average queue backlog of proposed alg. vs.
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97



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

10

20

30

40

50

60

Arrival Rate

A
v
e

ra
g

e
 H

o
p

 D
e

la
y

 

 

BRMS

Proposed Alg., β = 10

Figure 4.14: Spatial Network: Average Hop Delay of proposed algorithm vs.
BRMS
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4.5.3 Analysis and Discussion

From Fig. 4.8 and Fig. 4.9, we make the following observations: 1) CTS

significantly increases the throughput supportable by both algorithms, 2) the

proposed Greedy SP-BP significantly performs better (lower queue backlog

and therefore delay by littles result) than BRMS at low-arrival rates and 3)

the proposed Greedy SP-BP stabilizes the network whenever BRMS stabilizes

the network.

Fig. 4.10 shows the average hop-delay of packets of flow 𝑓 for both the

proposed algorithm and existing BRMS algorithms. Observe that the average

hop-delay of the proposed algorithm (with large 𝛽 = 100) for the simulated

network is constant and does not vary with the arrival rate.

Fig. 4.11 and Fig. 4.12 show the average total queue backlog and

average hop-delay of proposed Greedy SP-BP algorithm on network (CTS,

K=3) with various values of algorithmic parameter 𝛽. From Fig. 4.11, we

observe that at low-arrival rates the proposed alg. performs (delay) better for

large values of 𝛽 and at higher rates, the proposed alg. performs better with

small values of 𝛽. This behavior is not surprising due to the fact that at low

arrival rates, the queueing delay component (of the total delay) is insignificant.

From the Fig. 4.13, we observe that the proposed algorithm (with 𝛽 =

10) performs significantly better (backlog of 5 vs 27 at rate 0.4) than BRMS

at low-loads. Note that, from Fig. 4.14 the proposed algorithm is hop-delay

optimal for arrival rate less than 𝐶/2 as predicted using our theoretical bounds.
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Also, note that the bounds derived in Fig. 4.4 matches well with the simulated

average hop-delay in Fig. 4.14.

4.6 Conclusion

In this work, we propose a low-complexity scheduling algorithm that

exploit the CTS ability of wireless networks and analyse the performance of the

proposed algorithm both in terms of throughput and hop-delay. We provide a

sufficient condition that guarantees the expected hop-delay optimality of the

proposed algorithm. We further provide simulations to show that the proposed

algorithm does exploit the CTS gains (both in terms of throughput and delay)

and performs extremely well compared to existing BRMS algorithm in the

low-arrival rate regime.
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Chapter 5

Scheduling in wireless networks with
interference alignment

5.1 Introduction

In wireless networks with multiple source-destinations pairs, it is now

clear that interference mitigation is the key to achieving high data rates.

Traditionally, most scheduling algorithms, [42, 67] are designed for the case

where interference is avoided as in protocol interference model or interference

is treated as noise as in physical interference model.

It is widely known that orthogonalization, in general, is not optimal

and will not achieve the entire information-theoretic capacity region. Though

characterizing the info-theoretic region itself is not known for simple networks,

recently there has been progress [63–66, 68] in finding schemes that are optimal

in degrees of freedom (DoF-wise), i.e., they can achieve optimal data rates at

high SNR values.

In their seminal work, Cadambe et.al [65] proposed the popular linear

interference alignment technique to mitigate the interference from other links.

The idea is to restrict the interference space by aligning the interference from

various unintended senders using linear beam-forming and there by achieving
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optimal number of degrees of freedom. In particular, for the 𝐾×𝐾 Gaussian

interference channel with time varying channel coefficients, the authors in

show that it is possible to achieve 𝐾/2- degrees of freedom, when certain rank

constraints on the channel state matrices are satisfied. However, this technique

needs to deal with symbol extension across multiple slots 𝑇 and achieves 𝐾/2-

degrees of freedom only when 𝑇 tends to infinity. Recently, the authors in [69],

extended the above technique to multi-hop networks with two hops.

Recently, the authors in [64], propose a new interference alignment tech-

nique, called as ergodic interference alignment which is also shown to achieve

optimal degrees of freedom. The idea is to pair up channel states (in a time

varying environment) and encode across these states to mitigate the interfer-

ence. However, the above technique relies on the time-varying nature of the

wireless network, in the sense that for every channel state 𝐻, it assumes that

there exists another channel state 𝐻̂ such that 𝐻+𝐻̂ is a interference free chan-

nel. Though, this condition restricts the class of channel state distributions

(where ergodic IA is optimal), it is shown that with appropriate quantization,

we can pair up channel states such that we almost have an interference-free

channel between 𝐾 source-destination pairs.

In this work, we address the following question: Is there an online-

scheduling policy, without the knowledge of channel/arrival statistics, that can

extract the benefits of ergodic interference alignment technique and achieve

higher data rates?. We propose two such scheduling policies that can extract

the full-benefits of ergodic IA. However, the proposed algorithms require a
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huge number of queues to be maintained at source and destination nodes. In

this regard, we also show that the complexity (queueing) of the proposed algo-

rithms can be reduced however with a loss in throughput. In detail, our main

contributions in this context are as follows:

1. We provide a throughput characterization for general networks with er-

godic interference alignment

2. We propose two scheduling policies, with new queue structure (to cap-

ture coding across different time slots), that are throughput optimal.

The proposed algorithms are online (i.e only require current queue and

channel state information) and do not require the knowledge of channel

state/arrival rate statistics.

3. We show that our scheduling algorithms can be modified to reduce the

complexity of the queueing structure required to implement and further

characterize the throughput achievable using these low-complexity (in

terms of queues to be maintained at source and destination) algorithms.

5.2 System Model
5.2.1 Network Model

Consider a wireless network with 𝐾 links and let us associate each link

with a source-destination pair. In other words, we have single hop flows and

each link has packets arriving at its transmitter node (source) that needs to be

transmitted over the wireless channel successfully to its corresponding receiver
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node (destination). Let us label the links as {1, 2, 3, ...,𝐾}. Let 𝑠𭑙 denote the

source node of link 𝑙 and 𝑑𭑙 denote the destination node of link 𝑙.

5.2.2 Channel Model

Assume a slotted discrete time model. Each time slot is composed of

two parts - control part and data part. The control part of each time slot

is used for making the transmission decisions and data part to transmit the

packets arriving at source node. We assume that data slot consists of 𝑛 mini

slots, where each mini slot is used to transmit symbols. The relation between

the transmitter symbol and receiver symbol (in every mini slot) is given by

the following equation,

𝑦𭑖 = ℎ𭑖𭑖𝑥𭑖 +�ℎ𭑘𭑖𝑥𭑘 + 𝑛𭑖, (5.1)

where 𝑛𭑖 is Guassian noise with variance 𝑁𭑜.

The wireless channel between the 𝐾 (for K=2) source-destination pairs

is shown in the below figure.

We assume that channel coefficients vary from slot to slot, however

remain constant in each time slot and therefore remains constant across all

the mini slots . Let channel state belong to a finite set of states denoted

by 𝐻 ∶= {𝐻1,𝐻2, ...., 𝐻𭑁}. Assume that 𝐻[𝑡] is i.i.d. across time slots and

is characterized using its stationary distribution denoted by 𝜋(𝐻), where 𝐻

denotes the global channel state (for 𝐾 = 2,𝐻 = (ℎ11, ℎ12, ℎ21, ℎ22)). Note
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Figure 5.1: Interference model for a 2-link network

that the above model captures a wide-variety of interference models.

5.2.3 Rate Expressions using Ergodic IA

Assume that each packet consists of 𝑏 bits. The number of bits that can

be transmitted on link 𝑙, 𝑟𭑙(.), in single time slot (in the absence of interference

from other links) is given by the following expression,

𝑟𭑙(ℎ𭑙𭑙) = 𝑇𝑊 log(1 + 𝑃|ℎ𭑙𭑙|2

𝑁𭑜
) , (5.2)

where 𝑃 denotes the average power available in each slot, 𝑇 denotes

the time slot period, 𝑊 denotes the bandwidth used and 𝑁𭑜 is the Guassian

noise variance. Equivalently, the number of packets that can be successfully
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transmitted on link 𝑙 is ⌊𭑟𭑙
𭑏 ⌋. Let us denote the number of packets by 𝑅𭑙(.).

The ergodic interference alignment technique proposed in [64] combines

the channel states at two different time slots (in other words transmitter sends

the same signal on two different channel states and receiver combines them

before decoding) so as to mitigate the interference. In particular (for K = 2),

if same signal is sent on states 𝐻1 and 𝐻2, the number of bits that can be

transmitted successfully is given by the following,

𝑟1(𝐻1,𝐻2) = 𝑇𝑊 log(1 + 𝑃|ℎ11(𝐻)|2

𝑁𭑜 + 𝑃|ℎ21(𝐻)|2
) (5.3)

𝑟2(𝐻1,𝐻2) = 𝑇𝑊 log(1 + 𝑃|ℎ22(𝐻)|2

𝑁𭑜 + 𝑃|ℎ12(𝐻)|2
) (5.4)

where 𝐻 = 𝐻1 + 𝐻2. Let 𝑅1(., .) denote the number of packets (i.e.,

⌊𭑟1
𭑏 ⌋.

5.2.4 Throughput-Region Characterization

Let 𝑓(𝐻𭑖,𝐻𭑗) denote the fraction of time we use (𝐻𭑖,𝐻𭑗) pair for align-

ment and let 𝑓(𝐻𭑖) denote the fraction of time we do not use alignment and

do orthogonalization in time domain (i.e., do independent set scheduling). Let

us denote the set of all independent sets when the channel is in state 𝐻𭑖 by

𝐼𝑆(𝐻𭑖). Further, let 𝛼(𝑆,𝐻𭑖) denote the fraction of time we schedule indepen-

dent set, 𝑆 ∈ 𝐼𝑆(𝐻𭑖), when the channel state is 𝐻𭑖 and alignment is not used.

Let ∑𭑖,𭑗 denote double summation over 1 ≤ 𝑖, 𝑗 ≤ 𝑁 and 𝑖 ≠ 𝑗. Let 𝐴𭑙[𝑡]
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denote the number of packets that arrive at the sender node 𝑠𭑙. We assume

that 𝐴𭑙[𝑡] is bounded and let us denote 𝐸[𝐴𭑙[𝑡]] by 𝜆𭑙.

The throughput region, denoted by Λ, can be characterized as follows:

an arrival rate vector 𝜆⃗ ∈ Λ, if there exists {𝑓(𝐻𭑖,𝐻𭑗), 𝑓(𝐻𭑖), 𝛼(𝑆,𝐻𭑖)} such

that the following inequalities are satisfied

𝜆𭑙 ≤ �
𭑖,𭑗

𝑓(𝐻𭑖,𝐻𭑗)𝑅𭑙(𝐻𭑖,𝐻𭑗) +

�
𭑖

𝑓(𝐻𭑖)�
𭑆

𝛼(𝑆,𝐻𭑖)𝑅𭑙(𝐻𭑖)𝐼𭑙∈𭑆 ∀ 𝑙

𝜋(𝐻𭑖) = �
𭑗,𭑗≠𭑖

(𝑓(𝐻𭑖,𝐻𭑗) + 𝑓(𝐻𭑗,𝐻𭑖)) + 𝑓(𝐻𭑖) ∀𝑖

1 = �
𭑆∈𭐼𭑆(𭐻𭑖)

𝛼(𝑆,𝐻𭑖)

0 ≤ 𝑓(𝐻𭑖,𝐻𭑗)

0 ≤ 𝑓(𝐻𭑖)

0 ≤ 𝛼(𝑆,𝐻𭑖).

Note that the above described region is a generalization of the through-

put region characterized using independent sets and fully captures the benefits

of Ergodic IA.

5.3 Results

We next describe two new queuing structures that takes in to account

the possibility of using ergodic interference alignment. We then describe our
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proposed online-scheduling algorithms that can stabilize the queues, whenever

arrival rate vector is inside the throughput region. The proposed algorithms,

similar to the celebrated Back-Pressure algorithm, makes the scheduling de-

cisions only based on the current channel state and queue state information

and does not require arrival-side or channel-side statistics. Interestingly, the

proposed policies naturally find the right way to combine the channel states so

as to extract the benefits of ergodic interference alignment to achieve higher

data rates.

5.3.1 Proposed Queue Structure and Algorithm I

Let the source node of each link maintain the following queues. When

packets arrive at the source node of link 𝑙 (or user 𝑙), they are placed in queue

labeled 𝑄𭑙. Each link also maintains a queue at its source node for every pair

of global channel state (𝐻𭑖,𝐻𭑗).

The queue 𝑄𭐻𭑖,𭐻𭑗
𭑙 contains packets that were transmitted when the

channel state was in state 𝐻𭑖 and need to be re-transmitted once again in

the future when the channel state is 𝐻𭑗, so that they can be successfully

decoded at the destination node. Further the packets in the queue 𝑄𭐻𭑖,𭐻𭑗
𭑙

are time-stamped, so that the same set of packets can be re-transmitted and

be combined at the receiver while decoding the packets. Contrast to the

conventional queue structures, we need to maintain a queue at the destination

node and needs to store the received signal along with the time stamp. We only

store packets at the receiver if they were transmitted as a part of alignment
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scheme. With the help of the time-stamp, the receivers can rightly combine

the respective signals that were sent at two different time slots and successfully

decode the packets.

