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Abstract

This thesis presents several contributions in the field of distributed spatial com-

pression in Wireless Sensor Networks. First, since in most of the spatial compression

schemes some nodes (raw nodes) need to broadcast their raw data to allow other

nodes (aggregating nodes) to perform compression, we design several distributed

heuristics which, via local communications, split the nodes into raw/aggregating

subsets and optimize the amount of energy consumed in the network. We also ex-

tend previous work in the use of graph-based lifting transforms for data compression

in distributed data gathering applications, to networks with more than one sink,

and scenarios where all data has to be available at every node. Additionally, under

the scope of these contributions, we design a new energy-efficient multicast routing

algorithm, which is based on the minimum Steiner tree and exploits the broadcast

property of wireless communications. We prove via computer-based simulations

that our methods reduce the energy consumption in the network in comparison

with existing approaches.
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aquellos que os habéis ido sumando a mi vida durante el camino, ya sea en Menorca,

Mallorca, Barcelona o Los Ángeles. Muchas grácias por todos nuestros momentos

juntos, directa o indirectamente me habéis ido ayudado a seguir adelante con la
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últimos meses.

II



Finally, I can not express in words how thankful I am to my supervisor in this

project, Prof. Antonio Ortega. From the beginning of my stay at USC, he has

been a source of advice, inspiration, and encouragement. Thank you for giving me

the possibility to collaborate with your research group and for being not only a

supervisor, but also a motivation force both academically and personally. I will

never forget this experience.

This thesis has been supported in part by Fundación Vodafone España - ETSETB

under grant Vodafone 09-10, Fundación Bancaja under grant Becas Internacionales

Bancaja - UPC 2009-10, and AGAUR under grant MOBINT 09-10.
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Chapter 1

Introduction to Spatial

Compression for Distributed Data

Gathering

1.1 Introduction

Sensor networking has been an active research area in the last decade, and its

development promises an unprecedented ability to sense, monitor, and manipulate

our environment. Wireless Sensor Networks (WSN) consist of many inexpensive

and densely deployed sensors, which have the ability to sense phenomena from

the physical world, and communicate with each other in order to perform some

sort of coordinated task. The list of applications for WSN seems to be endless,

with environmental and habitat monitoring, object detection and tracking, military

applications such as battlefield surveillance, and home automation, being only some

of the more obvious examples.

Since nodes in WSN are severely energy-constrained devices, usually powered by

batteries or solar cells, the development of energy-efficient algorithms for routing

and communications is one of the major challenges for the research community.

Moreover, WSN are usually deployed in dynamic and hostile environments, where
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Introduction to Spatial Compression for Distributed Data Gathering

topology changes are common, and damaged nodes are hard to replace. In order

to address these limitations, another important requisite is to provide the network

with the ability to perform in a distributed and self-organized manner. Ideally, once

these requirements are fulfilled, WSN will be robust to link/node failures and their

lifetime will be prolonged.

The aforementioned limitations become a matter of major importance in coor-

dinated applications, where nodes must exchange data to achieve their goal. For

example, in distributed estimation applications [30], nodes have to exchange data

in order to estimate a global parameter. Exchange of information is also needed in

aggregation problems [15], where each node has to compute an aggregation function

(such as sums, averages, etc.) with the values of all the other nodes. Moreover,

in applications such as distributed detection [19] and distributed data gathering,

sensors share data to complete their tasks. In this work we focus on data gathering,

where sensors transmit data to one or several central collection nodes.

Imagine that a number of sensors, equipped with omnidirectional antennas, are

spread over an area, sensing data from their environment. The measurements of

each node have to be sent to a randomly located base station (sink) via wireless

communications. As a consequence of the limited radio range in every node, most of

them may not be able to reach the sink directly in a single transmission. In that case,

nodes need to use other sensors as relay stations to forward their data until it reaches

the target node. The simplest form of data gathering would be to have all nodes

transmit raw data to the sink. However, this solution does not exploit the existing

correlation between spatially close sensors, which means that a lot of redundant

data is being sent over the network. As an alternative, it would be reasonable to

decorrelate the data using some sort of transform, and consequently represent the

measurements with fewer bits. This reduction will decrease the communication cost

in some nodes, and will lead to savings in the amount of energy consumed in the

network.

2



Introduction to Spatial Compression for Distributed Data Gathering

For achieving this goal, there are a variety of approaches available in the lit-

erature, e.g., distributed source coding (DSC) techniques [6, 28], wavelet-based

methods [1, 5, 42, 41, 36, 35], the distributed Karhunen-Love Transform (KLT) [9],

the tree-based KLT [34], the tree-based DPCM [34] and the graph-based wavelet

transforms as the one presented by Narang et al in [25]. These graph-based wavelet

transforms are based on the lifting scheme [39], and are computed as data is for-

warded towards the sink on an energy efficient routing tree.

The aim of this thesis is to present several contributions in the field of distributed

spatial compression for distributed data gathering applications in WSN. We extend

previous work in the use of graph-based lifting transforms for compression purposes

to networks with more than one sink (multisink WSN), and gossip scenarios in

which all data has to be available at each node. We also present a new multicast

routing algorithm based on the minimum Steiner tree problem, which exploits the

broadcast property of wireless communications. Moreover, since in most of the dis-

tributed spatial compression schemes the first requirement in order to implement

compression is to perform a raw/aggregating node assignment (RANA), we intro-

duce several distributed heuristics that split the sensors into subsets of raw and

aggregating nodes by allowing nodes only to communicate with their direct neigh-

bors. By doing so, our decentralized approaches are useful for the implementation

in real settings.

We next discuss existing approaches for spatial compression (Section 1.2) and

graph-based wavelet transforms (Section 1.3).

3
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1.2 Brief overview of existing approaches

As mentioned before, there are several techniques for performing spatial compres-

sion in data gathering applications. For instance, one popular class of methods uses

distributed source coding (DSC). In these approaches, nodes do not need to directly

exchange data with each other for compression purposes, since encoding is done in-

dependently at each node by using techniques such as Slepian-Wolf coding [6]. In

these schemes, each node can compress its own data based on some statistical corre-

lation model, which is known a priori. However, nodes will need to exchange data for

learning this model before compression can be done, and how to properly estimate

the underlying correlation model, and what the training cost will be, are not always

obvious. On the contrary, transform-based approaches require some sort of data ex-

change between nodes to remove spatial correlation. Specifically, some nodes first

need to transmit raw data to their neighbors, and then these neighbors process all

the available data in order to decorrelate the information and perform compression.

The distributed KLT [9] is a cluster-based method, where nodes are first organized

into disjoint clusters. Then, nodes within each cluster send raw data to the cluster-

head, which processes all the information, performs some sort of compression, and

forwards all data to the sink. Note that, although in these cluster-based methods

it is not necessary to train nodes for learning the underlying correlation model,

the large number of non-cluster-heads that transmit uncompressed data makes this

strategy inefficient for energy-aware spatial compression. Furthermore, since it is

based on the KLT transform, this method also requires a learning phase, where

nodes need to discover and disseminate the correlation structure.

We are going to focus on routing-driven compression schemes. In these methods,

data is compressed while it is being sent towards the sink. Specifically, we are going

to work with graph-based wavelet transforms such as the one in [25], where some

nodes first transmit raw data to their direct neighbors, and then their neighbors

compress their information using the data they previously received. Since in graph-

4
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based transforms the subset of neighbors a node uses in order to compress its data

is bigger than in the other routing-driven methods, the level of decorrelation in the

compressed data is higher, and therefore better compression is achieved. On the

other hand, methods in [42, 41] follow the same intuition, but nodes only exchange

data with their nearest neighbors. Other routing-driven alternatives are the tree-

based KLT and the tree-based DPCM, both proposed in [34], and the wavelet-

based methods in [36, 35, 5], which compute the transform along a routing tree.

