60,521 research outputs found

    Network Information Flow with Correlated Sources

    Full text link
    In this paper, we consider a network communications problem in which multiple correlated sources must be delivered to a single data collector node, over a network of noisy independent point-to-point channels. We prove that perfect reconstruction of all the sources at the sink is possible if and only if, for all partitions of the network nodes into two subsets S and S^c such that the sink is always in S^c, we have that H(U_S|U_{S^c}) < \sum_{i\in S,j\in S^c} C_{ij}. Our main finding is that in this setup a general source/channel separation theorem holds, and that Shannon information behaves as a classical network flow, identical in nature to the flow of water in pipes. At first glance, it might seem surprising that separation holds in a fairly general network situation like the one we study. A closer look, however, reveals that the reason for this is that our model allows only for independent point-to-point channels between pairs of nodes, and not multiple-access and/or broadcast channels, for which separation is well known not to hold. This ``information as flow'' view provides an algorithmic interpretation for our results, among which perhaps the most important one is the optimality of implementing codes using a layered protocol stack.Comment: Final version, to appear in the IEEE Transactions on Information Theory -- contains (very) minor changes based on the last round of review

    On practical design for joint distributed source and network coding

    Get PDF
    This paper considers the problem of communicating correlated information from multiple source nodes over a network of noiseless channels to multiple destination nodes, where each destination node wants to recover all sources. The problem involves a joint consideration of distributed compression and network information relaying. Although the optimal rate region has been theoretically characterized, it was not clear how to design practical communication schemes with low complexity. This work provides a partial solution to this problem by proposing a low-complexity scheme for the special case with two sources whose correlation is characterized by a binary symmetric channel. Our scheme is based on a careful combination of linear syndrome-based Slepian-Wolf coding and random linear mixing (network coding). It is in general suboptimal; however, its low complexity and robustness to network dynamics make it suitable for practical implementation

    Time Delay Estimation from Low Rate Samples: A Union of Subspaces Approach

    Full text link
    Time delay estimation arises in many applications in which a multipath medium has to be identified from pulses transmitted through the channel. Various approaches have been proposed in the literature to identify time delays introduced by multipath environments. However, these methods either operate on the analog received signal, or require high sampling rates in order to achieve reasonable time resolution. In this paper, our goal is to develop a unified approach to time delay estimation from low rate samples of the output of a multipath channel. Our methods result in perfect recovery of the multipath delays from samples of the channel output at the lowest possible rate, even in the presence of overlapping transmitted pulses. This rate depends only on the number of multipath components and the transmission rate, but not on the bandwidth of the probing signal. In addition, our development allows for a variety of different sampling methods. By properly manipulating the low-rate samples, we show that the time delays can be recovered using the well-known ESPRIT algorithm. Combining results from sampling theory with those obtained in the context of direction of arrival estimation methods, we develop necessary and sufficient conditions on the transmitted pulse and the sampling functions in order to ensure perfect recovery of the channel parameters at the minimal possible rate. Our results can be viewed in a broader context, as a sampling theorem for analog signals defined over an infinite union of subspaces

    Free Probability based Capacity Calculation of Multiantenna Gaussian Fading Channels with Cochannel Interference

    Get PDF
    During the last decade, it has been well understood that communication over multiple antennas can increase linearly the multiplexing capacity gain and provide large spectral efficiency improvements. However, the majority of studies in this area were carried out ignoring cochannel interference. Only a small number of investigations have considered cochannel interference, but even therein simple channel models were employed, assuming identically distributed fading coefficients. In this paper, a generic model for a multi-antenna channel is presented incorporating four impairments, namely additive white Gaussian noise, flat fading, path loss and cochannel interference. Both point-to-point and multiple-access MIMO channels are considered, including the case of cooperating Base Station clusters. The asymptotic capacity limit of this channel is calculated based on an asymptotic free probability approach which exploits the additive and multiplicative free convolution in the R- and S-transform domain respectively, as well as properties of the eta and Stieltjes transform. Numerical results are utilized to verify the accuracy of the derived closed-form expressions and evaluate the effect of the cochannel interference.Comment: 16 pages, 4 figures, 1 tabl

    Performance Analysis of Dual-User Macrodiversity MIMO Systems with Linear Receivers in Flat Rayleigh Fading

    Full text link
    The performance of linear receivers in the presence of co-channel interference in Rayleigh channels is a fundamental problem in wireless communications. Performance evaluation for these systems is well-known for receive arrays where the antennas are close enough to experience equal average SNRs from a source. In contrast, almost no analytical results are available for macrodiversity systems where both the sources and receive antennas are widely separated. Here, receive antennas experience unequal average SNRs from a source and a single receive antenna receives a different average SNR from each source. Although this is an extremely difficult problem, progress is possible for the two-user scenario. In this paper, we derive closed form results for the probability density function (pdf) and cumulative distribution function (cdf) of the output signal to interference plus noise ratio (SINR) and signal to noise ratio (SNR) of minimum mean squared error (MMSE) and zero forcing (ZF) receivers in independent Rayleigh channels with arbitrary numbers of receive antennas. The results are verified by Monte Carlo simulations and high SNR approximations are also derived. The results enable further system analysis such as the evaluation of outage probability, bit error rate (BER) and capacity.Comment: 24 pages, 7 figures; IEEE Transaction of Wireless Communication 2012 Corrected typo

    Out-of-Band Radiation Measure for MIMO Arrays with Beamformed Transmission

    Full text link
    The spatial characteristics of the out-of-band radiation that a multiuser MIMO system emits in the environment, due to its power amplifiers (modeled by a polynomial model) are nonlinear, is studied by deriving an analytical expression for the continuous-time cross-correlation of the transmit signals. At a random spatial point, the same power is received at any frequency on average with a MIMO base station as with a SISO base station when the two radiate the same amount of power. For a specific channel realization however, the received power depends on the channel. We show that the power received out-of-band only deviates little from the average in a MIMO system with multiple users and that the deviation can be significant with only one user. Using an ergodicity argument, we conclude that out-of-band radiation is less of a problem in massive MIMO, where total radiated power is lower compared to SISO systems and that requirements on spectral regrowth can be relaxed in MIMO systems without causing more total out-of-band radiation
    • 

    corecore