We now describe the proposed scheduling algorithm,

PROPOSED ALGORITHM I

1. At time instant 𝑡 with channel state 𝐻[𝑡] = 𝐻𭑘, compute the independent-

set scheduling weight, 𝑊𭑖𭑠[𝑡] as follows

𝑊𭑖𭑠[𝑡] = max
𭑆∈𭐼𭑆(𭐻𭑘)

�
𭑙∈𭑆

𝑊𭐼(𝑄𭑙[𝑡], ℎ𭑙𭑙(𝐻𭑘)), (5.5)

where 𝑊𭐼(𝑞, ℎ) = 𝑞𝑅𭑙(ℎ). Let us denote the independent sets that

achieve the maximum by 𝐼𝑆*,

𝐼𝑆*[𝑡] = {𝑆 ∶ 𝑊𭑖𭑠[𝑡] = �
𭑙∈𭑆

𝑊𭐼(𝑄𭑙[𝑡], ℎ𭑙𭑙(𝐻[𝑡]))} (5.6)

2. Compute the interference alignmnet weight, 𝑊𭑖𭑎[𝑡], defined as follows,

𝑊𭑖𭑎[𝑡] = max{𝑊𭐼
𭑖𭑎[𝑡],𝑊𭐼𭐼

𭑖𭑎[𝑡]} , (5.7)

where,

𝑊𭐼
𭑖𭑎[𝑡] = max

𭐻𭑖
�

𭑙
(𝑄𭑙[𝑡] − 𝑄𭐻[𭑡],𭐻𭑖

𭑙 [𝑡])
+
𝑅𭑙(𝐻[𝑡],𝐻𭑖) (5.8)
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and𝑊𭐼𭐼
𭑖𭑎[𝑡] = max

𭐻𭑖
�

𭑙
(𝑄𭐻𭑖,𭐻[𭑡]

𭑙 [𝑡])𝑅𭑙(𝐻𭑖,𝐻[𝑡]) (5.9)

Also, compute the following,

𝐻*
𭐼 [𝑡] = {𝐻𭑖 ∶ 𝑊𭐼

𭑖𭑎[𝑡] = �
𭑙

𝛿[𝑡]𝑅𭑙(𝐻[𝑡],𝐻𭑖)} (5.10)

where 𝛿𭑙[𝑡] = (𝑄𭑙[𝑡] − 𝑄𭐻[𭑡],𭐻𭑖
𭑙 [𝑡])

+
and

𝐻*
𭐼𭐼[𝑡] =

{𝐻𭑖 ∶ 𝑊𭐼𭐼
𭑖𭑎[𝑡] = �

𭑙
(𝑄𭐻𭑖,𭐻[𭑡]

𭑙 [𝑡])𝑅𭑙(𝐻𭑖,𝐻[𝑡])}

3. if 𝑊𭑖𭑠[𝑡] > 𝑊𭑖𭑎[𝑡], i.e., independent-set scheduling weight is greater than

alignment weight, pick any 𝑆* ∈ 𝐼𝑆* and transmit min{𝑄𭑙[𝑡], 𝑅𭑙(𝐻[𝑡])}

packets encoded in time slot 𝑡 for all 𝑙 ∈ 𝑆*. Also, discard those packets

from queue 𝑄𭑙 and update the queue lengths.

else

if 𝑊𭐼𭐼
𭑖𭑎[𝑡] ≥ 𝑊𭐼

𭑖𭑎[𝑡]

pick any 𝐻* ∈ 𝐻*
𭐼𭐼[𝑡] and each link 𝑙 transmits the oldest (with respect

to time-stamp) packets from the queue 𝑄𭑙(𝐻*,𝐻[𝑡]). Further discard

those packets from the respective queues.

else

pick any 𝐻̂ ∈ 𝐻*
𭐼 [𝑡] and each link 𝑙 transmits min{𝑄𭑙[𝑡], 𝑅𭑙(𝐻[𝑡], 𝐻̂)}

packets from the queue 𝑄𭑙. Also, add these packets to queue 𝑄𭐻[𭑡],𭐻̂
𭑙

along with the time stamp.

end
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end

Theorem 5.3.1. If there exists 𝜖 > 0 such that the arrival rate vector 𝜆⃗ ∈

(1 − 𝜖)Λ, the proposed algorithm-I can stabilize the network.

Proof. The idea is standard in the literature. We consider a Lyapunov func-

tion and show that, under the proposed algorithm the considered Lyapunov

function has negative drift. Full proof with details is presented in the proofs

section.

Observation: Note that the number of queues required at each sender

node, to implement the algorithm, is 1+ 𝑁2, where 𝑁 denotes the number of

global channel states. For simple 2 × 2 network with ℎ𭑖𭑗 taking values in a

finite set of size 𝑀, we have 𝑁 = 𝑀4. In a wireless network with 𝐾 links, 𝑁

can be of size 𝑀𭐾2 . Thus making the implementation of the above proposed

algorithm-I highly impractical.

Next, we will present simple ways to reduce the queueing complexity

(i.e., the number of queues required to be maintained at the source node).

However, the above reduction comes at the cost of sub-optimal throughput.

5.3.2 Proposed Algorithm - I : Low-complexity reductions

We now describe the procedure to reduce the queuing complexity: let

𝐴 denote the set of allowable pairs that are used for ergodic IA. In other
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words, each node maintains queues for a pair of channel states, only if the pair

belongs to set 𝐴. In other words, we limit the alignment queues at the source

node. The proposed algorithm is respectively modified to take in to account

that we have limited queue pairs. For example, in step 3 of algorithm, the

maximum for 𝑊𭐼
𭑖𭑎 is now found over only those channel states 𝐻𭑖, such that

(𝐻[𝑡],𝐻𭑖) ∈ 𝐴 and maximum for 𝑊𭐼𭐼
𭑖𭑎 is found over those channel states, such

that (𝐻𭑖,𝐻[𝑡]) ∈ 𝐴.

The next theorem characterizes the data rates that can be achieved

with the reduction in the queuing complexity as proposed above.

Theorem 5.3.2. Given a set 𝐴, the proposed algorithm-I with the above men-

tioned queue structure restricted to set 𝐴 can stabilize arrival rates that satisfy

the below constraints.

𝜆𭑙 ≤ �
𭑖,𭑗

𝑓(𝐻𭑖,𝐻𭑗)𝑅𭑙(𝐻𭑖,𝐻𭑗) +

�
𭑖

𝑓(𝐻𭑖)�
𭑆

𝛼(𝑆,𝐻𭑖)𝑅𭑙(𝐻𭑖)𝐼𭑙∈𭑆 ∀ 𝑙

𝜋(𝐻𭑖) = �
𭑗,𭑗≠𭑖

(𝑓(𝐻𭑖,𝐻𭑗) + 𝑓(𝐻𭑗,𝐻𭑖)) + 𝑓(𝐻𭑖) ∀𝑖

1 = �
𭑆∈𭐼𭑆(𭐻𭑖)

𝛼(𝑆,𝐻𭑖)

0 ≤ 𝑓(𝐻𭑖,𝐻𭑗)

0 = 𝑓(𝐻𭑖,𝐻𭑗) if (𝐻𭑖,𝐻𭑗) 𝐴

0 ≤ 𝑓(𝐻𭑖)

0 ≤ 𝛼(𝑆,𝐻𭑖).
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Proof. The proof is similar to proof of Theorem 5.3.1 and is therefore omitted.

We now describe our second scheduling policy that uses a different

queue structure. Essentially, we now maintain queues at the source node for

each channel state, instead of pair of channel states.

5.3.3 Proposed Queue Structure and Algorithm II

Let the source node of each link maintain the following queues. When

packets arrive at the source node of link 𝑙 (or user 𝑙), they are placed in queue

labeled 𝑄𭑙. Each link also maintains a queue at its source node for every

global channel state 𝐻𭑖 (instead of every pair as in the previous structure).

The queue 𝑄𭐻𭑖
𭑙 contains packets that were once transmitted and need to be

transmitted in the future when the channel state is 𝐻𭑖. Further the packets in

the queue 𝑄𭐻𭑖
𭑙 are time-stamped, so that the packets with same time-stamp

are transmitted together and thereby enabling the receiver to combine rightly

the packets while decoding. Note that the destination node also needs to

store the previous received signal (corresponding to packets transmitted along

with the time stamp) and will use this information to combine the respective

signals to successfully decode the packets. Another difference from the queue

structure one is as follows : the length of queue 𝑄𭐻𭑖
𭑙 is counted by the number

of different types (time-stamp) of packets. In other words, it is equal to the

number of transmissions/slots required to empty the queue 𝑄𭐻𭑖
𭑙 .

We now describe the second proposed algorithm,
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PROPOSED ALGORITHM II

1. At time instant 𝑡 with channel state 𝐻[𝑡], compute the independent set

weight, 𝑊𭑖𭑠[𝑡] as follows

𝑊𭑖𭑠[𝑡] = max
𭑆∈𭐼𭑆(𭐻[𭑡])

�
𭑙∈𭑆

𝑊𭐼(𝑄𭑙[𝑡],𝐻𭑙𭑙[𝑡]), (5.11)

where 𝑊𭐼(𝑞, ℎ) = 𝑞𝑅𭑙(ℎ). Let us denote the independent sets that

achieve the maximum by 𝐼𝑆*,

𝐼𝑆*[𝑡] = {𝑆 ∶ 𝑊𭑖𭑠[𝑡] = �
𭑙∈𭑆

𝑊𭐼(𝑄𭑙[𝑡],𝐻𭑙𭑙[𝑡])} (5.12)

2. Compute the interference alignment weight, 𝑊𭑖𭑎[𝑡], defined as follows,

𝑊𭑖𭑎[𝑡] = max{𝑊𭐼
𭑖𭑎[𝑡],𝑊𭐼𭐼

𭑖𭑎[𝑡]} , (5.13)

where,

𝑊𭐼
𭑖𭑎[𝑡] = max

𭐻𭑖
�

𭑙
(𝑄𭑙[𝑡] − 𝑄𭐻𭑖

𭑙 [𝑡])
+
𝑅𭑙(𝐻[𝑡],𝐻𭑖) (5.14)

and𝑊𭐼𭐼
𭑖𭑎[𝑡] = �

𭑙
(𝑄𭐻[𭑡]

𭑙 [𝑡]) (5.15)

Also, compute the following,

𝐻*
𭐼 [𝑡] = {𝐻𭑖 ∶ 𝑊𭐼

𭑖𭑎[𝑡] = �
𭑙

𝛿𭑙[𝑡]𝑅𭑙(𝐻[𝑡],𝐻𭑖)} (5.16)

where 𝛿𭑙[𝑡] = (𝑄𭑙[𝑡] − 𝑄𭐻𭑖
𭑙 [𝑡])

+
.
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3. if 𝑊𭑖𭑠[𝑡] > 𝑊𭑖𭑎[𝑡], i.e., independent-set scheduling weight is greater than

alignment weight, pick any 𝑆* ∈ 𝐼𝑆* and transmit min{𝑄𭑙[𝑡], 𝑅𭑙(𝐻[𝑡])}

packets encoded in time slot 𝑡 for all 𝑙 ∈ 𝑆*. Also, discard those packets

from queue 𝑄𭑙 and update the queue lengths.

else

if 𝑊𭐼𭐼
𭑖𭑎[𝑡] ≥ 𝑊𭐼

𭑖𭑎[𝑡]

Each sender node 𝑠𭑙 transmits oldest time stamped packets from the

queue 𝑄𭐻[𭑡]
𭑙 . Further discard those packets from the respective queues.

else

pick any 𝐻̂ ∈ 𝐻*
𭐼 [𝑡] and each link 𝑙 transmits min{𝑄𭑙[𝑡], 𝑅𭑙(𝐻[𝑡], 𝐻̂)}

packets from the queue 𝑄𭑙. Also, add these packets to queue 𝑄𭐻̂
𭑙 along

with time stamp.

end

end

Theorem 5.3.3. The above proposed algorithm is optimal and number of

queues to be maintained scales linearly in the number of channel states.

Proof. The proof is similar to proof of Theorem 5.3.1and is therefore omitted.
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5.3.4 Proposed Algorithm - II : Low-complexity reductions

We now describe the procedure to reduce the queuing complexity : let

𝐵 denote the set of channel states that are allowed to have queues at the source

node. In other words, each node maintains queues for a given channel state,

only if it belongs to the set 𝐵. and thereby limit the alignment possibilities

at the source node. The proposed algorithm-II is appropriately modified to

take in to account that we have limited queues at the source. In step 3 of

algorithm, the maximum for 𝑊𭐼
𭑖𭑎 is now found over only those channel states

𝐻𭑖, such that 𝐻𭑖 ∈ 𝐵 and maximum for 𝑊𭐼𭐼
𭑖𭑎 is assigned a weight equal to zero

if 𝐻[𝑡] 𝐵. We now describe the next result, that characterizes the set of data

rates that can be supportable by the above modified proposed algorithm-II

with defined set 𝐵.

Theorem 5.3.4. Given a set 𝐵, the proposed algorithm-II with the above

mentioned queue structure restricted to set 𝐵 can stabilize arrival rates that
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satisfy the below constraints.

𝜆𭑙 ≤ �
𭑖,𭑗

𝑓(𝐻𭑖,𝐻𭑗)𝑅𭑙(𝐻𭑖,𝐻𭑗) +

�
𭑖

𝑓(𝐻𭑖)�
𭑆

𝛼(𝑆,𝐻𭑖)𝑅𭑙(𝐻𭑖)𝐼𭑙∈𭑆 ∀ 𝑙

𝜋(𝐻𭑖) = �
𭑗,𭑗≠𭑖

(𝑓(𝐻𭑖,𝐻𭑗) + 𝑓(𝐻𭑗,𝐻𭑖)) + 𝑓(𝐻𭑖) ∀𝑖

1 = �
𭑆∈𭐼𭑆(𭐻𭑖)

𝛼(𝑆,𝐻𭑖)

0 ≤ 𝑓(𝐻𭑖,𝐻𭑗)

0 = 𝑓(𝐻𭑖,𝐻𭑗) if𝐻𭑗 𝐵

0 ≤ 𝑓(𝐻𭑖)

0 ≤ 𝛼(𝑆,𝐻𭑖).

Proof. The proof is similar to proof of Theorem 5.3.1 and is therefore omitted.

5.4 Conclusion

In this work, we have extended the celebrated BP algorithm to wireless

networks, where advanced interference technique, Ergodic IA, can be imple-

mented. In particular, we have proposed new queue structure that can ex-

ploit the recent interference cancelation techniques to achieve high data rates.

Though alignment techniques provide with increase throughput, we observe

that the proposed algorithm needs huge number of queues to be maintained at

the source and destination. We, therefore present low-complexity reductions

to be algorithm and characterize the loss in throughput.
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Observe that the above work still needs current NSI which is either

infeasible or hard to get in real networks. Therefore, it is of interest to find

new algorithms that can implement IA techniques with delayed NSI or no NSI.
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Chapter 6

Conclusion & Future Directions

In this thesis, we have addressed some of the main drawbacks of cel-

ebrated scheduling algorithm, BP, for wireless networks. In particular, our

contributions are in the research area of distributed scheduling, where each

node in the network makes scheduling decisions individually. In chapter 2,

we provide new scheduling algorithm (of threshold nature) for wireless net-

works, when each node in the network has delayed heterogeneous NSI. We

also characterize the degradation in throughput with delayed NSI. In chapter

3, we analyzed the performance of popular GMS algorithm (low-complexity

greedy version of BP) in wireless networks with fading structure. We show

that fading can help or hurt the performance of GMS. In chapter 4, we ana-

lyzed the greedy version of SPBP algorithm (a modified BP algorithm that is

hop-optimal) and identified wireless networks, for example, line network with

cut-through switching, where the greedy version is hop-delay optimal. Finally,

in chapter 5, we proposed a new queue structure and proposed a modified

BP algorithm that can extract the benefits of ergodic interference alignment

technique.

Our work opens a lot of new questions that need to be answered, both
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from algorithmic and analytical point of view. The questions are as follows:

1. To characterize the performance of GMS algorithm more precisely and

to identify properties of fading that can always help (or hurt) the per-

formance of GMS.