However, in these approaches, the broadcast property of wireless communication

is not exploited since nodes compress their data only with information from their

children in the routing tree. Hence, nodes are not using the information of all

their neighboring nodes for performing compression. In addition, note that the

tree-based KLT will also incur a learning cost to estimate and disseminate the

correlation model.

1.3 Unidirectional Graph-based Wavelet transforms

Wavelet transforms have been widely used as powerful tools for signal compres-

sion. Specifically, distributed wavelet-based schemes, such as lifting [39], allow

these transforms to be computed in arbitrary network configurations while ensuring

invertibilty by construction. For implementing the lifting scheme, the first require-

ment is to have nodes split into raw data nodes and aggregating nodes subsets.

Once this has been done, raw data nodes first broadcast raw data to their aggregat-

ing 1-hop neighbors, and then these aggregating nodes compress their data, yielding

detail coefficients (or prediction errors), with the raw data they have received. As

a last step, data from raw data nodes can be updated with detail coefficients from

aggregating nodes, yielding smooth coefficients (or approximations). From now on,

the splitting process is going to be referred to as the Raw/Aggregating Node As-

signment (RANA).

5
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How the RANA is implemented is a matter of major importance for optimizing

the transform in terms of the energy efficiency. As presented in [25], since raw data

requires more bits than encoded data, it is preferable to minimize the number of raw

data nodes, while ensuring that all aggregating nodes are still covered by at least

one raw node. In this case, the RANA is formulated as a minimum set covering

problem. In Chapter 2 we will explain and compare different RANA strategies that

have been proposed in the literature. However, in this section, and for illustrating

the transform construction, we assume that the RANA is based on depth in the

routing tree (distance in hops to the sink) as in [36, 35]. In other words, raw data

nodes are nodes with even depth, and aggregating nodes are nodes with odd depth.

Once we have explained how each node processes the data, also referred as the

processing strategy ; it is important to note that if we want to reduce the energy

consumed in the network (in terms of communication cost), we also need to define

an energy efficient routing strategy. The routing strategy defines what data commu-

nications nodes need to make for gathering all data at the sink. In the single sink

case, a simple and efficient routing strategy for reducing the communication cost is

to follow the well-known shortest path tree (SPT). However, as will be explained

in Chapter 3, in a network with more than one sink the SPT is no longer a good

solution. Therefore, we will need to find some other routing strategy in order to

gather the data in all the sinks.

1.3.1 General Formulation and Implementation

Assume a network with N nodes indexed by n ∈ I = {1, 2, ..., N} and a sink having

index N+1. Suppose that each node transmits data using Rn as radio-range and let

G = (V,E) be the directed communication graph which results from these choices

of radio ranges. Note that each edge (m,n) ∈ E denotes a communication link from

node m to node n. Let Nn be all the adjacent nodes that can hear data from node

n in G. Let T = (V,ET ) be a given routing tree along which data, denoted by x(n),

flows towards the sink. Note that in our case ET are the communication links that

6
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form the graph which define the SPT or any other tree provided by some standard

routing protocol (i.e., ET ∈ E). The remaining edges define the communications

overheard due to the broadcast property of wireless communications. Focusing on

a single node, let depth(n) to be the number of hops from n to reach the sink on

T . Assume that ρn denotes the parent of n in the tree, its set of children is referred

as Cn, and let Dn to be the descendants of n in T . We denote the set of raw

data nodes as D and the aggregating nodes as A. Let the set of raw data nodes

that an aggregating node overhears be referred as Hn, i.e., Hn = {m ∈ D|n ∈ Nm}.

Remember that in this section we assume that the splitting is based on depth in

the tree (i.e., odd depth are aggregating nodes, even depth are raw data nodes).

Thus, in this case, Hn includes Cn and all the even nodes that n overhears due to

broadcast transmissions.

100 200 300 400 500
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Directed Communication Graph

 

 
Sink
Raw data node
Aggregating node
Broadcast link
Routing tree link

Figure 1.1: Example of a communication graph representing a WSN with routing tree and broad-

cast links included. The RANA is based on the depth of the routing tree.

We define a transmission schedule in which all raw data nodes transmit their

data first, and then aggregating nodes compute the detail coefficients using data

from all nodes inHn. After this first step, nodes start forwarding the data from their

7
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descendants Dn until all coefficients are gathered at the sink. We also assume that

transmissions between adjacent sensors are scheduled to avoid interference using

some algorithm such as those presented in [37, 38].

After all these considerations, each n ∈ A computes the detail coefficient d(n)

as:

d(n) = x(n) +
∑

k∈Hn

pn(k)x(k) (1.1)

As mentioned before, an update step can also be computed to produce smooth

coefficients for data in raw nodes. However, the number of bits needed to represent

these smooth coefficients is similar to the number of bits for representing raw data.

Thus, for simplicity, we are not going to use an update phase in this work. Anyhow,

the smooth coefficient s(m) would be computed for each raw node m ∈ D using

details from aggregating nodes in Hm, i.e., Hm = {n ∈ A|n ∈ Nm}, as:

s(m) = x(m) +
∑

l∈Hm

un(l)d(l) (1.2)

Note that, in our case, data from raw nodes would only be updated using detail

coefficients from their aggregating parents in the tree, i.e., Hm = ρm.

The design of the linear prediction operator pn can be done in a variety of ways.

For example, pn can be a simple average filter [36]:

pn(k) = −
1

|Hn|
(1.3)

In this thesis we are going to use the NLMS filter designed in [34], which is

adapted in a distributed way without forwarding any additional information towards

the sink. Source code used to generate this filter can be found online1.

Note that we can guarantee the invertibility of the transform with any design of

pn. By the lifting construction, we can ensure invertibility as long as aggregating

nodes only predict the detail coefficient with data from raw data nodes. If we have

an update step, for guaranteeing invertibility, smooth coefficients must be calculated

only with detail coefficients from aggregating nodes.

1http://biron.usc.edu/wiki/index.php/Wavelets on Trees
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Figure 1.2: Example of the graph-based unidirectional lifting transform.

The compression and data gathering processes are illustrated in Figure 1.2. After

the construction of the SPT, each node is aware of its parent and fixes its radio

range. This set of selected radio ranges leads to the communication graph G(V,E).

Once the network is created and nodes start sensing data (i.e., x(n)), raw data

nodes 3, 4, 5, 6, 11 and 12 first broadcast their data to aggregating neighbors.

After that, aggregating nodes 1, 2, 7, 8, 9 and 10 compute their detail coefficients

d(n) with raw data overheard from nodes in each Hn. In the forwarding step, all

data is sent towards the sink following the pre-established SPT.
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Chapter 2

Raw/Aggregating Node

Assignments

For implementing the unidirectional graph-based wavelet transform presented in

Section 1.3, nodes need to be split into two different subsets. Specifically, some

nodes (i.e., raw data nodes) need to broadcast raw data in order to allow some other

nodes (i.e., aggregating nodes) to remove the spatial correlation and compress their

measurements. We refer to this process as the Raw/Aggregating Node Assignment

(RANA). How the RANA is implemented is critical in terms of energy efficiency,

because it affects (i) the number of nodes sending uncompressed data in the network

and (ii) the number of bits required to represent the data produced by aggregating

nodes.

In this chapter, we summarize the existing strategies for implementing and op-

timizing the RANA (Section 2.1); In Section 2.2, we propose a low complexity

heuristic to perform the RANA as a distributed minimum set covering problem,

and in addition we present two distributed optimizations that improve the RANA

by allowing the nodes to choose between different radio-ranges. Finally, we simulate

the different approaches, analyze their performance and compare our methods to

those already proposed in the literature (Section 2.3).

10



Raw/Aggregating Node Assignments

2.1 Existing RANAs

As we have seen, lifting-based techniques for spatial compression need a RANA

for being implemented. Different strategies have been proposed in order to assign

each node a role (i.e., raw/aggregating). The transform-based compression schemes

presented by Shen et al in [36, 34] split nodes based on their depth in the routing

tree. In their approaches, sensors with even depth (even number of hops to the

sink) act as raw data nodes, and sensors with odd depth act as aggregating nodes.

