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On Practical Design for Joint Distributed Source and
Network Coding

Yunnan Wu, Member, IEEE, Vladimir Stanković, Member, IEEE, Zixiang Xiong, Fellow, IEEE, and
Sun-Yuan Kung, Fellow, IEEE

Abstract—This paper considers the problem of communicating
correlated information from multiple source nodes over a network
of noiseless channels to multiple destination nodes, where each des-
tination node wants to recover all sources. The problem involves a
joint consideration of distributed compression and network infor-
mation relaying. Although the optimal rate region has been the-
oretically characterized, it was not clear how to design practical
communication schemes with low complexity. This work provides
a partial solution to this problem by proposing a low-complexity
scheme for the special case with two sources whose correlation is
characterized by a binary symmetric channel. Our scheme is based
on a careful combination of linear syndrome-based Slepian-Wolf
coding and random linear mixing (network coding). It is in general
suboptimal; however, its low complexity and robustness to network
dynamics make it suitable for practical implementation.

Index Terms—Network coding, distributed source coding, dis-
tributed compression, multicast, low complexity.

I. INTRODUCTION

C ONSIDER the problem of communicating correlated in-
formation from two source nodes over a network to mul-

tiple destination nodes, illustrated by Fig. 1. Let
be a sequence of independent drawings of a pair of correlated
discrete random variables . This paper focuses on the
special case where the correlation between binary and is
characterized by a binary symmetric channel (BSC)

(1)

where , the “correlation noise”, is independent from and .
Two source nodes, and , observe and , respec-
tively. There is a set of destination nodes, ,
each of which wants to recover both sources. The source nodes
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Fig. 1. The problem of multicasting correlated sources. Two correlated, dis-
crete, binary, memoryless sources, �� � and �� �, are available at nodes �
and � , respectively. There are � destination nodes, � ,� � �,� , each of which
wants to recover both sources.

and the destination nodes are interconnected by a communica-
tion network modelled by a collection of noiseless links with
rate constraints. Specifically, the network is represented as a
graph , where the set of nodes and the set of
edges together specify the topology of the network, and is a
vector that specifies the rate constraint for each edge .
Then, given the sources and , the admissible rate region is
defined as the set of that allows all destination nodes to recon-
struct both and . The objective is to characterize the admis-
sible rate region and design practical schemes that can achieve
points close to the boundary of the admissible region.

This problem can be viewed as a generalization of the dis-
tributed source coding problem and the problem of multicas-
ting independent sources to the same set of destination nodes.
The former aims at exploiting the redundancy that exists in the
two correlated sources; the latter focuses on efficient strategies
for managing information flow in a network. Both problems are
well understood, both theoretically and practically.

Slepian and Wolf [2] considered lossless compression of two
correlated discrete sources, and showed that independent en-
coding is as efficient as if the sources were compressed together,
as long as joint decoding is performed. However, the proof of the
Slepian-Wolf theorem is based on random binning, and is thus
nonconstructive. A special case of Slepian-Wolf coding, known
as source coding with decoder side information (or asymmetric
Slepian-Wolf coding), treats the problem of compressing one
source when the other is available at the decoder as side infor-
mation. For this special case, a constructive scheme based on
parity-check channel codes was given in [3]. The basic idea is
to partition the codeword space of a “good” channel code into
cosets and send only the index of a coset (syndrome) to which
the source realization belongs. The scheme does not assume any
particular correlation model among the sources, and if the em-
ployed channel code approaches the capacity of the “virtual cor-
relation channel” between the two sources, the scheme will ap-
proach the Slepian-Wolf limit [4].

0018-9448/$25.00 © 2009 IEEE
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Following the syndrome-based approach [3], recently, a lot
of work has been done in providing efficient practical code de-
signs for the Slepian-Wolf problem (see [4] and the references
therein) assuming a BSC or Gauss-Markov correlation model.
Following the extension of [3] to the nonasymmetric setup [5],
Stanković et al. [6] used turbo and low-density parity-check
(LDPC) codes to approach any point on the Slepian-Wolf bound
for the BSC source correlation model. Note that Slepian-Wolf
coding addresses compression of correlated sources assuming
direct noiseless links from the encoders to the decoder.

The problem of multicasting independent sources over a net-
work of noiseless channels (with arbitrary topology) to the same
set of destination nodes is addressed by recent advances on net-
work coding [7], which refers to a scheme where each node in
the network is allowed to generate output symbols by encoding
(i.e., computing a certain function of) the symbols it received.
See [8] for a comprehensive review.

Following constructive theoretical results showing that
random linear network coding can achieve the multicast ca-
pacity (with high probability, and as finite field size goes
to infinity)[9], [10], Chou et al. [11] proposed a practical
scheme for performing network coding in real-world packet
networks. Furthermore, the scheme is proven to be asymptoti-
cally capacity achieving in [12], [13]. Note that this practical
network coding scheme is for multicasting from a single source
to multiple destinations (it can also be generalized to the
case of multicasting independent sources to the same set of
destinations).