2. To find new distributed algorithms for wireless networks that can extract

the benefits of Full-Duplex/Cut-through switching capabilities

3. To find scheduling algorithms that use only delayed NSI, but can incor-

porate new interference mitigation techniques.
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Appendix A

Proofs for Chapter 2

A.1 Proof of Lemma 2.4.1

First, assume that the arrival rates 𝐸[ ⃗𝐴[𝑡]] are such that 𝜆̃ ∶= (1 +

𝜖)𝐸[ ⃗𝐴[𝑡]] ∈ Λ for some 𝜖 > 0. Then, by the definition of the region Λ, it

follows that we can construct a set of channel state dependent policies (i.e.,

𝑓𭑙’s) and “time-share” over those policies to get a long-term service rate of 𝜆̃

(analogous to the proof of Theorem 1 in [3]). This, in turn, ensures that the

network is stochastically stable.

Now for the other direction, given ⃗𝐴[𝑡] is supportable, by definition,

there exists a scheduling algorithm 𝐹 which makes the network stable. Since

the system state Markov chain 𝑌𭐹[𝑡] is positive recurrent, it exhibits a sta-

tionary distribution. Let us denote the scheduling decision under policy 𝐹

as 𝑆𭐹(𝑌[𝑡]). We will now construct a time-sharing scheduling policy 𝐹𭑠 that

depends on the steady state distribution of queue lengths and channel states

(denoted as 𝜋(𝑦), 𝑦 = {𝑞(0 ∶ 𝜏𭑚𭑎𭑥), 𝑐(0 ∶ 𝜏𭑚𭑎𭑥)}) under policy 𝐹. Let 𝑟(𝑦) =

Pr(𝑞|𝑐), computed using 𝜋(𝑦).

At each time, when delayed channel state information 𝐶[𝑡](0 ∶ 𝜏𭑚𭑎𭑥) =

𝑐, the policy 𝐹𭑠 probabilistically selects the scheduling decision 𝑆𭐹(𝑞, 𝑐) with
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probability 𝑟(𝑦 = (𝑞, 𝑐)). We observe that the time-sharing policy 𝐹𭑠 allocates

the same amount of service to each link as 𝐹. Since ⃗𝐴[𝑡] can be supported by

the time sharing policy, we have that 𝐸[ ⃗𝐴[𝑡]] ∈ Λ.

A.2 Proof of Theorem 2.4.2

The proof is split into two parts. Part one proves the threshold prop-

erty of optimal solution and part two shows that optimal solution depends

only up on the critical set of NSI. In other words, part two shows that the op-

timizing solution is independent of extra channel state NSI available at each

node other than the critical NSI. (Proof : Part 1) We first show the follow-

ing threshold property for the optimal solution to the optimization problem

defined in equation (2.3),

𝐹*
𭑙 (𝑃𭑙(𝐶[𝑡](0 ∶ 𝜏𭑚𭑎𭑥))) = 1𭐶𭑙[𭑡]≥𭑇*

𭑙 (𭑃𭑙(𭐶[𭑡](0∶𭜏𭑚𭑎𭑥))),

Let us assume that we partly know the optimal solution. In particular,

we assume that we are given the entire {𝐹*
𭑙 (𝑃𭑙(𝐶[𝑡](0 ∶ 𝜏𭑚𭑎𭑥)))}𭑙∈𭐿 except

𝐹*
𭑘(𝑃𭑘(𝐶[𝑡](0 ∶ 𝜏𭑚𭑎𭑥))) at two different values of NSI (𝑃𭑘(𝐶[𝑡](0 ∶ 𝜏𭑚𭑎𭑥)) =

{(𝐶𭑘[𝑡] = 𝑐𭑖, ⃗𝑟), (𝐶𭑘[𝑡] = 𝑐𭑗, ⃗𝑟)})available at transmitter 𝑘.

To find 𝐹*
𭑘(𝐶𭑘[𝑡] = 𝑐𭑖, ⃗𝑟), 𝐹*

𭑘(𝐶𭑘[𝑡] = 𝑐𭑗, ⃗𝑟), we can solve the optimiza-

tion (2.3) with other variables being fixed to the optimal solution. Consider

the function that needs to be optimized:

�
𭑙

𝑄𭑙𝐸[𝐶𭑙[𝑡]𝐹𭑙(.)(𝛾𭑙 + (1 − 𝛾𭑙) ∏
𭑚∈𭐼𭑙

(1 − 𝐹𭑚(.)))|𝑐[𝑡 − 𝜏𭑚𭑎𭑥]].
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Expanding this out, we can write this as

�
𭑙

𝑄𭑙 �
⃗𭑧∈𭐶𭐿𭜏𭑚𭑎𭑥

𝑃𝑟( ⃗𝑧|𝑐[𝑡 − 𝜏𭑚𭑎𭑥])𝐶𭑙( ⃗𝑧)𝐹𭑙( ⃗𝑧)( 𝛾𭑙 + (1 − 𝛾𭑙) ∏
𭑚∈𭐼𭑙

(1 − 𝐹𭑚( ⃗𝑧))).

Note that ⃗𝑧 ∈ 𝐶𭐿𭜏𭑚𭑎𭑥 corresponds to one particular realization of chan-

nel states of the network for the past 𝜏𭑚𭑎𭑥 slots. Since the variables in the

above optimization are only 𝐹𭑘(𝐶𭑘[𝑡] = 𝑐𭑖, ⃗𝑟) and 𝐹𭑘(𝐶𭑘[𝑡] = 𝑐𭑗, ⃗𝑟), we ig-

nore the terms in the summation that do not involve these variables (as

they are constant and do not affect the arg max). Let 𝐴𭑖 denote the set

{ ⃗𝑧 ∶ ⃗𝑧 ∈ 𝐶𭐿𭜏𭑚𭑎𭑥 , 𝑃𭑘( ⃗𝑧) = (𝑐𭑖, ⃗𝑟)}. The new function we now have is:

𝑄𭑘 �
⃗𭑧∈𭐴𭑖∪𭐴𭑗

𝑃𝑟( ⃗𝑧|𝑐[𝑡 − 𝜏𭑚𭑎𭑥])𝐶𭑘( ⃗𝑧)𝐹𭑘( ⃗𝑧)(𝛾𭑘 + (1 − 𝛾𭑘) ∏
𭑚∈𭐼𭑘

(1 − 𝐹𭑚( ⃗𝑧)))

+ �
𭑙∶𭑙∈𭐼𭑘

𝑄𭑙 �
⃗𭑧∈𭐴𭑖∪𭐴𭑗

𝑃𝑟( ⃗𝑧|𝑐[𝑡 − 𝜏𭑚𭑎𭑥])𝐶𭑙( ⃗𝑧)𝐹𭑙( ⃗𝑧)( 𝛾𭑙 + (1 − 𝛾𭑙) ∏
𭑚∈𭐼𭑙

(1 − 𝐹𭑚( ⃗𝑧))).

From the above expression, we observe that the above optimization for

finding two variables 𝐹𭑘(𝑐𭑖, ⃗𝑟), 𝐹𭑘(𝑐𭑗, ⃗𝑟) splits into two independent optimiza-

tion problems. First, let us consider the function that needs to be optimized

to get 𝐹𭑘(𝑐𭑖, ⃗𝑟):

𝑄𭑘𝐹𭑘(𝑐𭑖, ⃗𝑟)𝑐𭑖 �
⃗𭑧∈𭐴𭑖

(𝑃𝑟( ⃗𝑧|𝑐[𝑡 − 𝜏𭑚𭑎𭑥])(𝛾𭑘 + (1 − 𝛾𭑘) ∏
𭑚∈𭐼𭑘

(1 − 𝐹𭑚( ⃗𝑧))))+

(1 − 𝐹𭑘(𝑐𭑖, ⃗𝑟)) �
𭑙∶𭑙∈𭐼𭑘

𝑄𭑙 �
⃗𭑧∈𭐴𭑖

(𝑃𝑟( ⃗𝑧|𝑐[𝑡 − 𝜏𭑚𭑎𭑥])×

𝐶𭑙( ⃗𝑧)𝐹𭑙( ⃗𝑧)(𝛾𭑙 + (1 − 𝛾𭑙) ∏
𭑚∈𭐼𭑙,𭑚≠𭑘

(1 − 𝐹𭑚( ⃗𝑧)))).

From the above equation, we observe that the optimization function is linear

in the variable 𝐹𭑘(𝑐𭑖, ⃗𝑟). Using the fact that channels are independent across
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links, we have the above function of the form 𝑃𝑟(𝐶[𝑡] = 𝑐𭑖| ⃗𝑟)(𝑎𝑐𭑖𝐹𭑘(𝑐𭑖, ⃗𝑟) +

𝑏(1 − 𝐹𭑘(𝑐𭑖, ⃗𝑟))), where parameters 𝑎 and 𝑏 are independent of value of 𝑐𭑖.

Similarly, we can show that the function that needs to be optimized for variable

𝐹𭑘(𝑐𭑗, ⃗𝑟) is of form 𝑎𝑐𭑗𝐹𭑘(𝑐𭑗, ⃗𝑟) + 𝑏(1 − 𝐹𭑘(𝑐𭑖, ⃗𝑟)). Thus the optimal solution

is of the form

𝐹*
𭑘(𝑐𭑖, ⃗𝑟) = {

1 if 𝑎𝑐𭑖 ≥ 𝑏,
0 if 𝑎𝑐𭑖 < 𝑏.

The above solution implies that if 𝑐𭑗 ≥ 𝑐𭑖 and 𝐹*
𭑘(𝑐𭑖, ⃗𝑟) = 1, then

𝐹*
𭑘(𝑐𭑗, ⃗𝑟) = 1. This proves the threshold nature of optimal solution.

(Proof: Part 2) Let us consider the original function that needs to be

optimized (2.3)

�
𭑙

𝑄𭑙𝐸[𝐶𭑙[𝑡]𝐹𭑙(.)(𝛾𭑙 + (1 − 𝛾𭑙) ∏
𭑚∈𭐼𭑙

(1 − 𝐹𭑚(.)))|𝑐[𝑡 − 𝜏𭑚𭑎𭑥]].

Expanding the above expression, we have

�
𭑙

𝑄𭑙 �
⃗𭑧∈𭐶𭐿𭜏𭑚𭑎𭑥

𝑃𝑟( ⃗𝑧|𝑐[𝑡 − 𝜏𭑚𭑎𭑥])𝐶𭑙( ⃗𝑧)𝐹𭑙( ⃗𝑧)(𝛾𭑙 + (1 − 𝛾𭑙) ∏
𭑚∈𭐼𭑙

(1 − 𝐹𭑚( ⃗𝑧))).

First, observe that each variable in the above expression has a unique

notation. In particular, a variable that is associated with link 𝑙 and a particular

value of channel state ⃗𝑧 ∈ 𝐶𭐿𭜏𭑚𭑎𭑥 is denoted by 𝐹𭑙( ⃗𝑧) and more specifically

𝐹𭑙(𝑃𭑘( ⃗𝑧)). Consider a 𝜏(≠ 𝜏1(𝑙)∀𝑙) and let the set 𝐵(𝜏) = { ⃗𝑧 ∈ 𝐶𭐿𭜏𭑚𭑎𭑥 ∶

𝐶1[𝜏] = 𝑐1 or𝐶1[𝜏] = 𝑐2} denote the set of variables whose optimal values are

not known. In other words, assume that the optimal values of all the variables

are known to us except those in set 𝐵.

125



We define the sets 𝐵1 = { ⃗𝑧 ∈ 𝐶𭐿𭜏𭑚𭑎𭑥 ∶ 𝐶1[𝜏] = 𝑐1} and 𝐵2 = { ⃗𝑧 ∈

𝐶𭐿𭜏𭑚𭑎𭑥 ∶ 𝐶1[𝜏] = 𝑐2}. The sets 𝐵1 and 𝐵2 satisfy 𝐵 = 𝐵1 ∪ 𝐵2. We now

observe that the optimization functions that depend on variables in sets 𝐵1

and 𝐵2 are exactly identical up to a scaling factor. Therefore the optimal

solutions are also equal and thus we have that optimal solution is independent

of channel state information that is not critical NSI.

A.3 Proof of Lemma 2.4.3

Consider the following Lyapunov function 𝑉[𝑡], of the system state 𝑌𭐹[𝑡],

as follows,

𝑉[𝑡] ∶= �
𭑙∈𭐿

𝑄2
𭑙 [𝑡].

We thus have,

𝐸[𝑉[𝑡 + 1] − 𝑉[𝑡]|𝑄[𝑡 − 𝜏𭑚𭑎𭑥], 𝐶[𝑡 − 𝜏𭑚𭑎𭑥]] =

𝐸[�
𭑙∈𭐿

(Δ𝑄𭑙[𝑡])(𝑄𭑙[𝑡 + 1] + 𝑄𭑙[𝑡])|𝑄[𝑡 − 𝜏𭑚𭑎𭑥], 𝐶[𝑡 − 𝜏𭑚𭑎𭑥]]

where Δ𝑄𭑙[𝑡] is the difference 𝑄𭑙[𝑡 + 1] − 𝑄𭑙[𝑡]. Using the fact that arrivals

and services are bounded in each time slot, we have

𝐸[𝑉[𝑡 + 1] − 𝑉[𝑡]|(𝑄[𝑡 − 𝜏𭑚𭑎𭑥], 𝐶[𝑡 − 𝜏𭑚𭑎𭑥])] ≤ 𝐾+

𝐸[�
𭑙∈𭐿

(Δ𝑄𭑙[𝑡])(2𝑄𭑙[𝑡 − 𝜏𭑚𭑎𭑥])|(𝑄[𝑡 − 𝜏𭑚𭑎𭑥], 𝐶[𝑡 − 𝜏𭑚𭑎𭑥])].

Using the queue update equation, we have

𝐸[𝑉[𝑡 + 1] − 𝑉[𝑡]|(𝑄[𝑡 − 𝜏𭑚𭑎𭑥], 𝐶[𝑡 − 𝜏𭑚𭑎𭑥])] ≤ 𝐾+

𝐸[�
𭑙∈𭐿

(𝑅𭑙,𭜏𭑚𭑎𭑥
(𝐹*(.)))(2𝑄𭑙[𝑡 − 𝜏𭑚𭑎𭑥])|(𝑄[𝑡 − 𝜏𭑚𭑎𭑥], 𝐶[𝑡 − 𝜏𭑚𭑎𭑥])].

(A.1)
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Since (1 + 𝜖)𝜆⃗ ∈ Λ, there exists { ̄𝜂(𝑐)}𭑐 such that

�
𭑐∈𭐶𭐿

𝜋(𝑐)((1 + 𝜖)𝜆𭑙 − ̄𝜂𭑙(𝑐)) ≤ 0.

From the scheduling algorithm optimization, we also have that

𝐸[(�
𭑙∈𭐿

(𝑅𭑙,𭜏𭑚𭑎𭑥
(𝐹*(.)))|𝐶[𝑡 − 𝜏𭑚𭑎𭑥]−

̄𝜂𭑙(𝐶[𝑡 − 𝜏𭑚𭑎𭑥]))𝑄𭑙[𝑡 − 𝜏𭑚𭑎𭑥]] ≤ 0.