This approach leads to aproximately half the nodes being raw data nodes and

the other half being aggregating nodes. Considering that data from raw nodes is

represented with more bits than data from the aggregating ones, this solution incurs

high transmission costs, and it is not optimal in terms of energy efficiency. As an

alternative, the work in [42, 41] seeks to maximize the number of raw data nodes

each aggregating node has within a certain distance. The intuition behind these

methods is that increasing the number of raw data nodes that an aggregating node

has in its neighborhood, will provide a higher degree of decorrelation. This leads to

RANAs in which around 75% of the nodes forward raw data. Therefore, despite the

fact that detail coefficients are represented with fewer bits, the amount of raw data

forwarded is high. That explains why their approach only outperforms raw data

gathering (without any compression) in very dense networks. The RANA applied

in the graph-based lifting transform presented in [24] seeks to minimize the number

of conflicts in the graph (the number of direct neighbors that have the same parity).

To the best of our knowledge the RANA proposed in [25] is the only one that

seeks to reduce the number of raw data nodes in the network while ensuring that

each aggregating node has at least one raw data node in its vicinity. This RANA

is formulated as a minimum set covering (MSC) problem and is solved using a

centralized greedy heuristic. Even though the resulting set cover minimizes the

number of raw data transmissions, it does not take into consideration the fact that

selected raw data nodes might be very far from the sink, so their raw data will need
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to travel a long distance until it reaches the sink. To avoid this problem, the RANA

is formulated as a minimum weighted set covering (MWSC) problem, where the cost

of transmitting raw data per even node is also minimized. By solving the problem

in terms of set cover minimization, an additional 10% reduction in communication

cost is achieved as compared to the aforementioned methods applied to the same

lifting transforms.

In recent work [26], partly developed under the scope of this thesis, the RANA

is optimized by allowing nodes to change their radio range. This is formulated as a

linear program for MWSC and it is solved with standard tools. This optimization

reduces the number of raw data nodes in comparison with standard minimum set

covering methods. Thus, it leads to total cost reductions up to a 25% as compared

with the technique in [25].

Figure 2.1 shows the resulting RANA for different strategies in the same com-

munication graph. In Fig. 2.1(a) the assignment is based on the depth in the

tree. Aggregating nodes (resp. raw) are the ones which have odd (resp.even) depth

in the routing tree [36, 34]. Fig. 2.1(b) illustrates the RANA using the method

in [25], where the assignment is solved as a minimum set covering problem. Finally,

Fig. 2.1(c) shows the intuition of the approach presented in [26]. As we can see,

allowing node 2 to increase its radio range, it can also cover nodes 7 and 8. Thus,

the number of raw data nodes is reduced. Note that, as will be explained in Sec-

tion 2.2.3, there is a trade-off in increasing the radio range of some nodes, because

(i) the communication cost in these nodes will be greater, and (ii) the mean distance

between raw data nodes and aggregating nodes will increase. This increase in dis-

tance leads to a lower coding efficiency in aggregating nodes’ data. Consequently,

their measurements have to be represented with a higher number of bits. In other

words, while the number of raw nodes decreases, the average number of bits per

aggregating node increases.
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Figure 2.1: Raw/Aggregating node assignments using different existing methods.

2.2 Distributed Set Cover Algorithms

In this section, we first formulate the RANA as a minimum set covering problem as

proposed by Narang et al in [25]; then, we propose a new distributed heuristic for

minimum set cover, where nodes only use information from their direct neighbor-

hood to choose between becoming a raw/aggregating node. Finally, we design two

distributed optimizations which, allowing nodes to choose among different radio

ranges, reduce the set-cover and the communication costs in the network. All these

distributed algorithms are also presented in [26].

2.2.1 Minimum Set Covering Problem

Assume G(V,E) to be a directed communication graph, where for all nodes v ∈ V

there is a closed neighborhood n[v] = {v} ∪ {u ∈ V : (v, u) ∈ E}. The set covering

problem consists in finding the minimum number of nodes such that the union of

all their n[v] is V .

In terms of WSN, the neighborhood n[v] represents all nodes within the radio

range of node v. Once we have the set
{
n[vj ]

}
j∈1,2,...p

conforming the set cover C,

we denote {[vj]}j∈1,2,...p as raw data nodes and the remaining ones as aggregating

nodes. Thus, this minimum set cover problem seeks to obtain the minimum number
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of raw data nodes while ensuring that every aggregating node is within the radio

range of at least one raw data node. This problem is also refered in the literature

as the minimum dominating set problem.

This problem is NP-hard in general, but it can be solved by a centralized greedy

algorithm that iteratively assigns as raw data node that with the highest number

of uncovered nodes in its neighborhood. Algorithm 1 illustrates the procedure

implemented in [25] in order to solve the set covering problem.

Algorithm 1 Greedy Set Cover for Unweighted Directed Graphs

Require: N =
{
n[v]

}
v∈V

1: Initialize C = φ. Define f (C) =
∣∣∣
⋃

n[v]∈C n[v]

∣∣∣
2: repeat

3: Choose vj ∈ V maximizing the difference
[
f
(
C ∪

{
n[vj ]

)}
− f (C)

]

4: Let C ← C ∪
{
n[vj ]

}

5: until f (C) = f (N )

6: return C

2.2.2 Low complexity Distributed Heuristic for Minimum Set Cover

As we have seen in the previous section, the minimum set covering problem can

be solved by using a greedy centralized heuristic. However, even though they are

accurate, centralized solutions are impractical for real settings for several reasons.

First of all, they incur high communication costs in order to gather all the necessary

information in a central node or base station. Secondly, they can’t adapt to network

changes or failures. This means that if there is a change in the network structure,

we will need to solve the centralized algorithm again to update the RANA. As an

alternative, a more practical solution is to implement the RANA in a distributed

way. Using distributed algorithms, nodes can decide their parities via limited com-

munications in their direct neighborhood. Additionally, in case of a change or node

failure in the network, nodes are able to readjust and adapt the RANA using only

local communications. There are several approaches to solve the minimum set cov-
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ering problem in a distributed manner. One solution would be to use a distributed

implementation (such as in [17]) for the linear programming formulation presented

in [26]. However, the large number of additional communications required to imple-

ment this method make it impractical. Other alternatives are based on simulated

annealing [13]. Here, the algorithm starts with an arbitrary solution, and then it

repeatedly tries to make improvements based on local information until a consensus

is achieved. Although the solution can be close to a global optimal, it requires a

large number of communications and a long time to converge.

In this section, we present a new distributed algorithm that follows a similar in-

tuition to the one in [12], but in a simpler way. Both algorithms seek to reproduce

the centralized greedy algorithm (Algorithm 1) in a distributed manner. In [12], the

span or outdegree of each node is calculated and forwarded to all neighbors within

distance 2 at each round of the algorithm. Moreover, all the uncovered nodes send,

also at each round, information related to the number of nodes that are candidates

to cover them. After that, the decisions about which of the candidates are added to

the dominating set are made based on some probabilistic assumptions. In contrast

to [12], in our algorithm nodes only use information from their 1-hop neighborhood,

and the necessary communications in order to decide which of the nodes are con-

sidered in the set cover are reduced, with nodes exchanging information related to

their span only once at the beginning of the algorithm. Because of the restrictive

conditions imposed by the properties of wireless sensor networks, sometimes it is

better to keep the complexity and communication cost small even at the cost of

a suboptimal solution. Therefore, our aim in this section is to obtain a small set

cover with minimum number of local communications.

A simple way to approach the RANA is to assign as raw data nodes those

with greater number of nodes in their direct neighborhood. This procedure can be

done in a distributed manner by allowing each node to exchange a few messages

with its neighbors, and then letting each node decide whether to become a raw or

aggregating node.
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Our proposed algorithm consists of three main steps: (i) determine number of

neighbors at each node, (ii) exchange outdegree information, and (iii) sequential

raw-aggregating assignment.