The focus of this paper is multicasting correlated sources,
which has been addressed from a theoretical perspective. For
two arbitrarily correlated sources and , observed by nodes

and , respectively, Song and Yeung [14]1 and Ho
et al. [15] showed that a vector is admissible if and only if:

i) each cut separating from any destination node has at
least capacity ;

ii) each cut separating from any destination node has at
least capacity ;

iii) each cut separating and from any destination node
has at least capacity .

Here it is easy to see that the above three conditions are nec-
essary. The nontrivial part lies in establishing the sufficiency.
Ho et al. [15] derived the error exponents for a random linear
coding scheme, generalizing Csiszar’s results [16] on linear
Slepian-Wolf coding. Specifically, all nodes (including the
source nodes) independently select random linear mappings
from vectors of input bits onto vectors of output bits (as matrix
multiplications of GF ). At each destination, decoding is done
with the minimum entropy decoder or a maximum a posteriori
probability decoder as in [16]. The work of [15] establishes that
random linear coding is optimal (with high probability, as the
block length approaches infinity). However, whereas random
linear mixing offers a low complexity solution for single-source
multicasting, the above random linear coding does not yield a
low-complexity solution for multicasting correlated sources.
This is because for single-source multicasting, decoding
amounts to solving a system of linear inequalities with equal

1The results in [14] are for an arbitrary number of sources.

number of unknowns and equations, whereas for multicasting
correlated sources, a decoder has to decode more unknowns
than the number of equations. Indeed, the decoding complexity
of either the minimum entropy decoder or the maximum a
posteriori probability decoder generally grows exponentially
in the block length. For this reason, such a random linear
coding approach is not suitable for practical implementation.
As a reviewer commented, this is the case even in the original
Slepian-Wolf coding setting. Practical Slepian-Wolf coding
methods carefully design the encoding matrices to achieve
good performance and low decoding complexity. However, as
mentioned in [17], in multicasting correlated sources over a
network, it is challenging to maintain a desirable structure in
the codes seen by the receivers, considering the fact that the
end-to-end transfer function depends on the operations done at
the interior of the network, in addition to the operations at the
sources.

Fig. 2 highlights the known and open problems in multi-
casting discrete sources. For the distributed compression (or
Slepian-Wolf coding) problem, syndrome-based coding pro-
vides a practical solution (at least for simple correlation models,
such as the BSC correlation model). For the single-source mul-
ticast problem, random linear mixing leads to a practical
low-complexity implementation. Although the problem of
multicasting correlated sources has been solved theoretically,
the missing piece is a low-complexity coding scheme, which is
the aim of this paper.

Motivated also by complexity considerations, previous work
by Ramamoorphy et al. [17] investigated the performance of
separate source and network codes. In the separation approach
of [17], Slepian-Wolf coding is performed at the sources, and
network coding is used only to stream the Slepian-Wolf coded
bits while ignoring the correlation between the sources. At a
destination, decoding is regarded successful as long as the set
of coded bits received from the sources corresponds to a point
in the Slepian-Wolf admissible region. It was shown in [17]
that such a separation approach is optimal when there are two
sources and two destinations, and examples were presented
showing the separation approach is not optimal in general.

While the separation approach can potentially result in low
complexity, a challenge with this approach is that the network
coding component in the separation approach is by nature a
multi-session network coding problem (where multiple multi-
cast sessions share a network), which is still an open problem.
The difficulty comes from the fact that the multicast sessions
can have different destination sets. (If instead the sessions have
a common destination set, then the problem is as easy as the
single-source multicast problem.) Due to this difficulty, the ad-
missible rate region associated with the separation approach re-
mains unknown.

In this paper, we demonstrate a different path towards low-
complexity coding. Just as the theory for the correlated multi-
casting problem [14], [15] generalizes Ahlswede et al.’s results
[7] on single-source multicasting and Slepian-Wolf’s results on
distributed source coding, our proposed scheme leverages prac-
tical techniques for the two special cases, namely, random linear
mixing and syndrome-based coding. In the proposed scheme,
random linear mixing is applied within the network, yet desir-
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Fig. 2. The big picture: the left column shows information-theoretic results; the right column shows the corresponding low-complexity coding schemes.

able structure is preserved at the decoders to enable low com-
plexity syndrome-based decoding. Furthermore, the admissible
rate region is characterized as a concise linear program.

In Section II, we present a general design strategy that poten-
tially leads to low-complexity implementations. Our proposed
scheme is described in Section III. Performance analysis is
shown in Section IV, and the last section concludes the paper.

II. A GENERAL DESIGN STRATEGY

In this section we outline the main idea behind our design for
multicasting two sources over a network of noiseless channels to
multiple destination nodes, where each destination node wants
to recover both sources. We keep the notation from the previous
section and assume that and are binary i.i.d. correlated
sources such that , where is an i.i.d. binary
source.