Taking the expectation on both sides of inequality (A.1) over 𝐶[𝑡 − 𝜏𭑚𭑎𭑥], we

have that

𝐸[𝑉[𝑡 + 1] − 𝑉[𝑡]|𝑄[𝑡 − 𝜏𭑚𭑎𭑥]] ≤ 𝐾1 − 2𝜖�
𭑙

𝑄𭑙[𝑡 − 𝜏𭑚𭑎𭑥]𝜆𭑙.

It now follows from the standard Foster-Lyapunov drift criterion [30] that the

network is stochastically stable.

A.4 Proof of Lemma 2.5.3

From the equation (2.5), we have

|𝑅𭑙,𭜏1
(𝑇*

2) − 𝑅𭑙,𭜏2
(𝑇*

2)| =

|(
𭑀
�
𭑖=1

𝑐𭑖𝑃
𭜏1
.𭑖 1𭑐𭑖≥𭑇*

2,𭑙
)(𝛾𭑙 + (1 − 𝛾𭑙) ∏

𭑚∈𭐼𭑙

(
𭑀
�
𭑖=1

𝑃𭜏1
.𭑖 1𭑐𭑚≥𭑇*

2,𭑙
))−

(
𭑀
�
𭑖=1

𝑐𭑖𝑃
𭜏2
.𭑖 1𭑐𭑖≥𭑇*

2,𭑙
)(𝛾𭑙 + (1 − 𝛾𭑙) ∏

𭑚∈𭐼𭑙

(
𭑀
�
𭑖=1

𝑃𭜏2
.𭑖 1𭑐𭑚≥𭑇*

2,𭑙
))|.

Let us denote the summation ∑𭑀
𭑖=1 𝑐𭑖𝑃

𭜏1
.𭑖 1𭑐𭑖≥𭑇*

2,𭑙
by 𝑓𭑙(𝜏1) and the summation

∑𭑀
𭑖=1 𝑃

𭜏1
.𭑖 1𭑐𭑚≥𭑇*

2,𭑙
by 𝑔𭑚(𝜏1). Thus, we have

|𝑅𭑙,𭜏1
(𝑇*

2) − 𝑅𭑙,𭜏2
(𝑇*

2)| =

|𝑓𭑙(𝜏1)(𝛾𭑙 + (1 − 𝛾𭑙) ∏
𭑚∈𭐼𭑙

𝑔𭑚(𝜏1)) − 𝑓𭑙(𝜏2)(𝛾𭑙 + (1 − 𝛾𭑙) ∏
𭑚∈𭐼𭑙

𝑔𭑚(𝜏2))|.

127



Expanding out the terms with 𝛾𭑙 and (1 − 𝛾𭑙), we have

|𝑅𭑙,𭜏1
(𝑇*

2) − 𝑅𭑙,𭜏2
(𝑇*

2)| =

|𝛾𭑙(𝑓𭑙(𝜏1) − 𝑓𭑙(𝜏2)) + (1 − 𝛾𭑙)(𝑓𭑙(𝜏1) ∏
𭑚∈𭐼𭑙

𝑔𭑚(𝜏1)) − 𝑓𭑙(𝜏2) ∏
𭑚∈𭐼𭑙

𝑔𭑚(𝜏2))|.

Using the triangle inequality, we have the following inequality,

|𝑅𭑙,𭜏1
(𝑇*

2) − 𝑅𭑙,𭜏2
(𝑇*

2)| ≤

|𝛾𭑙(𝑓𭑙(𝜏1) − 𝑓𭑙(𝜏2))| + (1 − 𝛾𭑙)|(𝑓𭑙(𝜏1) ∏
𭑚∈𭐼𭑙

𝑔𭑚(𝜏1)) − 𝑓𭑙(𝜏2) ∏
𭑚∈𭐼𭑙

𝑔𭑚(𝜏2))|.

By adding and subtracting the term 𝑓𭑙(𝜏2)∏𭑚∈𭐼𭑙
𝑔𭑚(𝜏1), we have

|𝑅𭑙,𭜏1
(𝑇*

2)−𝑅𭑙,𭜏2
(𝑇*

2)| ≤

𝛾𭑙|(𝑓𭑙(𝜏1) − 𝑓𭑙(𝜏2))| + (1 − 𝛾𭑙)|𝑓𭑙(𝜏1) ∏
𭑚∈𭐼𭑙

𝑔𭑚(𝜏1) − 𝑓𭑙(𝜏2) ∏
𭑚∈𭐼𭑙

𝑔𭑚(𝜏1)+

𝑓𭑙(𝜏2) ∏
𭑚∈𭐼𭑙

𝑔𭑚(𝜏1) − 𝑓𭑙(𝜏2) ∏
𭑚∈𭐼𭑙

𝑔𭑚(𝜏2)|.

Using the triangle inequality results in

|𝑅𭑙,𭜏1
(𝑇*

2)−𝑅𭑙,𭜏2
(𝑇*

2)| ≤

𝛾𭑙|(𝑓𭑙(𝜏1) − 𝑓𭑙(𝜏2))| + (1 − 𝛾𭑙)|(𝑓𭑙(𝜏1) − 𝑓𭑙(𝜏2)) ∏
𭑚∈𭐼𭑙

𝑔𭑚(𝜏1)|+

(1 − 𝛾𭑙)|𝑓𭑙(𝜏2) ∏
𭑚∈𭐼𭑙

𝑔𭑚(𝜏1) − 𝑓𭑙(𝜏2) ∏
𭑚∈𭐼𭑙

𝑔𭑚(𝜏2)|.

Let the set 𝐼𭑙 be expressed as {𝑚1,𝑚2,𝑚3, ....,𝑚𭑙}. By iterating the above

idea of adding and subtracting terms on the second component of the above

expression and using the triangle inequality, we have

|𝑅𭑙,𭜏1
(𝑇*

2)−𝑅𭑙,𭜏2
(𝑇*

2)| ≤

𝛾𭑙|(𝑓𭑙(𝜏1) − 𝑓𭑙(𝜏2))| + (1 − 𝛾𭑙)|(𝑓𭑙(𝜏1) − 𝑓𭑙(𝜏2)) ∏
𭑚∈𭐼𭑙

𝑔𭑚(𝜏1)| + .....+

|𝑓𭑙(𝜏2)(𝑔𭑚𭑙
(𝜏1) − 𝑔𭑚𭑙

(𝜏2)) ∏
𭑘∶𭑚𭑘∈𭐼𭑙,𭑘≠𭑙

𝑔𭑚𭑘
(𝜏2)|.
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Using the following upper bounds, |𝑓𭑙(𝜏1) − 𝑓𭑙(𝜏2)| ≤ ∑𝑐𭑖𝛽(𝜏1, 𝜏2),

|𝑔𭑙(𝜏1) − 𝑔𭑙(𝜏2)| ≤ 𝑀𝛽(𝜏1, 𝜏2) and |𝑓𭑙(𝜏1)| ≤ ∑𝑐𭑖, we have

|𝑅𭑙,𭜏1
(𝑇*

2)−𝑅𭑙,𭜏2
(𝑇*

2)| ≤

(�𝑐𭑖)𝛽(𝜏1, 𝜏2) + (1 − 𝛾𭑙)(�𝑐𭑖)|𝐼|𝑀𝛽(𝜏1, 𝜏2)

= (1 +𝑀|𝐼|(1 − 𝛾𭑙))(�𝑐𭑖)𝛽(𝜏1, 𝜏2).

≤ (1 +𝑀|𝐼|(1 − 𝛼))(�𝑐𭑖)𝛽(𝜏1, 𝜏2).

where the last inequality follows from definition of 𝛾 = min 𝛾𭑙.

A.5 Proof of Corollary 2.5.4

From equation (2.4), we have

𝛼(𝜏1, 𝜏2) ∶=
2𝐿𝑘𭑜𝛽(𝜏1, 𝜏2)
∑𭑗 𝑐𭑗min𭑖𝑃

𭜏1
𭑖𭑗
.

It is sufficient to prove that 𝛽(𝜏1,∞) ≤ (1 − 𝑀𝛿)𭜏1 and 𝛽(𝜏1, 𝜏2) ≤ 2(1 −

𝑀𝛿)𭜏1 ∀𝜏2 ≥ 𝜏1. Consider the following difference:

𝑃𭜏
𭑖𭑗 − 𝑃𭜏

𭑘𭑗 =�
𭑢

(𝑃𭑖𭑢 − 𝑃𭑘𭑢)𝑃𭜏−1
𭑢𭑗

= �
𭑢∶𭑃𭑖𭑢≥𭑃𭑘𭑢

(𝑃𭑖𭑢 − 𝑃𭑘𭑢)𝑃𭜏−1
𭑢𭑗 + �

𭑢∶𭑃𭑖𭑢<𭑃𭑘𭑢

(𝑃𭑖𭑢 − 𝑃𭑘𭑢)𝑃𭜏−1
𭑢𭑗 .

Let us denote min𭑢𝑃𭜏
𭑢𭑗 by 𝑚𭜏

𭑗 and max𭑢𝑃𭜏
𭑢𭑗 by 𝑀𭜏

𭑗 . We now bound the above

difference using 𝑚𭜏
𭑗 and 𝑀𭜏

𭑗 , we have

𝑃𭜏
𭑖𭑗 − 𝑃𭜏

𭑘𭑗 ≤ �
𭑢∶𭑃𭑖𭑢≥𭑃𭑘𭑢

(𝑃𭑖𭑢 − 𝑃𭑘𭑢)𝑀𭜏−1
𭑗 + �

𭑢∶𭑃𭑖𭑢<𭑃𭑘𭑢

(𝑃𭑖𭑢 − 𝑃𭑘𭑢)𝑚𭜏−1
𭑗 .
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By noticing that ∑𭑢∶𭑃𭑖𭑢<𭑃𭑘𭑢
(𝑃𭑖𭑢 − 𝑃𭑘𭑢) + ∑𭑢∶𭑃𭑖𭑢≥𭑃𭑘𭑢

(𝑃𭑖𭑢 − 𝑃𭑘𭑢) = 0, we

have

𝑃𭜏
𭑖𭑗 − 𝑃𭜏

𭑘𭑗 ≤ �
𭑢∶𭑃𭑖𭑢≥𭑃𭑘𭑢

(𝑃𭑖𭑢 − 𝑃𭑘𭑢)(𝑀𭜏−1
𭑗 −𝑚𭜏−1

𭑗 )

= (𝑀𭜏−1
𭑗 −𝑚𭜏−1

𭑗 )( �
𭑢∶𭑃𭑖𭑢≥𭑃𭑘𭑢

𝑃𭑖𭑢 − �
𭑢∶𭑃𭑖𭑢≥𭑃𭑘𭑢

𝑃𭑘𭑢)

= (𝑀𭜏−1
𭑗 −𝑚𭜏−1

𭑗 )(1 − �
𭑢∶𭑃𭑖𭑢<𭑃𭑘𭑢

𝑃𭑖𭑢 − �
𭑢∶𭑃𭑖𭑢≥𭑃𭑘𭑢

𝑃𭑘𭑢)

≤ (1 −𝑀𝛿)(𝑀𭜏−1
𭑗 −𝑚𭜏−1

𭑗 ),

where the last inequality follows from the definition of 𝛿.

Using the definition of 𝑀𭜏
𭑗 and 𝑚𭜏

𭑗 , we have that

𝑀𭜏
𭑗 −𝑚𭜏

𭑗 ≤ (1 −𝑀𝛿)(𝑀𭜏−1
𭑗 −𝑚𭜏−1

𭑗 )

≤ (1 −𝑀𝛿)𭜏.

Using the fact that 𝑚𭜏
𭑗 monotonically increases with 𝜏, 𝑀𭜏

𭑗 monotonically

decreases with 𝜏, and both have a common limit 𝜋𭑗, we have

|𝑃𭜏
𭑖𭑗 − 𝜋𭑗| ≤ (1 −𝑀𝛿)𭜏. (A.2)

Consider the following difference:

|𝑃𭜏2
𭑖𭑗 − 𝑃𭜏1

𭑘𭑗| = |𝑃𭜏2
𭑖𭑗 − 𝜋𭑗 + 𝜋𭑗 − 𝑃𭜏1

𭑘𭑗|

≤ |𝑃𭜏2
𭑖𭑗 − 𝜋𭑗| + |𝜋𭑗 − 𝑃𭜏1

𭑘𭑗|.

Using (A.2) in the above inequality, we have the desired corollary.

130



Appendix B

Proofs for Chapter 3

B.1 Proof of Theorem 3.3.1

The proof follows the method developed by the authors in [33, 51] for the

non-fading case; however we have extended it to take in to account the fading

structure. First, for the converse (to show instability for arrivals outside the

stability region), we explicitly construct an adversarial channel variations pat-

tern that satisfies the time-averages imposed by the fading assumption, and this

is used in conjunction with the adversarial arrival process. The achievability

part is more straightforward – we augment the analysis in [33, 51] to include

the fluid limit of the channel fading process. We now provide the proof more

detail:

Proof of Theorem part (a): The result follows from the following

general lemma.

Lemma 2. If there exists a subset of links 𝐿(⊆ 𝐾), a positive number 𝜎 and

two vectors 𝜇⃗, ⃗𝜈 ∈ Φ(𝐿) such that 𝜎𝜇⃗ > ⃗𝜈, then for arbitrary small 𝜖 > 0, there

exists a traffic pattern with offered load ⃗𝜈+ 𝜖 ⃗𝑒𭐿 and a fading pattern, such that

system is unstable under greedy maximal schedule.

Proof (Lemma 2): The idea of the proof is as follows – we construct
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a traffic pattern and channel variations pattern with offered load ⃗𝜈 + 𝜖 ⃗𝑒𭐿 and

show that under this traffic/channel fading pattern, the queue lengths go to

infinity under GMS, thus making the system unstable.

As remarked earlier, this proof technique was introduced in [51], where

authors only needed to construct adversarial arrival process that makes the

queues in the system to overflow. However, in our setting, we need to account

for the fading process and construct both arrival and channel fading pattern

that makes the network unstable.

Since ⃗𝜈 ∈ Φ(𝐿), there exist vectors 𝑤⃗𭐽 such that ⃗𝜈 can be expressed as,

⃗𝜈 = �
𭐽⊆𭐿

𝜋𭐿(𝐽)(𝑀𭐽,𭐿𝑤⃗𭐽). (B.1)

Fix 𝛿 > 0, we then find a vector ⃗𝑟𭐽 in the set of rational numbers, ℚ,

such that ‖ ⃗𝑟𭐽 − 𝑤⃗𭐽‖ < 𝛿.