Algorithm 2 describes our method from the point of view of a single node. In

the first step, after scheduling transmissions between adjacent sensors to avoid

interference [37, 38], each node broadcasts a pilot signal which includes its power

level. After listening for pilots, each node broadcasts an acknowledgement packet

at the maximum radio range of the pilots it has received. The outdegree of a

node is defined as the number of acknowledgments it receives (i.e., the number of

nodes it covers). In the second step the outdegree of each node is broadcasted

among its neighbors. Finally, in the third step, nodes choose between becoming a

raw or aggregating node in a sequential way. The nodes first run random timeouts

during which they listen to their neighbors broadcasting their raw-aggregating node

decision. If one node hears a neighbor declaring that it has become a raw node,

it assigns itself as aggregating node and broadcasts its label. Once the timeout is

over, the node compares its outdegree with that of its still unassigned neighbors.

Nodes reach this step of the algorithm if during the timeout all the neighbors that

have broadcasted their parity are aggregating nodes, and if at this moment there

are still neighbors that have not declared themselves as raw or aggregating nodes.

If its outdegree is the greatest within its neighborhood, then the node declares itself

as a raw data node and transmits its label. Otherwise, it restarts another timeout

and listens to one of its neighbors turning into a raw data node.

Note that each node only needs 4 communications to complete its task: one

broadcast for its pilot signal, one broadcast of an ACK message, a third one to share

its outdegree, and a final communication when the node announces its assignment.

Thus, the number of communications required to find a minimum set-cover is O(N),

where N is the total number of nodes in the network. Although the resulting set

cover is not as close to the global minimum as other more complex distributed

solutions [12, 13], our proposed algorithm requires a considerably lower number of
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local communications, and it is valid for any kind of graph. Its low complexity

and communication costs make this distributed heuristic appropriate for real-time

implementations. In the following section, we will show how to improve the set cover

by allowing nodes to increase their radio range and to cover current raw nodes.

2.2.3 Distributed Set Cover Modifications

The assignment given by Algorithm 2 can be improved by allowing nodes to change

their radio range. However, this increase in radio range implies a trade-off, be-

cause the mean distance between raw data nodes and aggregating nodes will also

increase. This increase in distance leads to a decrease in the level of correlation

between raw/aggregating neighbors. Thus, a higher rate will be required in order

to represent data measured by aggregating nodes. Additionally, an increase in ra-

dio range also implies more communication costs in the network (nodes need more

power to cover a greater distance). In this section, we propose two distributed

set cover modifications which exploit this trade-off with decisions made only using

local information, and reduce the overall energy consumption in the network in

comparison with standard set covering approaches.

Assume that nodes can transmit in a radio range within the interval [Rmin
n , Rmax],

where Rmin
n is the minimum radio range that connects each node with its par-

ent in the routing tree. We consider a discrete number of possible radio ranges

{R1
n, R

2
n, R

3
n} ∈ [Rmin

n , Rmax]. These are the radio ranges that allow node n to cover

different sets of nodes. All other values within the interval only add more com-

munication cost to the total energy consumption in the network. Each node can

know the different Rm
n values by broadcasting a pilot signal with radio range Rmax.

Then, all nodes that have received the pilot signal send an ACK message with the

same Rmax. By comparing the attenuation that each ACK has suffered, the node

can learn the different discrete radio ranges in order to reach its neighbors. With

this procedure, the total number of communications per node to allow all sensors
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determine the discrete radio ranges is equal to 1 + In, where In is the indegree of

node n. In other words, each node has to transmit one pilot signal and In ACK

messages. The additional cost per node can be quantified as (1 + In)R
2
max.

Let ρ(n) be the parent node of node n in the given routing tree T = (V,ET )). We

denote g(n) the cost of routing one bit from node n to the sink. Assume that raw

data can be encoded using Br bits, and cn is a rate-reduction ratio that reflects the

level of data compression in node n. We consider cn ∈ (0, 1]. Thus, following this

notation, the cost of routing raw data from raw data node n to the sink is Brg(n),

and the cost of routing compressed data from aggregating node n to the sink is

cnBrg(n). Note that we can rewrite g(n) as Br(R
2
n + g(ρ(n))). Finally, assume D̂n

to be the set of new raw data nodes that are covered by node n after increasing its

radio range from Rn to R̂n, i.e., D̂n =
{
m ∈ D|m /∈ Rn,m ∈ R̂n

}
where D is the

complete set of raw data nodes.

With this notation, the cost of routing data towards the sink from raw data node

n and nodes in D̂n, after increasing node n’s radio range, will switch from C1 to C2.

C1 = Br(R
2
n + g(ρ(n))) +

∑

m∈D̂n

Brg(m) (2.1)

C2 = Br(R̂
2
n + g(ρ̂(n))) +

∑

m∈D̂n

cmBrg(m) (2.2)

Moreover, it may be also worth to increase the radio range of an aggregating

node n and switch its assignment to raw data node. These changes will allow it to

cover some current raw data nodes in the set D̂n. In this case, there is a exchange

of roles between node n and nodes in D̂n. Now, the cost of routing data towards

the sink from both n and nodes in D̂n will change from C3 to C4.

C3 = cnBr(R
2
n + g(ρ(n))) +

∑

m∈D̂n

Brg(m) (2.3)

C4 = Br(R̂
2
n + g(ρ̂(n))) +

∑

m∈D̂n

cmBrg(m) (2.4)
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If C1 (resp. C3) is greater than C2 (resp. C4), we are successfully exploiting the

trade-off that arises from increasing the radio range, and thus, we are reducing the

energy consumption in the network. In other words, each node needs to find the

radio range R̂n, among its possible values, that maximizes the difference δ = C1−C2

(resp. δ = C3 − C4). Following this procedure, the overall cost in the network will

always go down. However, note that before changing the parity of any node, we

have to ensure that a set cover will still exist. This means that, before turning

some raw data nodes into aggregating nodes, we have to check that the aggregating

nodes that are now covered by these raw data nodes will still be covered after the

change. Note that these changes in assignment are done one node at a time, so it is

only necessary to check for a set cover within two hops of each node. This can be

done by a simple exchange of ACK/NACK messages between the nodes involved.

First of all, the node n that wants to increase its radio range (if it is an aggregating

node, it will also change its parity) asks the raw data nodes in D̂n, if it can cover

them. Then, these adjacent nodes send a request to all their aggregating neighbors

for ensuring that they will be covered by another node after the change. If nodes in

D̂n only receive ACKs as answers to their request, they can switch their parity and

inform node n that it is allowed to cover them. By this procedure, the existence of

a set cover will be guaranteed.

Figure 2.2 illustrates the basic intuition behind increasing the radio range of

some raw data nodes. In Fig.2.2(a) we allow node n1 to change its radio range from

R1 to R2. By doing so, raw data node n1 is now able to cover nodes n2 and n6, both

of which in-turn become aggregating nodes (Fig.2.2(b)). Note that after the change

of parity, there are no aggregating nodes uncovered. Aggregating nodes that were

covered by nodes n2 and n6 are now covered by n1 or some other raw data nodes.

On the other hand, Figure 2.3 shows the modification process from the point

of view of an aggregating node. Observe that in Fig. 2.3(a) node n1 is covered by

nodes n3, n4, n5, and n6. In Fig 2.3(b), we change node n1 to be a raw data node

and we increase its radio range to R2. By doing so, n1 is now covering nodes from n2
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Figure 2.2: Min. Set Cover Modification for raw data nodes. (a) RANA before increasing n1’s

radio range from R1 to R2. (b) Modified RANA. Raw data node n1, after increasing its radio

range, is now covering nodes n2 and n6, which can switch their parity into aggregating nodes.

to n6, which can become aggregating nodes. Again, we observe that all aggregating

nodes in the network are still covered after the modification.
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Figure 2.3: Min. Set Cover Modification for aggregating nodes. (a) Original RANA in which n1 is

an aggregating node. (b) Resulting RANA after changing n1’s parity to raw data and increasing

its radio range. Now, n1 covers former raw data nodes n3, n4, n5, and n6, which can be switched

to aggregating nodes.