The practical Slepian-Wolf coding scheme [3] is illustrated
in Fig. 3 with (resp. ) being the realization of (resp. ).
Here we consider how to represent at rate and
at rate such that the two representations enable and
to be reconstructed. Since is represented at its entropy ,
it can be reconstructed at the decoder. Thus the problem boils
down to compressing to the conditional entropy ,
with side information . Let be an parity check
matrix of a linear channel code that is “good” for the BSC (1),
with interpreted as the channel noise. The -bit realization
of , denoted by a row vector , is compressed into an

-bit syndrome vector . The decoder needs to recover
from and . This can be done by (i) computing

, (ii) reconstructing from using channel decoding, (iii)
reconstructing as .

Note that can be viewed as a compressed version of ,
from which can be recovered with high probability. This is
possible because has a nonuniform distribution. More for-
mally, for linear compression of an i.i.d. source with prob-
ability , the following fact holds.

Fig. 3. Illustration of Slepian-Wolf coding scheme [3].

Fact 1: Optimality of Linear Compression [18], [19]: There
exist a sufficiently large block size , an matrix

, and a decoder such that the -bit realization can be de-
coded from the -bit linearly compressed version with
probability arbitrarily close to 1, and the code rate
approaches the entropy .

Due to the close relation between linear source coding and
linear channel coding, a good linear source code for an i.i.d.
binary memoryless source with distribution can be
found via a good linear channel code for the BSC with noise
distribution ; the decompression of the linear source code
amounts to the syndrome-based decoding for the corresponding
linear channel code. Thus, for some carefully designed there
exists a decoding algorithm that can decompress .

Our proposed design for multicasting correlated information
relies on the above observation that the BSC correlation noise

can be viewed as the source of redundancy, which can be ex-
ploited via linear compression. More specifically, our proposed
design strategy is to use the network to:

i) convey to each destination , with low
complexity;
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Fig. 4. An example network � � ����� �� given in [17]. For the case where
���� � ��� � � �� ��� � � �	�, and the rate constraint on each edge
is 0.5, we give a solution, shown by labelling the information flowing on each
edge.

ii) present to each destination sufficient descriptions
, which, together with , allow to be recon-

structed.
We illustrate our strategy with an example shown in Fig. 4

which was given in [17] to prove that separating Slepian-Wolf
coding and network coding is in general suboptimal. Consider
the case where , and the
rate constraint on each edge is 0.5. Our low-complexity solu-
tion is given in Fig. 4, where the data to be carried on each edge
is labelled. Let be an matrix such that is in-
vertible. Assume and . All destinations
receive and thus can recover with high probability. Once

is recovered, it can be easily verified that all destinations can
recover the sources . In this example, decoding at each
destination node is done by (i) decompressing from via
syndrome-based decoding, and (ii) solving a system of linear
equations to recover .

To arrive at a concrete communication scheme, we need to
address how to use the available network resources to meet the
end-to-end traffic demand prescribed by the proposed strategy.
This can be regarded as a network coding problem. Whereas
network coding was previously examined primarily under the
context of fulfilling certain end-to-end communication demand,
the current demand formulation is quite unique in that it in-
volves computing a given function , where and

are available at and , respectively. This presents new
challenges for network coding. For example, consider the fol-
lowing problem formulation.

Problem 1: (Network Arithmetic): In a given graph ,
suppose two source nodes and observe independent, uni-
form, discrete memoryless sources and , re-
spectively. There is a set of destination nodes , each of which
is required to reconstruct . What is the admissible
rate region for meeting this demand?

There are many ways for conveying to the destina-
tions. For example, one can transmit and to an inte-
rior node in the network, which can then compute and
multicast them to the destinations. At present we do not know
how to characterize the admissible rate region over all possible
strategies. Nevertheless, a simple, though suboptimal, approach
is to transmit and to all destinations. In the next sec-
tion we present a specific practical design based on this subop-
timal approach to Problem 1.

Fig. 5. The decoding process of the proposed scheme. (a) The node receives

�
�
� and ������. It computes 
�
�
� and then performs syndrome-based decoding to
recover


. (b). Then the node solves a system of linear equations formed by


�

�
�
�, and 


 ������� � ��� ������� to recover 


� ���.

III. A PRACTICAL DESIGN SCHEME

We partition the available bit-rate resource into and
with . The first part is used to convey to each
destination and . Specifically, forms ; forms

; then, random linear mixing (network coding) is applied
over network resource to ensure that each destination gets

and .
The second part is used to convey to each destination suffi-

cient linear descriptions so that each destination can then solve
a system of linear equations to recover and . Specifically, let

be an matrix such that is invertible. For instance,
if is in systematic form, i.e., , where is an

identity matrix, can be chosen as .
The source node forms ; forms ; then random linear
mixing (network coding) is applied over network resource to
ensure that each destination gets a certain linear combination

(2)

Specifically, a node in the network receives many input bits,
each bit being a certain linear combination of ; it also
outputs bits as linear combinations of the input bits, which are
thus linear combinations of the source bits . Hence at
the end, a destination node gets a certain linear combination of

and , as in (2).