Assume packets arrive to a link at beginning of the time slot. Let the

queues of all the links in 𝐿 are empty at 𝑡 = 0. Let 𝑇𭐽 be the smallest integer

such that for all 𝑖, 𝑟𭐽
𭑖 𝑇𭐽 is an integer. Let 𝑡𭐽𭑖 = 𝑟𭐽

𭑖 𝑇𭐽. Also, there exists integers

𝑛1, 𝑛2, ...𝑛2𭐿 such that

⏐⏐
𝑛𭐽𝑇𭐽

∑𭑆∶𭑆⊆𭐿 𝑛𭑆𝑇𭑆
− 𝜋𭐿(𝐽)⏐⏐ ≤

𝛿
2𭐿 . (B.2)

Let us define ̃𝜋𭐿(𝐽) ∈ ℚ as follows,

̃𝜋𭐿(𝐽) ∶=
𝑛𭐽𝑇𭐽

∑𭑆⊆𭐿 𝑛𭑆𝑇𭑆
. (B.3)
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Using the rational quantities ̃𝜋𭐿(𝐽) and ⃗𝑟𭐽, we define ⃗𝜈𭑟 as follows,

⃗𝜈𭑟 = �
𭐽∶𭐽⊆𭐿

̃𝜋𭐿(𝐽)(𝑀𭐽,𭐿 ⃗𝑟𭐽). (B.4)

Consider a total time period of ∑𭐽 𝑛𭐽𝑇𭐽. We assume that channel

state remains in 𝐽 state for 𝑇𭐽 time slots (denoted as a time frame). It is easy

to observe that with the above described fading pattern, we achieve the same

channel state distribution as ̃𝜋𭐿(𝐽) on links of set 𝐿. We now describe the

arrival pattern for 𝑇𭐽 time slots when the channel is in state 𝐽.

Assume that all the queue lengths (of links in 𝐿) are equal at the

beginning of 𝑇𭐽 time slots. We now construct arrival pattern that keeps the

queue lengths of all links in set 𝐿 equal at the end of 𝑇𭐽 time slots under the

GMS policy. The arrival process is as follows:

1. The time frame of 𝑇𭐽 slots is further divided in to 𝑡𭐽1 , 𝑡𭐽2 , ....𝑡|𭐼𭑆𭐽| time

slots, where 𝑡𭐽𭑖 = 𝑟𭐽
𭑖 𝑇𭐽 and |𝐼𝑆𭐽| denotes the number of columns in 𝑀𭐽.

2. During the 𝑡𭐽𭑖 , 𝑖 ≠ |𝐼𝑆𭐽| time slots, apply one packet to each link that is

’ON’ in the 𝑖𭑡ℎ column of 𝑀𭐽. For the last 𝑡𭐽|𭐼𭑆𭐽| time slots, apply one

packet to each link that is ON in the last column of 𝑀𭐽 at the beginning

of the time slot except for the last one time slot. For the last one time

slot, with probability 1− 𝜖 we do the same as described before and with

probability 𝜖, we apply two packets to each link that is ON in the last

column of 𝑀𭐽 and 1 packet to rest of links in 𝐿.

133



Note that the arrival process is modified compared to one proposed in

[51] so as to ensure that all queues remain equal after 𝑇𭐽 time slots.

It is now easy to see that at the end of 𝑇𭐽 time slots, all the queue

lengths are equal and increase by 1 with probability 𝜖. Thus the above arrival

and channel variation pattern make the system unstable under GMS schedule.

We now show that the arrival rate is same as ⃗𝜈 + 𝜖 ⃗𝑒𭐿.

Let ⃗𝑒𭑖 denote the vector of all zeros except for 𝑖 th position which

is set to one. Let ∑𭐽 = ∑𭐽⊆𭐿 for the remaining part of the proof. For

the constructed adversarial arrival process, the arrival rate is given by the

following,

𝜆⃗adv =
∑𭐽 𝑛𭐽(∑

|𭐼𭑆𭐽|
𭑖=1 𝑡𭐽𭑖 𝑀𭐽 ⃗𝑒𭑖 + 𝜖 ⃗𝑒)

∑𭐽 𝑛𭐽(∑
|𭐼𭑆𭐽|
𭑖=1 𝑡𭐽𭑖 )

(B.5)

Rewriting the above expression in terms of ̃𝜋𭐿(𝐽), we have that

𝜆⃗adv = �
𭐽

̃𝜋𭐿(𝐽)(
|𭐼𭑆𭐽|

�
𭑖=1

𝑟𭐽
𭑖 𝑀𭐽 ⃗𝑒𭑖) + 𝜖(�

𭐽

̃𝜋𭐿(𝐽)
𝑇𭐽

) ⃗𝑒 (B.6)

Thus we have,

𝜆⃗adv = �
𭐽

̃𝜋𭐿(𝐽)(𝑀𭐽,𭐿 ⃗𝑟𭐽) + 𝜖(�
𭐽

̃𝜋𭐿(𝐽)
𝑇𭐽

) ⃗𝑒 (B.7)

We choose small enough 𝛿 so that the arrival rate is strictly less than

⃗𝜈 + 𝜖 ⃗𝑒𭐿.

Proof (Theorem 1. b): This proof is a simple extension of that in

[33, 51], however modified to include the fluid limit arising due to the channel
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fading process. Thus, we have provided a detailed sketch and refer to [33, 51]

for full details.

We consider the fluid limit of the queuing process and we provide a

Lyapunov function and show negative drift under GMS schedule whenever

arrival rate 𝜆⃗ ∈ (𝜎*
𭐺(𝜋) − 𝜖)Λ𭑓.

Consider a sequence of systems 1
𭑛𝑄⃗

𭑛(𝑛𝑡) (scaled in time and space

by a factor of 𝑛), where 𝑄⃗𭑛(.) denotes the queue lengths of original system,

satisfying ∑𝑄𭑛
𭑙 (0) ≤ 𝑛 at time 𝑡 = 0. Let us index the sequence of systems by

𝑛 = {1, 2, ....}. We apply the same arrival processes to all the above defined

systems (i.e ⃗𝐴𭑛(.) = ⃗𝐴(.)) and assume that queues are served according to

greedy maximal schedule. Let ⃗𝐴𭑛(𝑡) and 𝐷⃗𭑛(𝑡) denote the cumulative arrival

and departure process of system 𝑛 up to time 𝑡.

Using the results from [32], it can be shown that the sequence of pro-

cesses (𝑄⃗𭑛(.), ⃗𝐴𭑛(.), 𝐷⃗𭑛(.)) as 𝑛 → ∞ converges to a fluid limit almost surely

along a subsequence {𝑛𭑘} in the topology of uniform convergence over compact

sets,

1
𝑛𭑘

𝐴𭑛𭑘
𭑙 (𝑛𭑘𝑡) → 𝜆𭑙𝑡, (B.8)

1
𝑛𭑘

𝐷𭑛𭑘
𭑙 (𝑛𭑘𝑡) → �

𭐽
𝜋(𝐽)(∫

𭑡

0
𝜇𭐽

𭑙 (𝑠)𝑑𝑠), (B.9)

1
𝑛𭑘

𝑄𭑛𭑘
𭑙 (𝑛𭑘𝑡) → 𝑞𭑙(𝑡). (B.10)
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Also, the fluid limits (𝑞𭑙(𝑡), 𝜇𭐽
𭑙 (𝑡)) satisfy the following equality:

𝑞𭑙(𝑡) = 𝑞𭑙(0) + 𝜆𭑙𝑡 −�
𭐽

𝜋(𝐽)(∫
𭑡

0
𝜇𭐽

𭑙 (𝑠)𝑑𝑠). (B.11)

Moreover, fluid limits are absolutely continuous, and at regular times

𝑡 (i.e., those points in time where the derivatives exist) we have the following

condition satisfied:

𝑑
𝑑𝑡

𝑞𭑙(𝑡) = { 𝜆𭑙 − 𝜇𭑙(𝑡) if 𝑞𭑙(𝑡) > 0
(𝜆𭑙 − 𝜇𭑙(𝑡))+ if 𝑞𭑙(𝑡) = 0,

where 𝜇𭑙(𝑡) = ∑𭐽 𝜋(𝐽)𝜇𭐽
𭑙 (𝑡) satisfies the GMS properties. Let 𝐿0 denote the

set of links with the longest queues at time 𝑡,

𝐿0(𝑡) = {𝑖 ∈ 𝐾|𝑞𭑖(𝑡) = max𭑗∈𭐾𝑞𭑗(𝑡)} (B.12)

Let 𝐿(𝑡) denote the set of links with the largest derivative of queue

length among the links in 𝐿0(𝑡),

𝐿(𝑡) = {𝑖 ∈ 𝐿0(𝑡)|
𝑑
𝑑𝑡

𝑞𭑖(𝑡) = max𭑖∈𭐿0(𭑡)
𝑑
𝑑𝑡

𝑞𭑖(𝑡)} (B.13)

Lemma B.1.1. Under the greedy maximal schedule, the service rate satisfies

𝜇⃗(𝑡)|𭐿(𭑡) ∈ Φ(𝐿(𝑡)), where 𝑢⃗|𭐿 denotes the projection of vector on 𝑢 on to set

of links 𝐿.

The proof of the above lemma is similar to one in [33, 51] and is pre-

sented in appendix. The idea, roughly is that, queues in the set 𝐿(𝑡) will
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remain the longest for small enough amount of time past 𝑡 and GMS picks the

maximal schedule restricted to links in 𝐿(𝑡) that are in ’ON’ state.

Since the arrival rates are strictly with in 𝜎*
𭐿(𝜋)Λ𭑓, there exists a service

vector ⃗𝜈 ∈ Φ(𝐿) and ⃗𝜈 < 𝜎*
𭐿(𝜋)Λ𭑓 such that 𝜆⃗(𝐿) ≤ ⃗𝜈, where 𝜆⃗(𝐿) is projection

of arrival vector on to the set 𝐿. Given any two vectors in set Φ(𝐿), note that

one vector never dominates the other one in all the dimensions by a factor

more than 𝜎*
𭐿(𝜋). Therefore we have that 𭑑

𭑑𭑡max𭑖∈𭐿(𭑡)𝑞𭑖(𝑡) is strictly negative

when ever max 𝑞𭑖(𝑡) > 0.

Let 𝑉(𝑡) = max 𝑞𭑙(𝑡) denote the Lyapunov function used for the fluid

system. Since we have a negative drift for the Lyapunov function, using the

results from [32], we have that fluid system is stable (i.e there exists 𝑡0 > 0

such that 𝑞𭑙(𝑡) = 0 ∀𝑡 > 𝑡0). Therefore from [32], we have that the queues in

the original queuing system are stable.

B.2 Proof of Theorem 3.3.2

Since ( ⃗𝜇𭐽, ⃗𝜈𭐽,𝐻𭐽) satisfy the inequality,

⃗𝜈𭐽 ≤ 𝐻𭐽𝜇⃗𭐽 (B.14)

Summing over all subsets with positive scaling constants 𝜋(𝐽),

�
𭐽

𝜋(𝐽)𝜈𭐽(𝑙) ≤ �
𭐽

𝜋(𝐽)(𝐻𭐽𝜇𭐽(𝑙)) (B.15)

Using the maximum constant over all the inequalities, we have the

following,
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�
𭐽

𝜋(𝐽) ⃗𝜈𭐽 ≤ (max𭑙
∑𭐽 𝜋(𝐽)𝐻𭐽𝜇𭐽(𝑙)
∑𭐽 𝜋(𝐽)𝜇𭐽(𝑙)

)�
𭐽

𝜋(𝐽)𝜇⃗𭐽 (B.16)

By observing the fact that (∑𭐽 𝜋(𝐽) ⃗𝜈𭐽,∑𭐽 𝜋(𝐽)𝜇⃗𭐽) belong to the Φ(𝐾),

we have the result.

B.3 Proof of Theorem 3.3.3

We first state a lemma that describes the dual problem that finds the

fading Local Pooling Factor as the optimal solution. The dual characteriza-

tion of Local Pooling Factor was presented previously in [33, 38]. We now

provide such characterization for F-LPF in Lemma B.3.1 by generalizing the

arguments in [38]. In particular, the multiple global channel states due to fad-

ing each induce a different constraint – combining all of these appropriately

while satisfying the long-term average fractions {𝜋𭐿(𝐽)} results in a maxmin

problem, as detailed below. This result is used to derive the lower bound.

Lemma B.3.1. The following optimization problem characterizes 𝜎*
𭐿(𝜋) ∶

𝜎*
𭐿(𝜋) = max �

𭐽∶𭐽⊆𭐿
𝜋𭐿(𝐽)𝑎(𝐽)

s.t : 𝑥′𝑀𭐽,𭐿 ≥ 𝑎(𝐽)𝑒′ ∀𝐽 ⊆ 𝐿

𝑥′𝑀𭐽,𭐿 ≤ 𝑏(𝐽)𝑒′ ∀𝐽 ⊆ 𝐿

�
𭐽⊆𭐿

𝜋𭐿(𝐽)𝑏(𝐽) = 1
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From the above Lemma B.3.1, we have that 𝜎*
𭐿(𝜋) is equal to,

max
𭑥,𭑎(𭐽),𭑏(𭐽)

�
𭐽∶𭐽⊆𭐿

𝜋𭐿(𝐽)𝑎(𝐽)

s.t : 𝑥′𝑀𭐽,𭐿 ≥ 𝑎(𝐽)𝑒′ ∀𝐽 ⊆ 𝐿

𝑥′𝑀𭐽,𭐿 ≤ 𝑏(𝐽)𝑒′ ∀𝐽 ⊆ 𝐿

�
𭐽⊆𭐿

𝜋𭐿(𝐽)𝑏(𝐽) = 1

Observe that ( 1
∑ 𭜋𭐿(𭐽)𭑁(𭑀𭐽)𝑒,

𭑛(𭑀𭐽)
∑ 𭜋𭐿(𭐽)𭑁(𭑀𭐽) , 1) is a valid point in the

search space. Substituting the point in the above function, we have the desired

inequality.