For implementing these modifications in a distributed manner, nodes need to

get or estimate several parameters. First of all, they need to know the cn values.

Each node can estimate these values in a distributed way after the exchange of
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some training data with all its neighbors. Thus, for each neighbor mk, node n can

compute a cn(mk) = cn,k as the worst case cn if node n can only listen to raw data

from its neighbor mk. Another option would be to model cn as a function inversely

proportional to the correlation between neighboring nodes. For example cn can be

assumed to decrease monotonically with distance. However, this kind of modeling

provides very conservative estimates of cn. Second, nodes also need to obtain their

routing cost g(n) and the routing cost of all nodes in D̂n. Moreover, in order to

exactly reproduce the previous equations, nodes need to know, for each R̂n, which

would be its new parent node ρ̂(n) and the routing cost g(ρ̂(n)).

All these requirements made these modifications hard to be implemented in a

distributed way, because nodes need a large number of local communications in or-

der to make each decision. Instead of doing that, we propose some approximations

to equations (2.1)-(2.4) that allow nodes to improve the original set cover result-

ing from Section 2.2.2 with information that is already available to them. Firstly,

nodes can assume cn to be a constant value between (0, 1] for all neighbors. We

have noticed that in a dense and uniformly deployed network, the difference in rate-

reduction ratio between neighboring nodes is not very significant. For example, in

our experiments, and for simplicity, we have considered cn = c = 0.5. Second, we

also assume that the difference in routing cost between the current parent node

and the one after the increase in radio range is negligible, i.e., g(ρ(n)) ≈ g(ρ̂(n)).

Finally, we have observed that in dense networks, node n will often be located near

the center of its neighbors in D̂n, which means that its routing cost is close to the

average of the routing costs in its neighborhood: g(n) ≈
∑

m∈D̂n
g(m)/|D̂n|. Thus,

∑
m∈D̂n

Brg(m) ≈ Br|D̂n|g(n) and
∑

m∈D̂n
cmBrg(m) ≈ cBr|D̂n|g(n).

After all these approximations, we can simplify (2.1)-(2.4) as:

Ĉ1 = Br(R
2
n + g(ρ(n))) + Br

∣∣∣D̂n

∣∣∣ g(n), (2.5)
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Ĉ2 = Br(R̂
2
n + g(ρ(n))) + cBr

∣∣∣D̂n

∣∣∣ g(n), (2.6)

Ĉ3 = cBr(R
2
n + g(ρ(n))) + Br

∣∣∣D̂n

∣∣∣ g(n), (2.7)

Ĉ4 = Br(R̂
2
n + g(ρ(n))) + cBr

∣∣∣D̂n

∣∣∣ g(n). (2.8)

Note that now, for implementing the distributed set cover modifications, all the

necessary parameters in (2.5)-(2.8) are always available at node n. Even though

the modifications are based on some conservative approximations, they allow nodes

to improve the original set cover in a distributed manner, and reduce the overall

energy consumption in the network.

Algorithm 3 and Algorithm 4 show our distributed modifications from the point

of view of a raw data node and an aggregating node, respectively. In the worst

case, nodes will need to execute algorithms 3 or 4 during O(Omax) rounds, where

Omax is the maximum outdegree for each node. Note that each node will check if

it is worthwhile increasing its radio range to at most Omax possible radio ranges.

Moreover, each raw data node will ask at most Imax times to its aggregating neigh-

bors if they are covered by some other raw node in order to know if it can change

its parity. Assume that Imax refers to the maximum indegree for each node. Then,

each raw data node will also need to send at most Imax ACKs/NACKs to inform

its neighbors about that possibility. On the other hand, each aggregating node will

send, in the worst case, Imax ACKs to inform to raw data neighbors that they can

switch their parity. Thus, the total number of communications for implementing

Algorithms 3 and 4 for each raw data node, including the necessary communica-

tions to determine the discrete radio ranges, is equal to 1 + Omax + 3 · Imax. For

each aggregating node that value is equal to 1 +Omax + 2 · Imax. Therefore, in the

worst case, nodes need O(∆max) communications to implement both distributed

algorithms, where ∆max is the maximum degree of each node. In the simulations

described in Section 2.3 we have implemented the distributed algorithms in net-

22



Raw/Aggregating Node Assignments

works with 70 nodes randomly placed in a 600 x 600 grid. In our experiments, the

mean value for the maximum indegree and outdegree is approximately 7. However,

note that this value will change if we have different density and number of nodes in

the network. Moreover, the indegree and outdegree are also dependent on how the

maximum radio range is defined for each node. Figure 2.4 summarizes the max-

imum number of communications per node needed to implement the distributed

algorithms presented in this chapter.

We have observed that for uniformly deployed networks it is better to first let

the current raw data nodes check if by changing their radio ranges they can improve

the present set cover, and then do the same with the aggregating nodes. On the

other hand, for clusterized networks it is better to do it in the reverse order. The

order in which nodes implement their corresponding distributed algorithm can be

set by using different random timeouts in each sensor.

In conclusion, by using the algorithms described in this section, nodes can verify

if it is worth to increase their radio ranges just by knowing how many raw data

nodes
∣∣∣D̂n

∣∣∣ they can cover at each time. These approximations still reduce the

number of raw data nodes in the network while they are suitable in a practical

setting due to the low number of communications required.

Algorithm Number of communications per node

Algorithm 2 4

Algorithm 3 + Algorithm 4 Raw data nodes = 1 +Omax + 3 · Imax

Aggregating nodes = 1 +Omax + 2 · Imax

Figure 2.4: Number of communications per node using the different distributed algorithms. Omax

and Imax refer to the maximum outdegree and indegree for each node.
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Algorithm 2 Distributed Heuristic for Minimum Set Cover

1: Broadcast a pilot signal adding the power level used as information.

2: Run a timeout and listen to all neighbor’s pilot signals.

3: Broadcast an ACK message at the maximum power of all received pilots.

4: Outdegree = Number of ACK’s received.

5: Broadcast Outdegree.

6: Receive neighbor’s outdegree.

7: while still unassigned do

8: Run a random timeout.

9: while timeout > 0 do

10: Listen to decisions of neighbors.

11: if One neighbor becomes raw data node then

12: Stop timeout

13: Become aggregating node

14: Broadcast decision

15: end if

16: end while

17: if There are still unassigned neighbors then

18: if Outdegree ≥ Unassigned neighbor’s outdegree then

19: Become raw data node.

20: Broadcast decision.

21: else

22: Restart timeout.

23: end if

24: else

25: All neighbors are Aggregating Nodes

26: Become raw data node.

27: Broadcast decision.

28: end if

29: end while
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Algorithm 3 Approximation-based Distributed Min Set Cover Modification for raw data nodes

1: Possible Radio Ranges = [Rmin
n , R1

n, ..., Rmax]

2: Run random timeout

3: while Timeout > 0 do

4: Listen if some other neighbor wants to cover you.

5: if Request for being covered received then

6: Ask Aggregating neighbors if they are covered by another raw node.

7: if All Aggregating neighbors are covered by some other raw data node then

8: Send ACK

9: else

10: Send NACK

11: Restart Timeout

12: end if

13: end if

14: if CONFIRMATION received then

15: Change parity to Aggregating Node

16: end if

17: end while

18: δmax = 0

19: R̂n = Rmin
n

20: for Rn = R1
n to Rmax do

21: Send pilot signal at power level R2
n

22: if All raw nodes in D̂n accept being covered then

23: Calculate Ĉ1 and Ĉ2 :

24: Ĉ1 = Br(R
2
n + g(ρ(n))) +Br

∣∣∣D̂n

∣∣∣ g(n)

25: Ĉ2 = Br(R̂
2
n + g(ρ(n))) + cBr

∣∣∣D̂n

∣∣∣ g(n)
26: δi = Ĉ1 − Ĉ2

27: if δi > δmax then

28: δmax=δi

29: R̂n = Rn

30: end if

31: end if

32: end for

33: if R̂n 6= Rmin
n then

34: Send CONFIRMATION at power level R̂2
n

35: Fix Radio Range at R̂n

36: Update parent in the tree

37: end if
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Algorithm 4 Approximation-based Distributed Min Set Cover Modification for aggregating nodes

1: Possible Radio Ranges = [Rmin
n , R1

n, ..., Rmax]

2: Run random timeout

3: while Timeout > 0 do

4: Listen if a new raw data node wants to cover you.