A. Decoding

Suppose for simplicity that both and are uniform, hence
. Fig. 5 illustrates the decoding process, as-

suming that a destination node receives , and a linear
combination . As shown in Fig. 5(a), a destination
node computes from and and then performs syn-
drome-based decoding to recover . Note that the sizes of
and are both approximately

. (More precisely, the size is where
.) As shown in Fig. 5(b), the destination

node first computes from and . Specifi-
cally, this can be done by first computing

(3)
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Fig. 6. Illustration of how the proposed scheme can achieve any point in the Slepian-Wolf region. The available resource is partitioned into two parts: ��� � ��� ���� ,
where ��� provides ������ and ������ to the receiver and ��� provides ��� ������� and ��� ������� to the receiver.

and then inverting the matrix to reconstruct . After
is reconstructed, a system of linear equations formed by
, and can be solved to recover and .

B. An Example: Application to the Slepian-Wolf Scenario

To better illustrate the proposed approach, we examine
how the proposed scheme achieves an arbitrary point on the
boundary of the Slepian-Wolf region. Note that several other
approaches have been proposed for achieving an arbitrary point
on the boundary of the Slepian-Wolf region. For instance, we
can timeshare between two codes, one achieving the corner
point and the other achieving
the corner point . Some other
more direct methods can be found in [4]–[6] and references
therein. The purpose of doing this exercise here is to facilitate
the understanding of the proposed approach.

Suppose we want to achieve a point arbitrarily
close to a point , which
lies on the boundary of the Slepian-Wolf region, for

. As illustrated in Fig. 6, the available resource is par-
titioned into two parts: , where provides and

to the receiver and provides to the re-
ceiver. Link is used to transmit of size
and of size ; link is used to transmit of size

and of size . The re-
ceiver gets

Thus and . The decoding can succeed
as long as has full row rank. For this case,
we can simply let to make it invertible.

In the above, we have shown how the proposed approach pro-
vides a solution to the Slepian-Wolf scenario. Due to the degen-
erated topology in this scenario, we are able to directly control

and ; the entries in these matrices can be arbitrarily
set. More generally, for an arbitrary network topology, we can
still freely set the matrix , but we cannot directly control the
matrix because and characterize the end-to-end

transfer function. For an arbitrary network topology, our pro-
posed approach makes use of random linear mixing (network
coding). In , random linear mixing is used to provide and

to the receivers. In , random linear mixing is used to pro-
vide a suitable linear combination to receiver
such that is invertible with high probability.

To illustrate the power of random linear mixing, we now show
how to use random linear mixing to achieve an arbitrary point
on the boundary of the Slepian-Wolf region. Let
and let denote the -th column of . If is of size

and each entry of is uniformly drawn from
, then for large , with high probability will be of full

rank , which can be seen from the following derivation:

has rank

Thus for this scenario, random coding performs very well, ex-
cept for a small overhead and a small probability of failure

. For an arbitrary network topology, the analysis for random
mixing is more involved; see, e.g., Ho et al. [9] and Sanders
et al. [10]. The main point of the above exercise is to shed
some light on the effectiveness of random coding. While for
a fixed scenario there may be a better deterministic solution,
random coding has many advantages. In particular, it enables ro-
bust, distributed solutions that are useful for practical, dynamic
networks.
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Fig. 7. The structure of packets received by destination �.

C. Making System Practical for Packet Networks

The above scheme is not yet fully practical for use in a packet
network. Since we assumed the operational field is GF(2),
and are binary matrices. Knowledge of these two matrices is
required at destination for decoding. If the network is clock-
synchronized and perfectly coordinated, it is in principle pos-
sible to have all the nodes in the network agree on some pre-
determined coding operations. However, in real networks with
lots of dynamics, conveying to these matrices, which may have
even more bits than the data, would be a difficult task. Another
problem is that previous works on network coding are typically
based on GF where is sufficiently large. These lead to
an inconsistency in terms of the operating fields for linear syn-
drome-based coding and network coding.

We now explain how these issues can be addressed. For sim-
plicity, the approach is explained via examples. Assume that

, and are all computed over the binary field.
Assume random linear mixing (network coding) is defined on
GF .

Consider the use of random linear mixing (network coding) in
. Suppose has 40 000 bits. We can packetize these 40 000

bits into 50 packets, each of length 100 bytes. This packetization
operation can be represented as a one-to-one mapping

GF GF (4)

Thus the result is a matrix of size with each el-
ement defined in GF . The practical network coding scheme
of [11] is used over the 100 source packets comprising the 50
rows of from source and the 50 rows of from
source . We now briefly review the operations. As in [11],
each node receives asynchronously via its incoming links a col-
lection of packets, each in the form of

(5)

where the linear combination coefficients , called
the global coding vector, are recorded in the packet header.
These packets are stored into a buffer as they arrive. Whenever
there is a transmission opportunity available on one of its out-
going links, a node also generates an output packet by linearly
combining the packets in its buffer with random coefficients,
which again has the form of (5).