B.4 Proof of Lemma B.3.1

Consider the definition of 𝜎*
𭐿(𝜋) in (3.4). The corresponding optimiza-

tion problem is given by:

inf 𝜎

s.t : 𝜎 �
𭐽⊆𭐿

𝜋𭐿(𝐽)𝑀𭐽,𭐿𝛼⃗(𝐽) ≥ �
𭐽⊆𭐿

𝜋𭐿(𝐽)𝑀𭐽,𭐿
⃗𝛽(𝐽)

‖𝛼⃗(𝐽)‖ = 1 ∀ 𝐽 ⊆ 𝐿

‖ ⃗𝛽(𝐽)‖ = 1 ∀ 𝐽 ⊆ 𝐿

𝛼⃗(𝐽), ⃗𝛽(𝐽) ≥ 0

where ‖.‖ is defined as the sum of all the elements of the vector. Let us
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define a new variable ⃗𝛾(𝐽) = 𝜎𝛼⃗(𝐽). Thus, we have:

inf 𝜎

s.t : �
𭐽⊆𭐿

𝜋𭐿(𝐽)𝑀𭐽,𭐿( ⃗𝛽(𝐽) − ⃗𝛾(𝐽)) ≤ 0

‖ ⃗𝛾(𝐽)‖ = 𝜎 ∀ 𝐽 ⊆ 𝐿

‖ ⃗𝛽(𝐽)‖ = 1 ∀ 𝐽 ⊆ 𝐿

⃗𝛾(𝐽), ⃗𝛽(𝐽) ≥ 0

For the above LP, let ( ⃗𝑥, {𝑦(𝐽)}, {𝑧(𝐽)}) denote the dual variables as-

sociated with the constraints. The dual is given by

max
𭑥⃗,{𭑦(𭐽)},{𭑧(𭐽)}

min
𭜎,𭛼⃗(𭐽), ⃗𭛽(𭐽)

𝜎+

𭐿
�
𭑖=1

𝑥𭑖( �
𭐽⊆𭐿

𝜋𭐿(𝐽)[
|𭐼𭑆𭐽|

�
𭑗=1

𝑀𭐽
𭑖𭑗(𝛽𭐽

𭑗 − 𝛾𭐽
𭑗 )])+

�
𭐽⊂𭐿

𝑦(𝐽)( ⃗𝛾(𝐽)′𝑒 − 𝜎)+

�
𭐽⊂𭐿

𝑧(𝐽)( ⃗𝛽(𝐽)′𝑒 − 1)

s.t: ⃗𝛾(𝐽), ⃗𝛽(𝐽) ≥ 0

Rewriting the above dual optimization problem, we have

max
𭑥⃗,{𭑦(𭐽)},{𭑧(𭐽)}

min
𭜎,𭛼⃗(𭐽), ⃗𭛽(𭐽)

−�
𭐽

𝑧(𝐽) + 𝜎(1 −�
𭐽

𝑦(𝐽))+

|𭐼𭑆𭐽|

�
𭑗=1

𝛽𭐽
𭑗 [𝜋𭐿(𝐽)

𭐿
�
𭑖=1

𝑥𭑖𝑀𭐽
𭑖𭑗 + 𝑧(𝐽)]+

|𭐼𭑆𭐽|

�
𭑗=1

−𝛾𭐽
𭑗 [𝜋𭐿(𝐽)

𭐿
�
𭑖=1

𝑥𭑖𝑀𭐽
𭑖𭑗 + 𝑦(𝐽)]

s.t: ⃗𝛾(𝐽), ⃗𝛽(𝐽) ≥ 0
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Equivalently, the above program can be reduced to

max �
𭐽∶𭐽⊆𭐿

−𝑧(𝐽)

s.t : 𝜋𭐿(𝐽)𝑥′𝑀𭐽,𭐿 + 𝑧(𝐽)𝑒′ ≥ 0 ∀𝐽 ⊆ 𝐿

− 𝜋𭐿(𝐽)𝑥′𝑀𭐽,𭐿 + 𝑦(𝐽)𝑒′ ≥ 0 ∀𝐽 ⊆ 𝐿

�
𭐽⊆𭐿

𝑦(𝐽) = 1

Denoting −𭑧(𭐽)
𭜋(𭐽) by 𝑎(𝐽) and 𭑦(𭐽)

𭜋(𭐽) by 𝑏(𝐽) we have the desired result.

Corollary 1: 𝜎*
𭐺(𝜋) ≥ 1

𭑑𭐼(𭐺)

Proof. Observing the fact that 𝑛(𝑀𭐽) ≥ 1
𭑑𭐼(𭐺)𝑁(𝑀𭐽) and using the above

lemma B.3.1, we have the desired inequality.

B.5 Proof of Theorem 3.3.4

We consider a continuous model similar to the one described in the

proof of Theorem 1b. In this model, the queuing system evolves according to

the following equation,

𝑑
𝑑𝑡

𝑞𭑙(𝑡) = { 𝜆𭑙 − 𝜇𭑙(𝑡) if 𝑞𭑙(𝑡) > 0
(𝜆𭑙 − 𝜇𭑙(𝑡))+ if 𝑞𭑙(𝑡) = 0,

where 𝜇𭑙(𝑡) = ∑𭐽 𝜋(𝐽)𝜇𭐽
𭑙 (𝑡) satisfies the GMS properties. In the original

system with fading channels note that the weight of GMS schedule is always

greater than 1
𭑑𭐼(𭑆) of the weight of the max-weight schedule where 𝑆 is the set
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of links that are in ’ON’ state. Therefore in the fluid model, we can show that

𝜇𭐽
𭑙 (𝑡) satisfies the following condition

�
𭑙

𝑞𭑙(𝑡)𝜇𭐽
𭑙 (𝑡) ≥

1
𝑑𭐼(𝐽)

max
𭜂⃗𭐽∈𭐶𭐻(𭑀𭐽,𭐾)

�
𭑙

𝑞𭑙(𝑡)𝜂𭐽(𝑙).

Let us the consider the following Lyapunov function,

𝑉( ⃗𝑞(𝑡)) = �
𭑙

𝑞2
𭑙 (𝑡). (B.17)

Taking the derivate of the Lyapunov function, we have that

̇𝑉( ⃗𝑞(𝑡)) ≤ 2�
𭑙

𝑞𭑙(𝑡)(𝜆𭑙) − 𝜇𭑙(𝑡)). (B.18)

Using the GMS properties of 𝜇𭑙(𝑡), we have

̇𝑉( ⃗𝑞(𝑡)) ≤(2�
𭑙

𝑞𭑙(𝑡)𝜆𭑙 −�
𭐽

2
𝑑𭐼(𝐽)

𝜋(𝐽) max
𭜂⃗𭐽∈𭐶𭐻(𭑀𭐽,𭐾)

�
𭑙

𝑞𭑙(𝑡)𝜂𭐽(𝑙)) (B.19)

As 𝜆⃗ is assumed to lie inside the region Λ𭑓( ⃗𝑥), there exists ⃗𝜂𭐽 ∈

𝐶𝐻(𝑀𭐽,𭐾) such that

𝜆𭑙 < �
𭐽

1
𝑑𭐼(𝐽)

𝜋(𝐽)𝜂𭐽(𝑙). (B.20)

Using the above inequality, we have that

̇𝑉( ⃗𝑞(𝑡)) <(2�
𭑙

𝑞𭑙(𝑡)�
𭐽

1
𝑑𭐼(𝐽)

𝜋(𝐽)𝜂𭐽(𝑙) −�
𭐽

2
𝑑𭐼(𝐽)

𝜋(𝐽) max
𭜂⃗𭐽∈𭐶𭐻(𭑀𭐽,𭐾)

�
𭑙

𝑞𭑙(𝑡)𝜂𭐽(𝑙))

(B.21)

Thus from the above inequality we have that ̇𝑉(𝑞(𝑡)) < 0 whenever

𝑞(𝑡) > 0.
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We can now use the results from [32] to argue that the original system

is stable under the assumed arrival process as the fluid model is stable.

B.6 Proof of Lemma B.1.1

The proof is similar to the one presented in [51] however taking in to

account the channel fading. From the definition of set 𝐿0(𝑡) in Eqn (B.12),

there exists 𝜖1 > 0 such that

𝑞𭑖(𝑡) > 𝑞𭑗(𝑡) + 𝜖1 ∀ 𝑖 ∈ 𝐿0(𝑡) and 𝑗 ∈ 𝐾 𝐿0(𝑡).

Using the continuous property of 𝑞𭑙(𝑡), we further have that, there

exists 𝜖2 > 0, 𝛿1 > 0 such that

min
𭑖∈𭐿0(𭑡)

𝑞𭑖(𝑡 + 𝛿) > max
𭑗∈𭐾𭐿0(𭑡)

𝑞𭑗(𝑡 + 𝛿) + 𝜖2 ∀ 𝛿 ∈ [0, 𝛿1].

Since 𝐿(𝑡) is contained inside 𝐿0(𝑡), we have that, there exists 𝜖2 >

0, 𝛿1 > 0 such that

min
𭑖∈𭐿(𭑡)

𝑞𭑖(𝑡 + 𝛿) > max
𭑗∈𭐾𭐿0(𭑡)

𝑞𭑗(𝑡 + 𝛿) + 𝜖2 ∀ 𝛿 ∈ [0, 𝛿1]. (B.22)

Also, from the definition of set 𝐿(𝑡) in Eqn (B.13), there exists 𝜖3 > 0

such that

𝑑
𝑑𝑡

𝑞𭑖(𝑡) >
𝑑
𝑑𝑡

𝑞𭑗(𝑡) + 𝜖3 ∀ 𝑖 ∈ 𝐿(𝑡) and 𝑗 ∈ 𝐿0(𝑡) 𝐿(𝑡).
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Further, using the definition of derivative 𭑑
𭑑𭑡𝑞(𝑡) ≈ 𭑞(𭑡+𭛿)−𭑞(𭑡)

𭛿 , there

exists 𝜖4 > 0, 𝛿2 > 0 such that the following holds. For all 𝑖 ∈ 𝐿(𝑡) and 𝑗 ∈

𝐿0(𝑡) 𝐿(𝑡), we have

𝑞𭑖(𝑡 + 𝛿) − 𝑞𭑖(𝑡)
𝛿

>
𝑞𭑗(𝑡 + 𝛿) − 𝑞𭑗(𝑡)

𝛿
+ 𝜖4 ∀ 𝛿 ∈ (0, 𝛿2]

Using the fact that queues 𝑞𭑙(𝑡) in set 𝐿0(𝑡) are equal, the above in-

equality can be rewritten as follows. For all 𝑖 ∈ 𝐿(𝑡) and 𝑗 ∈ 𝐿0(𝑡) 𝐿(𝑡), we

have
𝑞𭑖(𝑡 + 𝛿)

𝛿
>

𝑞𭑗(𝑡 + 𝛿)
𝛿

+ 𝜖4 ∀ 𝛿 ∈ (0, 𝛿2].

Thus we have,

min
𭑖∈𭐿(𭑡)

𝑞𭑖(𝑡 + 𝛿) > max
𭑗∈𭐿0(𭑡)𭐿(𭑡)

𝑞𭑗(𝑡 + 𝛿) + 𝜖5 ∀ 𝛿 ∈ (0, 𝛿2]. (B.23)

From the inequalities (B.22) and (B.23), we have the following inequal-

ity, there exists 𝛿0, 𝛿3 > 0 such that for all 𝛿 ∈ [𝛿0, 𝛿3] we have

min
𭑖∈𭐿(𭑡)

𝑞𭑖(𝑛(𝑡 + 𝛿)) > max
𭑗∈𭐾𭐿(𭑡)

𝑞𭑗(𝑛(𝑡 + 𝛿)) + 𝜖6. (B.24)

From the definition of fluid limit 𝑞𭑙(𝑡), there exists 𝑛0 large enough such

that ∀𝑛 > 𝑛0 and 𝛿 ∈ [𝛿0, 𝛿3], we have that

min
𭑖∈𭐿(𭑡)

𝑄𭑖(𝑛(𝑡 + 𝛿)) > max
𭑗∈𭐾𭐿(𭑡)

𝑄𭑗(𝑛(𝑡 + 𝛿)) + 𝑛𝜖7. (B.25)
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The above inequality ensures that the links in the set 𝐿(𝑡) have larger

queue lengths compared to other links in the network for all the time slots in

[𝑛(𝑡 + 𝛿0), 𝑛(𝑡 + 𝛿3)]. Therefore, depending up on global channel state 𝐺𝑆(𝜏),

at each time slot 𝜏 ∈ [𝑛(𝑡 + 𝛿0), 𝑛(𝑡 + 𝛿3)], GMS schedule picks a maximal

schedule from the set of links 𝐿(𝑡) that are in ’ON’ state. Let 𝑍𭑛
𭑙 (𝜏) denote

the scheduling decision picked by the GMS algorithm for link 𝑙 at time slot 𝜏.

We thus have

⃗𝑍𭑛(𝜏)|𭐿(𭜏) ∈ 𝑀𭐺𭑆(𭜏)∩𭐿(𭑡),𭐿(𭑡). (B.26)

Computing the total service provided by the GMS algorithm in time

slots [𝑛(𝑡 + 𝛿0), 𝑛(𝑡 + 𝛿3)], we have

𝐷𭑛
𭑙 (𝑛𝑡 + 𝑛𝛿3) − 𝐷𭑛

𭑙 (𝑛𝑡 + 𝑛𝛿0) = ∫
𭑛𭑡+𭑛𭛿3

𭑛𭑡+𭑛𭛿0

𝑍𭑛
𭑙 (𝜏)𝑑𝜏.

Let us denote the quantity 𭐷𭑛
𭑙 (𭑛𭑡+𭑛𭛿3)−𭐷𭑛

𭑙 (𭑛𭑡+𭑛𭛿0)
𭑛(𭛿3−𭛿0) by 𝜇𭑛

𭑙 (𝑡). From the

above equality, we have that 𝜇⃗𭑛(𝑡)|𭐿(𭑡) ∈ Φ(𝐿(𝑡)). As 𝛿0 can be made arbi-

trarily small, we have the result.
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Appendix C

Proofs for Chapter 4

C.1 Proof of Thoerem 4.4.1

For any 𝜖 > 0, we will show that for all arrivals inside 1−𭜖
𭑑𭐼(𭐺𭐾)Λ𭑓, the

proposed algorithm can stabilize the system. Observe that 𝑄[𝑡] is a Markov

chain. We define a quadratic Lyapunov function, 𝐿 (𝑄[𝑡]) as follows,

𝐿 (𝑄[𝑡]) = �
𭑛,𭑑,ℎ

(𝑄𭑛,𭑑,ℎ[𝑡])
2 . (C.1)

Consider the drift in 𝐿(.),

𝐸 [Δ𝐿[𝑡]|𝑄[𝑡]] ∶= 𝐸 [𝐿 (𝑄[𝑡 + 1]) − 𝐿 (𝑄[𝑡]) ∣ 𝑄[𝑡]]

= 𝐸[�
𭑛,𭑑,ℎ

((𝑄𭑛,𭑑,ℎ[𝑡 + 1])2 − (𝑄𭑛,𭑑,ℎ[𝑡])
2) |𝑄[𝑡]]

= 𝐸[�
𭑛,𭑑,ℎ

((𝑄𭑛,𭑑,ℎ[𝑡] + Δ𝑄𭑛,𭑑,ℎ[𝑡])
2) ∣ 𝑄[𝑡]]

− 𝐸[�
𭑛,𭑑,ℎ

(𝑄𭑛,𭑑,ℎ[𝑡])
2]

= 𝐸[�
𭑛,𭑑,ℎ

((Δ𝑄𭑛,𭑑,ℎ[𝑡])
2) ∣ 𝑄[𝑡]]

+ 2𝐸[�
𭑛,𭑑,ℎ

𝑄𭑛,𭑑,ℎ[𝑡]Δ𝑄𭑛,𭑑,ℎ[𝑡] ∣ 𝑄[𝑡]]
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We will next prove that 𝐸 [Δ𝐿[𝑡]|𝑄[𝑡]] < 0 whenever 𝑚𝑎𝑥𝑄𭑛,𭑑,ℎ[𝑡]

exceeds a certain fixed value, which will imply the positive recurrence of the

Markov chain.