5: if Pilot signal received then

6: Update number of raw data nodes that cover you.

7: end if

8: Listen if any of your current raw data nodes request permission for changing its parity.

9: if Request received then

10: if Covered by more raw nodes that the ones who have sent the request then

11: Send ACK

12: Update number of raw data nodes that cover you.

13: end if

14: end if

15: end while

16: δmax = 0 and R̂n = Rmin
n

17: for Rn = R1
n to Rmax do

18: Send Request at power level R2
n

19: if All raw nodes in D̂n accept being covered then

20: Calculate Ĉ3 and Ĉ4 :

21: Ĉ3 = cBr(R
2
n + g(ρ(n))) +Br

∣∣∣D̂n

∣∣∣ g(n)

22: Ĉ4 = Br(R̂
2
n + g(ρ(n))) + cBr

∣∣∣D̂n

∣∣∣ g(n)
23: δi = Ĉ3 − Ĉ4

24: if δi > δmax then

25: δmax=δi and R̂n = Rn

26: end if

27: end if

28: end for

29: if R̂n 6= Rmin
n then

30: Send CONFIRMATION at power level R̂2
n

31: Fix Radio Range at R̂n

32: Change parity to Raw Data Node.

33: Update parent in the tree

34: end if
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2.3 Simulation Results

We now compare the performance of our distributed algorithms against existing cen-

tralized methods. Specifically, we compare our low complexity distributed algorithm

for solving the set covering problem, against the centralized greedy solution in [25],

the Haar-like tree-based transform with 1 level of decomposition proposed in [35],

and against raw data gathering without compression. We demonstrate the benefits

of allowing some nodes to change their radio range by comparing the approaches

mentioned before with the distributed modifications proposed in Section 2.2.3.

2.3.1 Experimental Setup

In our performance evaluation, we use an AR-2 model to generate simulation data

with high spatial correlation. Nodes are randomly deployed in a 600 x 600 grid,

and the sink is placed in the center of the network. Data is routed towards the sink

following a shortest-path tree (SPT). In order to compare the energy consumption,

we use the cost model proposed in [43, 10], where the energy of transmitting k

bits over a distance D is ET (k,D) = Eelec · k + εamp · k ·D
2 Joules, and the energy

consumption related with the reception of k bits is defined as ER(k) = Eelec·k Joules.

In both formulas, the Eelec · k term captures the energy dissipated by the radio

electronics while processing the k bits, and εamp ·k ·D
2 denotes the additional energy

consumed in the amplification of the signal for ensuring a reasonable signal power

at the receiver. We are not considering the energy dissipated when nodes perform

computations, because the computation costs are typically negligible compared with

transmission and reception costs.

In both the distributed and centralized MSC cases, we implement the simplified

graph-based lifting transform presented in Section 1.3, where we use an adaptive

prediction NLMS filter [34] for generating the transform coefficients in each aggre-

gating node. Raw data is represented using Br = 12 bits, and in each epoch nodes

transmit M = 50 measurements taken at M different times. The transform coef-
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ficients are always quantized using a dead-zone uniform scalar quantizer and are

encoded using an adaptive arithmetic coder [33].

We are going to measure the performance as the trade-off between the total

energy consumption at each quantization level and the reconstruction quality (in

terms of the signal-to-quantization-noise ratio) expressed in dB. Higher SNR for a

fixed cost implies higher fidelity reconstruction of the data.

2.3.2 Performance Evaluation

We have simulated the different algorithms for computing the RANA in a 70 node

network. Figures 2.5 and 2.5(c) illustrate the resulting minimum set covers (MSC)

using the greedy centralized algorithm and our proposed distributed heuristics.

Fig. 2.5(a) shows the centralized MSC algorithm (Algorithm 1), the distributed low-

complexity heuristic (Algorithm 2) is shown in Fig. 2.5(b), and the combination of

all our distributed algorithms is shown in Fig. 2.5(c). Note that our low complexity

distributed heuristic has most raw nodes (pink circles). However, it can be seen

that the number of raw data nodes can be reduced by using Algorithms 3 and 4,

and allowing some nodes to increase their radio range.

In Fig 2.6 we can see that the reduction of raw data costs is directly proportional

to the reduction of the overall cost in the network. Thus, in approaches where

the raw data cost is higher, the total cost in the network is also higher, with the

distributed modifications providing lowest raw data cost and hence lowest overall

cost.
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(a) Centralized MSC
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Figure 2.5: Comparison of different RANAs with various minimum set covering algorithms. (a)

Resulting RANA after aplying Algorithm 1. (b) RANA solved in a distributed way using Al-

gorithm 2. (c) Resulting RANA after modifying the assignment in (b) with Algorithm 3 and

Algorithm 4. Pink circles represent raw data nodes, and green circles are aggregating nodes.
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Costs for Different Schemes
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Figure 2.6: Raw-costs and total costs for different RANA approaches. 1: Tree-based Haar-like

lifting transform with 1 level of decomposition, 2: Distributed MSC, 3: Centralized MSC, 4:

Distributed modification with approximate values, 5: Distributed modification with exact values.

Figure 2.7 shows the cost-distortion curves. It can be seen that implementing the

RANA as a minimum set covering problem reduces the overall energy consumption

in the network in comparison to the tree-based assignment. Thus, we can deduce

that reducing the number of raw data nodes in the network is a crucial factor in the

optimization, in terms of energy efficiency, of a lifting-based transform in WSN. As

expected, all approaches outperform raw data gathering.

Among all the MSC algorithms, note that the combination of our distributed

algorithms (Algorithms 2, 3, and 4) does the best. Note that the exact and approx-

imate modifications are nearly identical. Although the low complexity distributed

heuristic at first does worse than the centralized greedy algorithm, after the mod-

ifications we have more than 5 dB increase in SNR for a fixed cost. It is worth

mentioning that the LP-optimized solution presented in [26] would outperform our

distributed modifications, as we do not consider the large number of combinations
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of assignments and radio range choices that the LP-optimization method takes into

account. However, our proposed algorithms are significantly simpler and can be

implemented in a practical setting with low additional cost.
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Raw Data

Figure 2.7: Cost-distortion curves for various set covering algorithms. All outperform tree-based

assignment and raw data gathering. Distributed heuristic with set cover modification does the

best.
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Chapter 3

Graph-based Wavelet Transforms

in Multisink WSN

3.1 Introduction

In this chapter, we focus on scenarios in Wireless Sensor Networks (WSN) where

nodes have to send data to several destinations (or sinks) in order to perform a

certain task. The growing interest in WSN and the recent technological advances

in that area have developed a broad range of applications in where the basic single

sink model considered in the previous chapters is not longer valid. For example, in

wireless sensor and actor networks (WSANs) [2], the network consists of several low-

cost, low power devices (sensors) which sense phenomena from the environment, and

send the measurements to some other resource rich nodes (actors) equipped with

better processing capabilities. These more powerful devices are then responsible

for performing different actions based on decisions made with the received data.

Therefore, in some applications, we may have different kinds of actors which need

all the measured data to develop their task. These networks can be an integral

part of systems for applications such as battlefield surveillance, home automation,

microclimate control, or environmental monitoring. Another example is related

with next generation networks, which will integrate WSN, GSM, and Internet. In
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this case, sinks can be conceived as gateways connecting the WSN with all the other

systems. Thus, in some scenarios, sensors will need to communicate simultaneously

to more than one sink in order to provide data via the different networks in real

time.