A destination receives a collection of such mixture packets.
Each mixture packet essentially represents an equation in terms
of the source packets. Let denote the global encoding
matrix obtained by putting together the global encoding vectors

of the received packets; then observes ,
where denotes multiplication in GF (to distinguish from
multiplication in GF ).

The practical network coding scheme reviewed above is used
both in for multicasting and to the destinations, and
in for presenting sufficient linear descriptions of and
to the destinations. For , a destination node needs to collect
enough independent packets until it can solve the system of
linear equations to recover the source packets. Then it can re-
cover the packetized versions of and and solve by
syndrome-based decoding.

The case for is more involved. If such 100 packets (50 from
about , 50 from about ) were to be multicast

to the destinations, the global encoding matrix would
need to have full column rank (100 in this example). However,
this is stronger than necessary for our purpose. In fact, we only
require to have full rank 50, which translates to a demand
of roughly half of the network resources required for multicas-
ting the 100 packets. We perform the following computation:

(6)

(7)

(8)

In (6), the first term is received; the
second term is computed from . The first equality is because
the addition (subtraction) operation in any GF is a bit-wise
XOR operation. If is invertible, then we can obtain

from (8). Next, we can recover and then by solving
a system of linear equations defined by , and .

With this scheme, in each packet, the global encoding vector
takes 100 bytes and the useful data are 100 bytes. Thus the over-
head is still significant. To further reduce the overhead, we can
amortize it by putting data corresponding to multiple blocks into
one packet. Each block contains a distinct of length 40
000 bits; here is the block index. For example, assuming the
packet has 1 100 bytes, the packet format is illustrated in Fig. 7
and shown below

(9)

IV. PERFORMANCE ANALYSIS

In this section we derive the admissible rate region for the
scheme proposed in Section III and compare it with the theo-
retically optimal admissible rate region. First we introduce our
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notations. Given a graph , a source node , a des-
tination node , an – flow is a nonnegative vector of length

satisfying the flow conservation constraint

(10)

where

(11)

Let denote the set of – flows, each with its flow
value equal to . Then if and only if

excess

excess

excess

A useful property of is its linearity in , i.e.,

(12)

The Max-Flow-Min-Cut Theorem says that the minimum cut
capacity is equal to the maximum value of an flow
within . It follows then

(13)

A. Admissible Rate Region for the Proposed Scheme

Recall from Section III that the proposed scheme partitions
the available bit-rate resource in the network into two disjoint
parts: . The first part is used to multicast and

from the two source nodes to the destination nodes, using
network coding. Here network coding is used as a method for
transferring some arbitrary data from and to the destination
nodes. In other words, and are treated as independent
sources. (As a matter of fact, if is an ideal linear compressor
for , then and are independent.)

Therefore, the underlying problem is to multicast two inde-
pendent sources such that each destination can recover both
sources. This problem is a simple extension of the single-source
multicasting problem. For example, suppose two independent
sources (with rate ) and (with rate ) are available ini-
tially at and , respectively, and a set of destinations wants
to receive and . Then the admissible rate region for such
two-source multicasting problem is the set of such that

(14)

(15)

(16)

To see this, note that we can convert the problem into an equiv-
alent virtual multicast problem, by introducing a virtual source
node that has a link with capacity to and a link with ca-
pacity to . The original problem is equivalent to the virtual
single-source multicast problem from to at rate , be-
cause we can assume edge carries and edge carries

without loss of generality. Applying Ahlswede et al. [7]’s re-
sult to the virtual single-source multicast problem, we see that
the admissible rate region is:

(17)

(18)

Note further that an – flow with rate from to can
always be partitioned into an – flow with rate plus an
flow with rate . Thus we obtain (14)–(16) as the admissible
rate region.

Let us now return to our specific problem. From the above
discussion, we conclude that the admissible rate region for the
first part is the set of such that

(19)

(20)

(21)

The second part is used to provide each destination
via random linear mixing (network coding),

with injected at and injected at . Since the
first part provides each destination with and and each
destination node can decompress from ,
upon receiving , a destination can
readily compute . It can then in-
vert the matrix to recover (cf. Fig. 5(b)). Here
random linear mixing (network coding) is only used to provide
roughly linear equations to each destination such that

has full column rank.
The above requirement for can be stated as a condition on

the end-to-end transfer function. A linear network code on the
graph induces a linear transfer function from the two inputs at

and to the outputs at the receivers in . If we denote the
inputs at and by and , respectively, and the output at

by , then the requirement on is that
has full column rank. Note that this condition on the end-to-end
transfer function is exactly what is needed for a conventional
linear network coding problem, where an information source,
initially available at both and , is to be multicast to the des-
tinations in . To see this, consider the transfer function of a
linear network coding solution for this conventional multicas-
ting problem. Denote the inputs at and by and , respec-
tively, and the output at by . Since for this problem
we are inputting at both and , the output at is

