4 research outputs found

    Impacts of Channel Switching Overhead on the Performance of Multicast in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising technology for next generation wireless networking. A WMN extends network coverage using wireless mesh routers that communicate with each other via multi-hop wireless communications. One technique to increase the network capacity of WMNs is to use routers equipped with multiple radios capable of transmitting and receiving on multiple channels. In a Multi-Channel Multi-Radio wireless mesh network (MCMR WMN), nodes are capable of transmitting and receiving data simultaneously through different radios and at least theoretically doubling the average throughput. On the other hand, the use of multi-radio and multi-channel technology in many cases requires routers to switch channels for each transmission and/or reception. Channel switching incurs additional costs and delay. In this thesis, we present a simulation-based study of the impacts of channel switching overheads on the performance of multicast in MCMR WMNs. We study how channel switching overheads affect the performance metrics such as packet delivery ratio, throughput, end-to-end delay, and delay jitter of a multicast session. In particular, we examine: 1. the performance of multicast in MCMR WMNs with three orthogonal channels versus eleven overlapping channels defined in IEEE 802.11b. 2. the performance of the Minimum-interference Multi-channel Multi-radio Multicast (M4) algorithm with and without channel switching. 3. the performance of the Multi-Channel Minimum Number of Transmissions (MCMNT) algorithm (which does not do channel switching) in comparison with the M4 algorithm (which performs channel switching)

    Contributions to Distributed Spatial Compression in Wireless Sensor Networks

    Get PDF
    Projecte final de carrera fet en col.laboració amb University of Southern CaliforniaPremi Càtedra Red.es en l’Àrea de Sistemes de la Informació al millor Projecte de Fi de Carrera d'Enginyeria de Telecomunicació. Atorgat per Càtedra Red.es. (Curs 2010-2011)This thesis presents several contributions in the field of distributed spatial compression inWireless Sensor Networks. First, since in most of the spatial compression schemes some nodes (raw nodes) need to broadcast their raw data to allow other nodes (aggregating nodes) to perform compression, we design several distributed heuristics which, via local communications, split the nodes into raw/aggregating subsets and optimize the amount of energy consumed in the network. We also extend previous work in the use of graph-based lifting transforms for data compression in distributed data gathering applications, to networks with more than one sink, and scenarios where all data has to be available at every node. Additionally, under the scope of these contributions, we design a new energy-efficient multicast routing algorithm, which is based on the minimum Steiner tree and exploits the broadcast property of wireless communications. We prove via computer-based simulations that our methods reduce the energy consumption in the network in comparison with existing approaches.Award-winnin

    Improving Multicast Communications Over Wireless Mesh Networks

    Get PDF
    In wireless mesh networks (WMNs) the traditional approach to shortest path tree based multicasting is to cater for the needs of the poorest performingnode i.e. the maximum permitted multicast line rate is limited to the lowest line rate used by the individual Child nodes on a branch. In general, this meansfixing the line rate to its minimum value and fixing the transmit power to its maximum permitted value. This simplistic approach of applying a single multicast rate for all nodes in the multicast group results in a sub-optimal trade-off between the mean network throughput and coverage area that does not allow for high bandwidth multimedia applications to be supported. By relaxing this constraint and allowing multiple line rates to be used, the mean network throughput can be improved. This thesis presents two methods that aim to increase the mean network throughput through the use of multiple line rates by the forwarding nodes. This is achieved by identifying the Child nodes responsible for reducing the multicast group rate. The first method identifies specific locations for the placement of relay nodes which allows for higher multicast branch line rates to be used. The second method uses a power control algorithm to tune the transmit power to allow for higher multicast branch line rates. The use of power control also helps to reduce the interference caused to neighbouring nodes.Through extensive computer simulation it can be shown that these two methods can lead to a four-fold gain in the mean network throughput undertypical WMN operating conditions compared with the single line rate case

    Efficient Security Protocols for Fast Handovers in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) are gaining popularity as a flexible and inexpensive replacement for Ethernet-based infrastructures. As the use of mobile devices such as smart phones and tablets is becoming ubiquitous, mobile clients should be guaranteed uninterrupted connectivity and services as they move from one access point to another within a WMN or between networks. To that end, we propose a novel security framework that consists of a new architecture, trust models, and protocols to offer mobile clients seamless and fast handovers in WMNs. The framework provides a dynamic, flexible, resource-efficient, and secure platform for intra-network and inter-network handovers in order to support real-time mobile applications in WMNs. In particular, we propose solutions to the following problems: authentication, key management, and group key management. We propose (1) a suite of certificate-based authentication protocols that minimize the authentication delay during handovers from one access point to another within a network (intra-network authentication). (2) a suite of key distribution and authentication protocols that minimize the authentication delay during handovers from one network to another (inter-network authentication). (3) a new implementation of group key management at the data link layer in order to reduce the group key update latency from linear time (as currently done in IEEE 802.11 standards) to logarithmic time. This contributes towards minimizing the latency of the handover process for mobile members in a multicast or broadcast group
    corecore