The difference Δ𝑄𭑛,𭑑,ℎ[𝑡] is given by,

Δ𝑄𭑛,𭑑,ℎ[𝑡] ∶= 𝑄𭑛,𭑑,ℎ[𝑡 + 1] − 𝑄𭑛,𭑑,ℎ[𝑡] (C.2)

= 𝐴𭑓[𝑡]𝐼𭑠(𭑓)=𭑛,𭑑(𭑓)=𭑑,ℎ*
𭑓[𭑡])=ℎ + 𝜈𭑖𭑛

𭑛,𭑑,ℎ − 𝜈𭑜𭑢𭑡
𭑛,𭑑,ℎ, (C.3)

where

𝜈𭑖𭑛
𭑛,𭑑,ℎ = �

𭑚∶(𭑚,𭑛)∈𭐿
𝜈𭑛,𭑑,ℎ

𭑚,𭑑,ℎ+1[𝑡] and (C.4)

𝜈𭑜𭑢𭑡
𭑛,𭑑,ℎ = �

𭑖∶(𭑛,𭑖)∈𭐿
𝜈𭑖,𭑑,ℎ−1

𭑛,𭑑,ℎ [𝑡] (C.5)

and 𝜈𭑛,𭑑,ℎ
𭑚,𭑑,ℎ+1 denotes the actual number of packets transferred on link (𝑚, 𝑛)

from queue {𝑚, 𝑑, ℎ + 1} in to queue {𝑛, 𝑑, ℎ}.

Given that 𝐴𭑓[𝑡] satisfies these bounds, we have that Δ𝑄𭑛,𭑑,ℎ[𝑡] is

bounded. Also using the inequalities on 𝜈 < 𝜇, we have that

𝐸 [Δ𝐿[𝑡])|𝑄[𝑡]] ≤ 𝑀+

2𝐸[�
𭑛,𭑑,ℎ

𝑄𭑛,𭑑,ℎ[𝑡]𝐴𭑓[𝑡]𝐼𭑠(𭑓)=𭑛,𭑑(𭑓)=𭑑,ℎ*
𭑓[𭑡])=ℎ ∣ 𝑄[𝑡]]+

2𝐸[�
𭑛,𭑑,ℎ

𝑄𭑛,𭑑,ℎ[𝑡] (𝜇𭑖𭑛
𭑛,𭑑,ℎ − 𝜇𭑜𭑢𭑡

𭑛,𭑑,ℎ) ∣ 𝑄[𝑡]]

Rewriting the above quantities inside the summation, we have that
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𝐸 [Δ𝐿[𝑡] ∣ 𝑄[𝑡]] ≤ 𝑀+

2�
𭑓

�
ℎ

𝑄𭑠(𭑓),𭑑(𭑓),ℎ[𝑡] (𝐸 [𝐴𭑓,ℎ[𝑡] ∣ 𝑄[𝑡]])−

2 �
(𭑚,𭑛)

�
𭑑,ℎ

𝜇𭑛,𭑑,ℎ
𭑚,𭑑,ℎ+1[𝑡] (𝑄𭑚,𭑑,ℎ+1[𝑡] − 𝑄𭑛,𭑑,ℎ[𝑡])

Since ⃗𝐴𭑓 ∈ 1−𭜖
𭑑𭐼(𭐺𭐾)Λ𭑓, we have that 𭑑𭐼(𭐺𭐾)

1+𭜖
⃗𝐴𭑓 ∈ Λ𭑓. Consider the

quantity 𝐻̂(𝑑𭐼(𝐺𭐾) ⃗𝐴𭑓) OPT2 defined in 5.3. Let us denote the optimizer to

the below optimization by 𝐴*
𭑓,ℎ, 𝜇*.

𝐻̂(𝑑𭐼(𝐺𭐾)𝐴𭑓) = min�
𭑓

�
0<ℎ<𭑁

ℎ𝐴𭑓,ℎ

s.t. �
𭑓

𝐴𭑓,ℎ𝐼𭑠(𭑓)=𭑛,𭑑(𭑓)=𭑑 + 𝜇𭑖𭑛
𭑛,𭑑,ℎ

≤ 𝜇𭑜𭑢𭑡
𭑛,𭑑,ℎ ∀(𝑛, 𝑑, ℎ),

𝜇𭑛,𭑑,ℎ
𭑚,𭑑,ℎ+1 = 0, ifℎ < 𝐻𭑚𭑖𭑛

𭑛→𭑑,

(�
𭑑

�
ℎ

𝜇𭑛,𭑑,ℎ−1
𭑚,𭑑,ℎ ) ∈ 𝐶𝐻(Π(𝐺𭐾)),

�
ℎ

𝐴𭑓,ℎ = 𝑑𭐼(𝐺𭐾)𝐴𭑓

𝐴𭑓,ℎ ≥ 0, 𝜇𭑛,𭑑,ℎ
𭑚,𭑑,ℎ+1 ≥ 0.

(C.6)

Note that we have ∑ℎ 𝐴*
𭑓,ℎ = 𝑑𭐼(𝐺𭐾)𝐴𭑓. Let us now consider the

above drift inequality with the term 1−𭜖
𭑑𭐼(𭐺𭐾) ∑

𭑓
∑

0<ℎ<𭑁
𝑄𭑠(𭑓),𭑑(𭑓),ℎ𝐴*

𭑓,ℎ added

and subtracted,
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𝐸 [Δ𝐿[𝑡] ∣ 𝑄[𝑡]] ≤ 𝑀+

2�
𭑓

�
ℎ

𝑄𭑠(𭑓),𭑑(𭑓),ℎ[𝑡] (𝐸 [𝐴𭑓,ℎ[𝑡] ∣ 𝑄[𝑡]] − 1 − 𝜖
𝑑𭐼(𝐺𭐾)

𝐴*
𭑓,ℎ)

+ 2(1 − 𝜖)
𝑑𭐼(𝐺𭐾)

�
𭑓

�
ℎ

𝑄𭑠(𭑓),𭑑(𭑓),ℎ[𝑡]𝐴*
𭑓,ℎ

− 2 �
(𭑚,𭑛)

�
𭑑,ℎ

𝜇𭑛,𭑑,ℎ
𭑚,𭑑,ℎ+1[𝑡] (𝑄𭑚,𭑑,ℎ+1[𝑡] − 𝑄𭑛,𭑑,ℎ[𝑡])

As optimizer 𝐴*
𭑓,ℎ, 𝜇* satisfies the all the constraints in the above op-

timization, we have that ∑𭑓 𝐴
*
𭑓,ℎ𝐼𭑠(𭑓)=𭑛,𭑑(𭑓)=𭑑 + 𝜇*,𭑖𭑛

𭑛,𭑑,ℎ < 𝜇*,𭑜𭑢𭑡
𭑛,𭑑,ℎ. Using this

inequality in the above drift inequality, we have that,

𝐸 [Δ𝐿[𝑡] ∣ 𝑄[𝑡]] ≤ 𝑀+

2�
𭑓

�
ℎ

𝑄𭑠(𭑓),𭑑(𭑓),ℎ[𝑡] (𝐸 [𝐴𭑓,ℎ[𝑡] ∣ 𝑄[𝑡]] − 1
𝑑𭐼(𝐺𭐾)

𝐴*
𭑓,ℎ)

+ 2(1 + 𝜖)
𝑑𭐼(𝐺𭐾)

�
(𭑚,𭑛)

�
𭑑,ℎ

𝜇*,𭑛,𭑑,ℎ
𭑚,𭑑,ℎ+1[𝑡] (𝑄𭑚,𭑑,ℎ+1[𝑡] − 𝑄𭑛,𭑑,ℎ[𝑡])

− 2 �
(𭑚,𭑛)

�
𭑑,ℎ

𝜇𭑛,𭑑,ℎ
𭑚,𭑑,ℎ+1[𝑡] (𝑄𭑚,𭑑,ℎ+1[𝑡] − 𝑄𭑛,𭑑,ℎ[𝑡])

We can show that (similar to [52]) the weight of the schedule given by

the proposed Greedy SP-BP algorithm is greater than the 1
𭑑𭐼(𭐺𭐾) fraction of

the maximum weight attainable by any other schedule in that time slot. Thus,

using this fact, we have that
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𝐸 [Δ𝐿[𝑡] ∣ 𝑄[𝑡]] ≤ 𝑀+

2�
𭑓

�
ℎ

𝑄𭑠(𭑓),𭑑(𭑓),ℎ[𝑡] (𝐸 [𝐴𭑓,ℎ[𝑡] ∣ 𝑄[𝑡]] − 1
𝑑𭐼(𝐺𭐾)

𝐴*
𭑓,ℎ)

Further, the above inequality can be reduced to,

𝐸 [Δ𝐿[𝑡] ∣ 𝑄[𝑡]] ≤ 𝑀+

2�
𭑓

�
ℎ

𝑄𭑠(𭑓),𭑑(𭑓),ℎ[𝑡] (𝐸 [𝐴𭑓,ℎ[𝑡] ∣ 𝑄[𝑡]] − 1
𝑑𭐼(𝐺𭐾)

𝐴*
𭑓,ℎ)

We thus have the result.

C.2 Proof of Theorem 4.4.2

We define a quadratic Lyapunov function, 𝐿 (𝑄[𝑡]) as follows,

𝐿 (𝑄[𝑡]) = �
𭑛,𭑑,ℎ

(𝑄𭑛,𭑑,ℎ[𝑡])
2 . (C.7)

Similar to the analysis of theorem 1, we have the below bound on the

drift,
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𝐸 [Δ𝐿[𝑡] ∣ 𝑄[𝑡]] ≤ 𝑀+

2�
𭑓

�
ℎ

𝑄𭑠(𭑓),𭑑(𭑓),ℎ[𝑡] (𝐸 [𝐴𭑓,ℎ[𝑡] ∣ 𝑄[𝑡]])−

2 �
(𭑚,𭑛)

�
𭑑,ℎ

𝜇𭑛,𭑑,ℎ
𭑚,𭑑,ℎ+1[𝑡] (𝑄𭑚,𭑑,ℎ+1[𝑡] − 𝑄𭑛,𭑑,ℎ[𝑡])

Let ̂𝐴𭑓,ℎ and 𝜇̂𭑛,𭑑,ℎ denote the optimal solution to the optimization

problem in OPT1. Adding and subtracting the quantity ∑𭑓,ℎ
̂𝐴𭑓,ℎ to the

drift, we have the following,

𝐸 [Δ𝐿[𝑡] ∣ 𝑄[𝑡]] ≤ 𝑀+

2�
𭑓

�
ℎ

𝑄𭑠(𭑓),𭑑(𭑓),ℎ[𝑡] (𝐸 [𝐴𭑓,ℎ[𝑡] − ̂𝐴𭑓,ℎ ∣ 𝑄[𝑡]])−

2 �
(𭑚,𭑛)

�
𭑑,ℎ

𝜇𭑛,𭑑,ℎ
𭑚,𭑑,ℎ+1[𝑡] (𝑄𭑚,𭑑,ℎ+1[𝑡] − 𝑄𭑛,𭑑,ℎ[𝑡])+

2�
𭑓

�
ℎ

𝑄𭑠(𭑓),𭑑(𭑓),ℎ[𝑡] ( ̂𝐴𭑓,ℎ)

Since ̂𝐴𭑓,ℎ and 𝜇̂𭑛,𭑑,ℎ is a feasible point in optimization OPT1, we have

that

�
𭑓

̂𝐴𭑓,ℎ𝐼𭑠(𭑓)=𭑛,𭑑(𭑓)=𭑑 + �
𭑚∶(𭑚,𭑛)∈𭐿

𝜇̂𭑛,𭑑,ℎ
𭑚,𭑑,ℎ+1 ≤ �

𭑖∶(𭑛,𭑖)∈𭐿
𝜇̂𭑖,𭑑,ℎ−1

𭑛,𭑑,ℎ

Multiplying both sides by 𝑄𭑛,𭑑,ℎ and taking the summation over 𝑛, 𝑑, ℎ
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on both sides of the above inequality, we have that

�
𭑛,𭑑,ℎ

𝑄𭑛,𭑑,ℎ �
𭑓

̂𝐴𭑓,ℎ𝐼𭑠(𭑓)=𭑛,𭑑(𭑓)=𭑑 ≤

�
𭑛,𭑑,ℎ

𝑄𭑛,𭑑,ℎ ( �
𭑖∶(𭑛,𭑖)∈𭐿

𝜇̂𭑖,𭑑,ℎ−1
𭑛,𭑑,ℎ − �

𭑚∶(𭑚,𭑛)∈𭐿
𝜇̂𭑛,𭑑,ℎ

𭑚,𭑑,ℎ+1)

Rearranging the summations and rewriting the above inequality, we

have the following,

�
𭑓

�
ℎ

𝑄𭑠(𭑓),𭑑(𭑓),ℎ
̂𝐴𭑓,ℎ ≤

�
(𭑚,𭑛)∈𭐿

�
𭑑,ℎ

𝜇̂𭑛,𭑑,ℎ
𭑚,𭑑,ℎ+1 (𝑄𭑚,𭑑,ℎ+1 −𝑄𭑛,𭑑,ℎ)

Using the above inequality, we have the drift to be bounded by,

𝐸 [Δ𝐿[𝑡] ∣ 𝑄[𝑡]] ≤ 𝑀+

2�
𭑓

�
ℎ

𝑄𭑠(𭑓),𭑑(𭑓),ℎ[𝑡] (𝐸 [𝐴𭑓,ℎ[𝑡] − ̂𝐴𭑓,ℎ ∣ 𝑄[𝑡]])−

2 �
(𭑚,𭑛)

�
𭑑,ℎ

𝜇𭑛,𭑑,ℎ
𭑚,𭑑,ℎ+1[𝑡] (𝑄𭑚,𭑑,ℎ+1[𝑡] − 𝑄𭑛,𭑑,ℎ[𝑡])+

2 �
(𭑚,𭑛)∈𭐿

�
𭑑,ℎ

𝜇̂𭑛,𭑑,ℎ
𭑚,𭑑,ℎ+1 (𝑄𭑚,𭑑,ℎ+1[𝑡] − 𝑄𭑛,𭑑,ℎ[𭑡])

It can be shown that the service vector found using Greedy SP-BP,

𝜇[𝑡], satisfies the below inequality, ∀𝜂 ∈ Π(𝐺𭐾),

�
(𭑚,𭑛)