. In order to recover needs to have full
column rank. Thus the two problems have the same requirement
in terms of the transfer function. As a result, the rate regions are
the same. Consequently, the problem boils down to character-
izing the rate region for the problem of multicasting a common
source from and to at rate . Introduce a virtual
source node that has infinite capacity links to and . The
corresponding rate region is the set of that satisfies the fol-
lowing system of linear constraints together with variable :

(22)

(23)
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This scheme can be generalized by reallocating a portion of bit-
rate from the second session (using ) to the first session (using

). Specifically, for any satisfying
, we can use to provide each destination a flow

of rate from and a flow of rate
from . We use to provide each destination a flow of rate
from the virtual node . Then the admissible rate region of the
proposed scheme, denoted by , is the set of satisfying the
following inequalities:

(24)

(25)

(26)

where

(27)

(28)

(29)

(30)

(31)

B. Comparison With the Optimal Region

Recall from the introduction that the optimal admissible rate
region for communicating correlated sources over a noiseless
network to multiple destinations is characterized by three sets
of cut conditions [14], [15]. That is, a vector is admissible if
and only if:

i) each cut separating from any destination node has at
least capacity ;

ii) each cut separating from any destination node has at
least capacity ;

iii) each cut separating and from any destination node
has at least capacity .

We can turn these cut conditions into equivalent flow conditions.
The optimal admissible rate region, denoted by , com-
prises the set of satisfying the following system of linear in-
equalities:

(32)

(33)

(34)

where

(35)

(36)

(37)

Here, is a virtual source node that has a link to and a link
to , both with infinite capacity.

We now present an example that shows that the proposed
scheme is in general suboptimal. Consider Fig. 4 with

. Each link has the same capacity, 0.5.
This example network satisfies all three cut conditions; hence
it is theoretically admissible. However, it does not reside in

, the admissible rate region of the proposed low-complexity
scheme. In fact, by solving a linear program, it can be shown

that the proposed scheme cannot fulfill the demand in
but can fulfill the demand in ; here is a length- vector
consisting of all ones. Specifically, the linear program is

subject to – and

The linear program looks for the minimum such that the de-
mand can be met in .

C. Comparison With a Separation Approach

For the problem of communicating correlated sources from
multiple sources to a single destination, Han [20] showed that it
is optimal to separately treat the compression aspect and the net-
work information relay part. More specifically, the sources can
perform Slepian-Wolf coding to form a set of representations
whose rates fall into the Slepian-Wolf region. Then the network
serves the purpose of supplying multiple paths for streaming the
Slepian-Wolf coded symbols to the destination.

Generalizing this, recently, Ramamoorthy et al. [21], [17] in-
vestigated a separation approach, where Slepian-Wolf coding
is performed at the sources, and network coding is used only to
stream the Slepian-Wolf coded bits while ignoring the correla-
tion between the sources. Specifically, each source encodes
the source into a set of coded bits, say . The network is used to
provide a transfer function such that each destination receives
a subset , for each . Then two separate subproblems
are treated as follows:

i) design Slepian-Wolf codes such that for each receiver
, its received bits can be used to recover the

sources with low complexity;
ii) design network codes to implement the needed transfer

function, i.e., let destination receive the bits ,
with low complexity; this is done while ignoring the cor-
relation among the coded bits .

Problem i) can be viewed as a Slepian-Wolf coding problem. In
theory, using random codes, decoding can succeed at a receiver
with high probability as long as the rates at which coded bits are
received from the sources fall in the interior of the Slepian-Wolf
admissible region. Problem ii) can be viewed as a multi-session
network coding problem, which is still an open problem in gen-
eral. Ramamoorthy et al. [21] investigated a suboptimal treat-
ment to this problem, where the network capacity is partitioned
into a collection of multicast sessions. Here

and are the number of sources and destinations, respec-
tively. Each session streams certain bits from a subset of sources
to a subset of destinations. The partitioning can be optimized via
a linear program.

The separation approach can also potentially lead to a low
complexity scheme, if the aforementioned linear optimization is
carried over a small collection of multicast sessions. For prob-
lems with a small value, this is man-
ageable. For larger problems, we may need to select a small
collection of multicast sessions from the exponential set with

sessions. One advantage of the separa-
tion approach, however, is that it can work for arbitrary corre-
lation, whereas the proposed approach leverages the linearity in
the syndrome coding for BSC correlation.
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Fig. 8. Performance comparison among the proposed low complexity approach, the separation approach, and the optimal solution, using the network shown in
Fig. 4.