Although scenarios and applications with multiple sinks are increasingly being

proposed, there is a lack of work on spatial compression and distributed data gath-

ering in this kind of networks. In this chapter, we extend the graph-based lifting

transform of Section 1.3 to the case where all data has to be gathered in more than

one sink. We noted that the processing strategy used in that transform is general for

any kind of routing strategy (i.e., unicast, multicast or broadcast). Therefore, after

all raw data nodes broadcast their data, and aggregating nodes compute the detail

coefficients, both uncompressed and compressed data can be forwarded towards any

number of destinations following some kind of routing algorithm. Thus, in order to

make the transform suitable for WSNs with more than one sink, we just need to

find an optimal routing strategy for multicast communications. As an alternative

to our proposed method, there are several approaches that use network coding for

multicasting over WSN [22, 21]. However, in contrast to our work, network coding

is based on operations over a finite field, and it does not exploit the correlation

between spatially close sensors.

The present chapter is organized as follows. In Section 3.2 we discuss several ex-

isting methods for multicasting in wireless networks, and we present a new routing

algorithm based on the Steiner tree problem, which exploits the broadcast prop-

erty of wireless communications. Section 3.3 summarizes the scheme for spatial

compression in multisink networks, and in Section 3.4 we simulate and compare

the performance of the graph-based lifting transform using different multicast algo-

rithms.
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3.2 Multicast Routing Algorithms

3.2.1 Existing methods

In our current scenario, we wish to send information from all the sensors to a subset

of other nodes (destinations/sinks) in a communication network. Remember that

in WSNs, sensors are low-cost, energy constrained devices equipped with a wireless

communication system. Since sensors have a limited radio range, nodes which are

not able to communicate directly with all the sinks need to send their data via

multihop paths using other nodes as relay stations.

A simple strategy in order to send the data from a node to a set of destinations

would be to compute the union of shortest path trees from the source to each

sink. This approach would minimize the distance (or cost) from the sender to each

receiver, but it ignores the fact that sending data to the different sinks by sharing

some links in the tree can reduce the overall transmission cost. As illustrated in

Fig. 3.1, this is not the best solution for multicast routing. The problem of finding

a tree that, in a communication graph G(V,E), spans a subset S ∈ V with minimal

total distance on its edges is referred as the minimum Steiner tree (MST) problem.

Because finding a minimal Steiner tree for any given graph is NP-complete [14], it

is necessary to solve the problem with some kind of heuristic algorithm, such as

those proposed in [16, 31].

Note that the MST is only an optimal solution for wired networks, because it

considers that a node n needs k transmissions to send a packet to k of its neighbors.

On the contrary, in wireless communications (see Fig. 3.2), the transmission cost for

multicasting a data packet from a node n to k of its neighbors is equal to the cost

of transmitting a single packet to the most distant receiver. Thus, a good approach

for building routing trees in wireless networks has to consider what we are going to

refer in what follows as the wireless broadcast advantage.

Ruiz and Gomez-Skarmeta [32] propose an alternative to the MST for wireless

multihop networks, which considers the wireless broadcast advantage. In their work,
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Figure 3.1: Difference in cost for several multicast trees. The numbers associated to each link are

communication costs. In a) the union of SPTs minimizes the cost between the source and each

sink. In b) the MST minimizes the overall edge cost between the source and both receivers.

the problem is re-formulated in terms of minimizing the number of transmissions

needed to reach all the destinations. The minimum cost tree is defined as the one

which connects the multicast group using the minimum number of communications,

and enhanced heuristics are proposed to approximate such trees minimizing the

number of forwarding nodes.

A simulation-based performance comparison of SPTs, the MST as in [16], and

the method in [32] is presented in [27] for multicasting in wireless mesh networks.

As proved in that work, the heuristic proposed by Ruiz and Gomez-Skarmeta only

builds optimal trees in highly dense networks. Although the MST heuristic is a

link-based approach originally proposed for wired networks, it is still the algorithm

with minimum total edge cost and minimum number of transmissions in comparison

with the other methods.

Another classical approach for building multicast trees is to prune a previously

defined broadcast tree. For example, we can construct the well-known minimum-

cost spanning tree, which spans all nodes in the network with minimal total cost,

and then delete the unnecessary links until the leaf nodes in the tree are only the

source and the set of receivers. This procedure is illustrated in Figure 3.3.

Following this intuition, Wieselthier et al [46], present the Broadcast Incremental

Power algorithm (BIP) and a pruned multicast alternative (i.e., MIP). Their meth-
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(b) Wireless Network

Figure 3.2: The Wireless Broadcast Advantage. (a) In a wired network the total cost of sending

a message from n to all its ki neighbors is Ctot =
∑

Pi. (b) Instead in a wireless network, it can

be done in a single transmission with Ctot = max {Pi}.

(a) Minimum Spanning Tree

(Broadcast)

(b) Pruned-Minimum Span-

ning Tree (Multicast)

Figure 3.3: Example of the pruning method for multicast trees. The broadcast tree in (a) is

pruned until all the leaf nodes are only the source and the set of receivers, as in (b).

ods are based on the same idea as most minimum-cost spanning tree algorithms

(such as Prim’s algorithm). They iteratively grow a minimum-power tree rooted at

the source, incorporating one node at a time until all nodes are included in the tree.

In contrast with all other link-based approaches, they exploit the aforementioned

wireless broadcast advantage. The MIP procedure is summarized as follows. First

of all, the source’s nearest neighbor is added to the tree. Then, there are two alter-

natives: either the nearest neighbor of the last added node is incorporated to the

tree, or the source increases its radio range to cover a second node. The alternative

with minimum additional cost is chosen. The procedure is continued until all nodes
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are included in the tree. Once the algorithm is finished, a sweep operation is run.

The intuition behind the sweep procedure is shown in Fig.3.4. Note that node 3’s

radio range is sufficient to reach nodes 7 and 2. Thus, without loss of connectivity,

node 1 can decrease its radio range. By doing so, the energy consumption in the

network is reduced. The authors prove that MIP outperforms the P-MST (Pruned-

Minimum Spanning Tree) and the union of SPTs. However, since a good broadcast

tree is constructed looking to the global picture of overall energy savings, pruning

it back does not necessarily give an efficient multicast solution. Pruning a broad-

cast tree in order to obtain a multicast routing scheme could be useful when the

multicast group is large (i.e., more than the 65% of all nodes in the network) [23].
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(a) Pre-Sweep Multicast Tree
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(b) Post-Sweep Multicast Tree

Figure 3.4: The sweep operation. (a) Node 1’s radio range can be reduced since node 3 can cover

nodes 2 and 7 with its current radio range. (b) The modification reduces the energy consumption

in the network

To the best of our knowledge, the algorithms Multicast Incremental Power with

Potential Power Savings (MIP3S) and its simplified version MIP3S-b are shown to

work better than all other known methods [23]. They are based on the same idea

as the sweep operation. Their intuition is that, while constructing a multicast (or

broadcast) tree rooted at the source, sometimes we need to increase the power level

of a certain node n in order to cover some new nodes that are not yet in the tree.

This increase could make the power assignment at some previously added nodes
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redundant, in the sense that n is now also covering nodes which have been added

to the tree before. Thus, as seen before in Fig. 3.4, we can reduce the radio range

of some nodes without losing connectivity and saving energy. This idea is referred

to in [23] as the incremental power with potential power saving (IP3S). In MIP3Sb,

the shortest path P between a node which is already in the tree and an uncovered

destination is added at each iteration. Then, after adding P to the multicast tree,

it is required to verify whether after updating the radio range assignment in the

nodes participating in P , any of them is now also covering some other nodes that

were added to the tree in a previous iteration. Therefore, if node n ∈ P is now also

covering node v, which was in the tree before adding the path P , the radio range

of the node that is currently covering node v is reduced.