�
𭑑,ℎ

𝜇𭑛,𭑑,ℎ
𭑚,𭑑,ℎ+1[𝑡] (𝑄𭑚,𭑑,ℎ+1[𝑡] − 𝑄𭑛,𭑑,ℎ[𝑡]) ≥

1
𝑑𭐺

�
(𭑚,𭑛)∈𭐿

�
𭑑,ℎ

𝜂𭑛,𭑑,ℎ
𭑚,𭑑,ℎ+1 (𝑄𭑚,𭑑,ℎ+1[𝑡] − 𝑄𭑛,𭑑,ℎ[𭑡]) .
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As 𝜇̂ is the optimizer for OPT1, we have that 𝜇̂ ∈ 1
𭑑𭐼(𭐺)𝐶𝐻(Π(𝐺𭐾))

(i.e 𝑑𭐼(𝐺)𝜇̂ ∈ 𝐶𝐻Π(𝐺𭐾)), and using the above inequality, we have that

�
(𭑚,𭑛)

�
𭑑,ℎ

𝜇𭑛,𭑑,ℎ
𭑚,𭑑,ℎ+1[𝑡] (𝑄𭑚,𭑑,ℎ+1[𝑡] − 𝑄𭑛,𭑑,ℎ[𝑡]) ≥

�
(𭑚,𭑛)∈𭐿

�
𭑑,ℎ

𝑑𭐼(𝐺)𝜇̂𭑛,𭑑,ℎ
𭑚,𭑑,ℎ+1 (𝑄𭑚,𭑑,ℎ+1[𝑡] − 𝑄𭑛,𭑑,ℎ[𭑡])

Using the above inequality, we have the drift in the Lyapunov function

bounded by,

𝐸 [Δ𝐿[𝑡] ∣ 𝑄[𝑡]] ≤ 𝑀+

2�
𭑓

�
ℎ

𝑄𭑠(𭑓),𭑑(𭑓),ℎ[𝑡] (𝐸 [𝐴𭑓,ℎ[𝑡] − ̂𝐴𭑓,ℎ ∣ 𝑄[𝑡]])

Observe that our proposed algorithm has the following rate-splitting property,

�
𭑓

�
ℎ

(𝑄𭑠(𭑓),𭑑(𭑓),ℎ[𝑡] + 𝛽ℎ)𝐸 [𝐴𭑓,ℎ[𝑡] ∣ 𝑄[𝑡]] ≤

�
𭑓

�
ℎ

(𝑄𭑠(𭑓),𭑑(𭑓),ℎ[𝑡] + 𝛽ℎ) ̂𝐴𭑓,ℎ

Substituting the above inequality in to drift inequality, we have that

𝐸 [Δ𝐿[𝑡] ∣ 𝑄[𝑡]] ≤ 𝑀+

2𝛽�
𭑓

�
ℎ

(ℎ ̂𝐴𭑓,ℎ − ℎ𝐸[𝐴𭑓,ℎ[𝑡] ∣ 𝑄[𝑡]])

Taking one more expectation on both sides, we have the following

𝐸 [Δ𝐿[𝑡]] ≤ 𝑀+

2𝛽�
𭑓

�
ℎ

(ℎ ̂𝐴𭑓,ℎ − ℎ𝐸[𝐴𭑓,ℎ[𝑡]])
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Summing the above inequality over time, we have the following inequal-

ity

1
𝑇

𭑇−1
�
𭑡=0

𝐸 [Δ𝐿[𝑡]] ≤ 𝑀+

2𝛽�
𭑓

�
ℎ

ℎ ̂𝐴𭑓,ℎ − 2𝛽1
𝑇

𭑇−1
�
𭑡=0

�
𭑓

�
ℎ

ℎ𝐸 [𝐴𭑓,ℎ[𝑡]]

Further, by rearranging the above inequality, we have the following,

1
𝑇

𭑇−1
�
𭑡=0

�
𭑓

�
ℎ

ℎ𝐸 [𝐴𭑓,ℎ[𝑡]] ≤
𝑀1
𝛽

+

�
𭑓

�
ℎ

ℎ ̂𝐴𭑓,ℎ

Thus, for any 𝜖 > 0, there exists large enough 𝛽 such that

�
𭑓

�
ℎ

ℎ𝐴Greedy SP-BP
𭑓,ℎ ≤ �

𭑓
�

ℎ
ℎ ̂𝐴𭑓,ℎ + 𝜖. (C.8)

Hence we have the result that the average hop-delay of our proposed

algorithm is upper bounded by 𝐻𭑈𭐵(𝐴𭑓, 1
𭑑𭐼(𭐺)).

C.3 Proof of Theorem 4.4.3

(Lower Bound) Note that optimization used to calculate the quantities

𝐻̂(𝛾𝐴𭑓) and 𝐻𭑈𭐵(𝛾𝐴𭑓, 𝛾) have the same objective and same constraints except

one. Observing the fact that the every feasible point for OPT1 is also a feasible

point for OPT2. We have that ,

𝐻̂(𝛾𝐴𭑓) ≤ 𝐻𭑈𭐵(𝛾𝐴𭑓, 𝛾).
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(Upper Bound) Let {𝐴*
𭑓,ℎ, 𝜇*} denote the optimizer for the convex

problem OPT2. It can be shown that the scaled point 𝛾 ∗ ({𝐴*
𭑓,ℎ, 𝜇*}) sat-

isfies all the constraints of the optimization problem to find 𝐻𭑈𭐵(𝛾𝐴𭑓, 𝛾),

and therefore a feasible point in the search space of optimization problem of

𝐻𭑈𭐵(𝛾𝐴𭑓, 𝛾). We thus have the following upper bound,

𝐻𭑈𭐵(𝛾𝐴𭑓, 𝛾) ≤ �
𭑓

�
0<ℎ<𭑁

ℎ𝛾𝐴*
𭑓,ℎ.

As {𝐴*
𭑓,ℎ, 𝜇*} was the optimizer for OPT2, we have that

𝐻̂(𝐴𭑓) = �
𭑓

�
0<ℎ<𭑁

ℎ𝐴*
𭑓,ℎ

Using the above equality, we have that

𝐻𭑈𭐵(𝛾𝐴𭑓, 𝛾) ≤ 𝛾𝐻̂(𝐴𭑓),
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Appendix D

Proofs for Chapter 5

D.1 Proof of Theorem 5.3.1

For any given 𝜖 > 0, we will show that for all the arrival rates that

belong to (1 − 𝜖)Λ, the proposed algorithm - I can stabilize the network. Let

us define a quadratic Lyapunov function, 𝐿(𝑄⃗[𝑡]) as follows,

𝐿(𝑄⃗[𝑡]) = �
𭑙
(𝑄𭑙[𝑡])2 +�

𭑙,𭑖,𭑗
(𝑄𭐻𭑖,𭐻𭑗

𭑙 [𝑡])2 (D.1)

Consider the drift in the Lyapunov function, Δ𝐿(.),

𝐸[Δ𝐿(𝑄⃗[𝑡])|𝑄⃗[𝑡]] ∶= 𝐸[𝐿(𝑄⃗[𝑡 + 1]) − 𝐿(𝑄⃗[𝑡])⏐⏐⏐𝑄⃗[𝑡]]

= 𝐸[�
𭑙

((𝑄𭑙[𝑡 + 1])2 − (𝑄𭑙[𝑡])2)
⏐⏐⏐⏐⏐
𝑄⃗[𝑡]]

+ 𝐸[�
𭑙,𭑖,𭑗

((𝑄𭐻𭑖,𭐻𭑗
𭑙 [𝑡 + 1])2 − (𝑄𭐻𭑖,𭐻𭑗

𭑙 [𝑡])2)
⏐⏐⏐⏐⏐
𝑄⃗[𝑡]]

≤ 𝑀+𝐸[�
𭑙

(2𝑄𭑙[𝑡]Δ𝑄𭑙[𝑡])
⏐⏐⏐⏐⏐
𝑄⃗[𝑡]]

+ 𝐸[�
𭑙,𭑖,𭑗

(2𝑄𭐻𭑖,𭐻𭑗
𭑙 [𝑡]Δ𝑄𭐻𭑖,𭐻𭑗

𭑙 [𝑡])
⏐⏐⏐⏐⏐
𝑄⃗[𝑡]] ,

where the last inequality follows from our assumption that the number

of arrivals and departures in any time slot are bounded. Using the definition
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of conditional expectation 𝐸[𝑋] = ∑𭑦 𝑃(𝑌 = 𝑦)𝐸[𝑋|𝑌 = 𝑦], we have the

following,

𝐸[Δ𝐿(𝑄⃗[𝑡])|𝑄⃗[𝑡]] ≤ 𝑀

+�
𭑘

𝜋(𝐻𭑘)𝐸[�
𭑙

(2𝑄𭑙[𝑡]Δ𝑄𭑙[𝑡])
⏐⏐⏐⏐⏐
𝑄⃗[𝑡],𝐻[𝑡] = 𝐻𭑘]

+�
𭑘

𝜋(𝐻𭑘)𝐸[�
𭑙,𭑖,𭑗

(2𝑄𭐻𭑖,𭐻𭑗
𭑙 [𝑡]Δ𝑄𭐻𭑖,𭐻𭑗

𭑙 [𝑡])
⏐⏐⏐⏐⏐
𝑄⃗[𝑡],𝐻𭑘] .

Let us define 𝑊𭑎𭑙𭑔(𝑄⃗[𝑡],𝐻[𝑡]) ∶= max{𝑊𭑖𭑠[𝑡],𝑊𭑖𭑎[𝑡]}. Using this defi-

nition, we can rewrite the above inequality as follows,

𝐸[Δ𝐿(𝑄⃗[𝑡])|𝑄⃗[𝑡]] ≤ 𝑀

+ 2�
𭑙

𝑄𭑙[𝑡]𝜆𭑙 − 2�
𭑘

𝜋(𝐻𭑘)𝑊𭑎𭑙𭑔(𝑄⃗[𝑡],𝐻𭑘).

Since arrival rate vector lies inside Λ (i.e., ∃ 𝜖 > 0 such that 𝜆⃗ ∈ (1 −

𝜖)Λ), we can find the pair {𝑓(𝐻𭑖,𝐻𭑗), 𝑓(𝐻𭑖), 𝛼(𝑆,𝐻𭑖)} such that the condi-

tions in Theorem 1 hold. Utilizing the conditions, we have
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𝐸[Δ𝐿(𝑄⃗[𝑡])|𝑄⃗[𝑡]] ≤ 𝑀− 𝜖�
𭑙

𝑄𭑙[𝑡]

+ 2�
𭑙

𝑄𭑙[𝑡] (�𝑓(𝐻𭑖,𝐻𭑗)𝑅𭑙(𝐻𭑖,𝐻𭑗))

+ 2�
𭑙

𝑄𭑙[𝑡] (�𝑓(𝐻𭑖)�
𭑆

𝛼(𝑆,𝐻𭑖)𝐼𭑙∈𭑆𝑅𭑙(𝐻𭑖))

− 2�
𭑘

𝜋(𝐻𭑘)𝑊𭑎𭑙𭑔(𝑄⃗[𝑡],𝐻𭑘).

Using the inequality that relates the 𝜋(𝐻𭑘) and 𝑓(., .), we have the

following,

𝐸[Δ𝐿(𝑄⃗[𝑡])|𝑄⃗[𝑡]] ≤ 𝑀− 𝜖�
𭑙

𝑄𭑙[𝑡]

+ 2�
𭑙

𝑄𭑙[𝑡] (�𝑓(𝐻𭑖,𝐻𭑗)𝑅𭑙(𝐻𭑖,𝐻𭑗))

+ 2�
𭑙

𝑄𭑙[𝑡] (�𝑓(𝐻𭑖)�
𭑆

𝛼(𝑆,𝐻𭑖)𝐼𭑙∈𭑆𝑅𭑙(𝐻𭑖))

− 2�
𭑘

(�
𭑗

𝑓(𝐻𭑘,𝐻𭑗) +�
𭑗

𝑓(𝐻𭑗,𝐻𭑘) + 𝑓(𝐻𭑘))×

𝑊𭑎𭑙𭑔(𝑄⃗[𝑡],𝐻𭑘).

Rewriting the above expression, we have
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𝐸[Δ𝐿(𝑄⃗[𝑡])|𝑄⃗[𝑡]] ≤ 𝑀− 𝜖�
𭑙

𝑄𭑙[𝑡]

+ 2�
𭑖,𭑗

𝑓(𝐻𭑖,𝐻𭑗)(�
𭑙

𝑄𭑙[𝑡]𝑅𭑙(𝐻𭑖,𝐻𭑗) −𝑊𭑎𭑙𭑔(𝑄⃗[𝑡],𝐻𭑖) −𝑊𭑎𭑙𭑔(𝑄⃗[𝑡],𝐻𭑗))

+ 2�
𭑖

𝑓(𝐻𭑖)(�
𭑆

𝛼(𝑆,𝐻𭑖)�
𭑙∈𭑆

𝑄𭑙[𝑡]𝑅𭑙(𝐻𭑖) −𝑊𭑎𭑙𭑔(𝑄⃗[𝑡],𝐻𭑖))

Using the fact that 𝑄𭑙[𝑡] ≤ (𝑄𭑙[𝑡] − 𝑄𭐻𭑖,𭐻,𭑗
𭑙 )

+
+𝑄𭐻𭑖,𭐻𭑗

𭑙 , we have the

following,

𝐸[Δ𝐿(𝑄⃗[𝑡])|𝑄⃗[𝑡]] ≤ 𝑀− 𝜖�
𭑙

𝑄𭑙[𝑡]

+ 2�
𭑖,𭑗

𝑓(𝐻𭑖,𝐻𭑗)(�
𭑙

(𝑄𭑙[𝑡] − 𝑄𭐻𭑖,𭐻𭑗
𭑙 )

+
𝑅𭑙(𝐻𭑖,𝐻𭑗) −𝑊𭑎𭑙𭑔(𝑄⃗[𝑡],𝐻𭑖))

+ 2�
𭑖,𭑗

𝑓(𝐻𭑖,𝐻𭑗)(�
𭑙

𝑄𭐻𭑖,𭐻𭑗
𭑙 [𝑡]𝑅𭑙(𝐻𭑖,𝐻𭑗) −𝑊𭑎𭑙𭑔(𝑄⃗[𝑡],𝐻𭑗))

+ 2�
𭑖

𝑓(𝐻𭑖)(�
𭑆

𝛼(𝑆,𝐻𭑖)�
𭑙∈𭑆

𝑄𭑙[𝑡]𝑅𭑙(𝐻𭑖) −𝑊𭑎𭑙𭑔(𝑄⃗[𝑡],𝐻𭑖))

Since the last three quantities in the above inequality are negative for

the proposed algorithm, we have that

𝐸[Δ𝐿(𝑄⃗[𝑡])|𝑄⃗[𝑡]] ≤ 𝑀− 𝜖�
𭑙

𝑄𭑙[𝑡]

Thus, using the Foster-Lyapunov condition we have that the Markov

chain 𝑄⃗ is positive recurrent.
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