Ramamoorthy et al. [17], [21] investigated the optimality of
the separation approach, assuming linear network coding is used
for problem ii) above. It was shown in [17] that such a separa-
tion approach is optimal when there are two sources and two
destinations. This is done with a graph theoretic path-packing
procedure, which shows that any admissible network with ca-
pacity can be decomposed into

(38)

where

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

The decomposition result (38) implies that for any admissible ,
we can apply Slepian-Wolf coding at the two source nodes and
use the network to implement a transfer function that streams the
needed coded bits to the destinations. Specifically, form a set of
bits with rate and with rate at node ; form
with rate and with rate at node . Then is used to
route to node and is used to route to node . The
resource can be used to multicast

and to using network coding. Thus, in this case,
the separation approach provides a low complexity scheme, as-
suming there is a low complexity Slepian-Wolf coding scheme

that enables the sources to be recovered from the bits received
by each decoder.

This decomposition result also implies the optimality of the
low-complexity scheme proposed in Section III. This is because
the conditions in (24)–(31) can be satisfied upon setting

and .
The optimality proofs for one and two destinations do not

generalize to more sources or more destinations. Ramamoorthy
et al. [17] presented examples showing the separation of
Slepian-Wolf coding and linear network coding is not optimal
in general. The example of Fig. 4 with
and was used in [17] to show the suboptimality
of the separation approach. As discussed in the previous sub-
section, this example in fact also shows that the low-complexity
approach proposed in Section III is suboptimal. For this ex-
ample, a manually obtained low-complexity solution is given in
Section II, demonstrating the potential of the proposed general
design strategy.

Using the network shown in Fig. 4, we now compare the per-
formance of the proposed low complexity approach with the
separation approach and the optimal solution. As before, we as-
sume two binary, uniform sources whose correlation follows a
binary symmetric channel. In the evaluation, we vary
from to . We assume each edge in Fig. 4 has the same capacity

. For each value of , we compute the minimum band-
width scaling factor needed to fulfill the traffic demand, for
all three schemes. The results are shown in Fig. 8. From Fig. 4,
it is seen that the proposed low complexity approach performs
better than the separation approach in some cases, and worse in
some other cases.

By evaluating the cut conditions characterizing the optimal
solution (Section IV-B), we see that the optimal has the
following expression:

(49)
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Fig. 9. Illustration of how the proposed low complexity approach achieves the
first line segment � � ��� ���� �� ��� for ��� �� � � �	� ���
. The
original network resources are partitioned into two parts: ��� � ��� � ��� .

The with the separation approach appears to have the
expression:

(50)

The with the proposed low complexity approach appears
to have the expression:

(51)

To better understand these results, we now describe some de-
tails of the solutions, which we reconstructed with the help of
the outputs of the linear program. For the proposed low com-
plexity approach, the original network resources are partitioned
into two parts: ; these two parts are shown in
Fig. 9. In Fig. 9, we label the capacities for five groups of edges
(shown by the circles). Note that we can assume without loss
of generality that edges touched by each circle have the same
capacity (because we can simply forward whatever informa-
tion the center node gets to downstream nodes). Thus to specify
a solution for this problem, we only need to specify the ca-
pacity assignments on the five circles. For instance, in Fig. 9
can be specified as and

Fig. 10. Illustration of how the separation approach achieves the point
� � 	�� with ��� �� � � 	��. (a) Source 	 forms three sets of coded
bits 
 �
 � 
 , whose sizes are 	��� 	���	��� respectively; source 	 forms
three sets of coded bits 
 �
 � 
 , whose sizes are 	���	��� 	��� respec-
tively. (b) The network is partitioned into four parts, ��� � ��� ���� ���� ���� . ���
is used to send �
 �
 � to �� � � � � �. ��� is used to send 
 to � and � .
��� is used to send �
 �
 � to � and � . ��� is used to send 
 to � and � .

. From Fig. 9, it can be veri-
fied that i) the maximum edge capacity in the sum of these two
graphs is , ii) in , each receiver can receive
information at rate from and (cf. (19)–(21)),
and iii) in , each receiver has a flow of

from the set (cf. (22)–(23)). This shows how
the proposed low complexity approach achieves the first line
segment for .
To achieve the second line segment, for

, the proposed approach uses the same
as in Fig. 9(a) but with having
and .

Why can the separation approach achieve the point
when whereas the proposed

scheme cannot? To see this, we now explain how the separation
approach achieves this point. As illustrated by Fig. 10(a),
source forms three sets of coded bits ; source

forms three sets of coded bits . As illustrated
by Fig. 10(b), the separation solution partitions the network
into four parts, . is used to send

to . The structure of in Fig. 10(b) is
similar to in Fig. 9. However, in Fig. 10(b) is only used
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to transfer information at rate to .
A crucial difference is that whereas the proposed approach
always communicates information to together, the
separation approach uses to send to and to send

to and , and to send to and . Since
and are available only at but not at , the

proposed scheme cannot be used here.

V. CONCLUSION

We considered the problem of communicating correlated
information from two source nodes over a network of noiseless
channels to multiple destination nodes. We presented a design
strategy that potentially admits low-complexity implementation
for binary sources correlated in such a way that one source is
the output of a binary symmetric channel whose input is the
other source. The strategy is to convey to each destination node
a linearly compressed version of the correlation noise (that is,
the binary symmetric channel noise), and just enough additional
linear descriptions of the sources. Decoding is done by first
decompressing the correlation noise and then solving a system
of linear equations. The remaining problem is to fulfill the
end-to-end traffic demand prescribed by the strategy using cer-
tain network resources. Such a demand formulation is unique
since it involves computation, in addition to communication
aspects. This opens up new research challenges, which we
call “network coding for distributed computations”. We gave a
simple (suboptimal) approach to this problem and constructed
a practical communication scheme. The admissible rate region
of the proposed scheme is characterized via a system of linear
inequalities.

Our proposed strategy can potentially be generalized to
settings with more than two sources, more general correlation
structures, and lossy compression of correlated continuous
sources. This can be done by first trying to redefine the un-
knowns with a set of independent random processes, some
compressible and some not, and then using the network to
(i) convey to each destination (linearly) compressed versions
of the compressible random processes with low complexity
and (ii) present sufficient additional descriptions (e.g., random
linear descriptions) of the unknowns to the destinations.
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[6] V. Stanković, A. D. Liveris, Z. Xiong, and C. N. Georghiades, “On
code design for the general slepian-wolf problem and for lossless mul-
titerminal communication networks,” IEEE Trans. Inf. Theory, vol. 52,
pp. 1495–1507, Apr. 2006.

[7] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network infor-
mation flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216,
July 2000.

[8] P. A. Chou and Y. Wu, “Network coding for the internet and wireless
networks,” IEEE Signal Processing Mag., vol. 24, no. 5, pp. 77–85,
2007.

[9] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B.
Leong, “A random linear network coding approach to multicast,” IEEE
Trans. Inf. Theory, vol. 52, no. 10, pp. 4413–4430, Oct. 2006.

[10] P. Sander, S. Egner, and L. Tolhuizen, “Polynomial time algorithms for
network information flow,” in Proc. Symp. Parallel Algorithms Archi-
tect. (SPAA), San Diego, CA, Jun. 2003, pp. 286–294, ACM.

[11] P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Proc.
41st Allerton Conf. Comm., Ctrl. and Comp., Monticello, IL, Oct. 2003.

[12] Y. Wu, “A trellis connectivity analysis of random linear network
coding with buffering,” in Proc. IEEE Int. Symp. Inf. Theory, Seattle,
WA, Jul. 2006.

[13] D. S. Lun, M. Medard, R. Koetter, and M. Effros, “Further results
on coding for reliable communication over packet networks,” in Proc.
IEEE Int. Symp. Inf. Theory, Sep. 2005, IEEE.

[14] L. Song and R. W. Yeung, “Network information flow—Multiple
sources,” in Proc. Int’l Symp. Information Theory, Jun. 2001.

[15] T. Ho, M. Médard, M. Effros, and R. Koetter, “Network coding for
correlated sources,” in Proc. Conf. Inf. Sci. Syst. (CISS), Princeton, NJ,
Mar. 2004.

[16] I. Csiszár, “Linear codes for sources and source networks: Error expo-
nents, universal coding,” IEEE Trans. Inf. Theory, Nov. 1982.

[17] A. Ramamoorthy, K. Jain, P. A. Chou, and M. Effros, “Separating dis-
tributed source coding from network coding,” IEEE Trans. Inf. Theory,
vol. 52, no. 6, pp. 2785–2794, Jun. 2006.

[18] P. Elias, “Coding for noisy channels,” IRE Conv. Rec., pp. 37–46, 1955.
[19] T. C. Ancheta, Jr., “Syndrome-source-coding and its universal gener-

alization,” IEEE Trans. Inf. Theory, vol. IT-22, no. 4, pp. 432–436, Jul.
1976.

[20] T. S. Han, “Slepian-wolf-cover theorems for networks of channels,”
Inf. Contr., vol. 47, pp. 67–83, 1980.

[21] A. Ramamoorthy, K. Jain, P. A. Chou, and M. Effros, “Separating dis-
tributed source coding from network coding,” in Proc. 42nd Allerton
Conf. Commun., Contr. Computing, Monticello, IL, Oct. 2004.

Yunnan Wu (S’02–M’06) received the Ph.D. degree from Princeton University
in January 2006.

Since August 2005, he has been a Researcher at Microsoft Corporation (Red-
mond, WA, USA). His research interests include networking, graph theory, in-
formation theory, game theory, and wireless communications.

Dr. Wu was a recipient of the Best Student Paper Award at the 2000 SPIE
and IS&T Visual Communication and Image Processing Conference, and a re-
cipient of the Student Paper Award at the 2005 IEEE International Conference
on Acoustics, Speech, and Signal Proceessing. He was awarded a Microsoft Re-
search Graduate Fellowship for 2003–2005.
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