MIP3S is a more complex version in which, instead of adding the shortest path at

each iteration, a path is added that involves the least total incremental cost minus

the total potential power saving (which in MIP3Sb is calculated afterwards). In

other words, for each path connecting a node which is currently in the tree with an

uncovered sink, a calculation is made of the total incremental cost and the amount

of energy that would be saved with the new power assignment if that path is added

to the tree. Then, the path with minimum “incremental cost minus potential power

saving” is chosen. Note that this alternative requires considerable more work than

the previous one, since for each node in the multicast tree we have to find all the

possible paths to each uncovered sink. Moreover, for each of these paths we have

to run a power reduction method (i.e., the sweep operation) in order to know the

amount of energy that will be saved if that path is added to the tree.

The procedure of MIP3Sb is illustrated in Figure 3.5. First of all, in Fig. 3.5(a),

the shortest path P1 from the source (node 1) to any of the sinks, i.e., si ∈ {s1, s2},

is added to the tree. Then, we need to find the shortest path P2 from any of the

previously added nodes in P1 to s2, since it is at this moment the only sink that

lacks to be covered. As we can see in Fig.3.5(b), in this case the shortest path P2 is

rooted in node 3. Finally, once we have a new destination covered, we run a power
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Figure 3.5: Multicast Incremental Power with Potential Power Saving (MIP3Sb). Node 1 is the

source, and s1 and s2 are the sinks. (a) First, the shortest path from the source to one of the

destinations is added to the tree. (b) Then, we add the shortest path from one node already in

the tree to any of the still uncovered sinks (i.e., s2). (c) Finally, the resulting tree is modified with

a power reduction method. Note that since node 5 is also covering node 4, node 3’s radio range

can be reduced without losing connectivity. By doing so, the overall power consumption in the

network is reduced.

reduction method in a similar way as in the sweep operation. Note that now node

5’s radio range is sufficient to reach node 4 (which is already in the tree). Thus,

by allowing node 5 to cover node 4, we can reduce node 3’s power level. However,

before reducing the radio range of any node, we need to check if the tree will be

connected after the modification. In other words, we need to verify that after the

change there will still be a path from the source to any of the already covered

destinations. In this example, node 5 can also cover node 2, but we cannot reduce

node 1’s radio range because if we do so the source will be disconnected from the

tree.

3.2.2 The Wireless Minimum Steiner Tree

As mentioned in the previous section, in wired networks, the multicast tree can be

obteined by solving the minimum Steiner tree (MST) problem, where the sender

and the receivers are referred as terminals, and all other nodes participating in

the routing tree are known as Steiner nodes. Therefore, the MST is the tree that
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connects the source with all destinations, using other Steiner Nodes as relay sta-

tions, with minimum overall cost. Because this problem has been shown to be

NP-complete [14], we need to approximate the optimal solution using heuristic

algorithms [16, 31]. In WSN, where nodes are supposed to have omnidirectional

antennas, and communications are done via broadcast, the Steiner Tree is no longer

an optimal solution.

In this section, we introduce a new centralized algorithm for constructing mini-

mum Steiner trees in wireless ad-hoc networks, which considers the broadcast ad-

vantage of wireless communications. We will refer to our method as the wireless-

minimum Stenier tree (W-MST) algorithm. The W-MST is based on the heuristic

for MST construction presented in [16], and incorporates in the procedure the MIP

algorithm [46] in order to exploit the wireless broadcast advantage.

Assume that a wireless ad hoc network is modeled as a directed communication

graph in the same way as in Section 1.3.1. We model the symmetric edge cost

function c(u, v) as the Euclidean distance between u and v raised to a fixed power

α, i.e. c(u, v) = d(u, v)α, where α is an environmentally dependent real constant

between 2 and 4 representing the attenuation loss of the signal. In our experiments

we have considered α = 2. Let S ∈ V denote the multicast group (terminals), which

consists of the source r and the set of destinations (or sinks), D ∈ {S − r}. We

assume that nodes have omnidirectional antennas, and that each node u can trans-

mit within a radio range Ru ∈ [Rmin
u , Rmax]. Thus, given a communication graph

with the aforementioned characteristics, the problem consists in finding a multicast

tree, rooted at the source r, and spanning all the nodes in D, with minimum overall

cost. Due to the broadcast nature of wireless communications, we define the cost

of node u as the power level needed to reach its most distant parent in the tree.

Then, if node u is connected to nodes v1 and v2, the cost in node u is equal to

cost(u) = max {c(u, v1), c(u, v2)}. Our goal is to minimize the sum of costs of all

nodes participating in the tree, i.e.,
∑

u∈V cost(u). Note that the cost optimization

40



Graph-based Wavelet Transforms in Multisink WSN

can also be referred as the minimization of the power assignment in all nodes.

What makes the minimum Steiner tree algorithm in [16] inefficient as a solution

to our problem is that the multicast tree is constructed without considering that

wireless transmissions are used, so that multiple nodes can overhear each communi-

cation. On the other hand, the MIP algorithm in [46] is inefficient since it considers

all nodes in the network to be candidates for the multicast routing tree, and then

it has to delete the unnecessary links to connect only the source with the destina-

tions. What we want to do by merging both approaches is to build a communication

graph only with the nodes that the algorithm in [16] would consider as candidates

to be in the multicast tree, and then to span all these nodes taking into account the

broadcast property of wireless communications by implementing the same proce-

dure as in [46]. Therefore, the first steps of our algorithm seek to find out which of

the nodes are the best candidates in order to connect the source to the sinks with

minimum overall cost. Then, instead of connecting all these nodes with a minimum

spanning tree as in [16], which would treat our graph as a wired network; we run

the MIP algorithm which was originally proposed for wireless networks.

First of all, given the communication graph G(V,E, c), and the multicast group S

consisting of the source and destinations, we construct the complete undirected dis-

tance graph G1 = (V1, E1, d1) where V1 = S, E1 = {(ui, vj)|ui ∈ S, vj ∈ S, ui 6= vj},

and d1({ui, vj}) is equal to the distance of the shortest path in G between nodes ui

and vj. Then, we find a minimum spanning tree, T1, of G1, which spans all nodes

in V1 with minimum total cost. After that, we construct the subgraph G2 with all

nodes participating in T1 and replacing each edge by the corresponding shortest

path in G. At the end of this step, we know that nodes in G2 are the best candi-

dates to be in the multicast tree. Until this point, the procedure is the same to the

Algorithm H in [16]. However, now, we are going to construct the multicast tree T2

that connects all terminals in S using only nodes in G2, following the same idea as

in MIP [46]. Starting at the source r, we first add to the tree its closest neighbor

in G2. Then, iteratively, we consider if we should add the closest neighbor of the
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last added node, or if it is better to increase the radio range of one of the other

nodes already in the tree, and allow it to have more than one parent. We make

that decision based on the additional cost involving each action. For example, in

Figure 3.6, after the root r has increased its radio range to reach its closest neighbor

(i.e., node 1), there are two options. Either we can add node 1’s closest neighbor

(i.e., node 2), with a cost equal to c(1, 2); or r can increase its radio range and reach

node 3 with incremental cost equal to Ir = c(r, 3)− c(r, 1).

Then, if there are leaf nodes in T2 that are not part of the multicast group, we

delete their edges. Finally, we improve T2 by implementing the sweep operation,

which is described in Algorithm 6. Note that we allow sinks to be also forward-

ing nodes. The procedure for the construction of the W-MST is summarized in

Algorithm 5.

r
1

2

3

7
8

5

4

d1d2

6
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c(r,1)

c(r,3)

  Ir = c(r,3) - c(r,1)

  I1 = c(1,2)

Figure 3.6: Concept of Incremental Cost in W-MST.

The steps for constructing the W-MST are shown in Figures 3.7 and 3.8. Fig-

ures 3.7(a) to 3.8(a) belong to the steps of the Algorithm H in [16], in which we

seek to reduce the set of nodes that will be considered when constructing the mul-

ticast tree. Figures 3.8(b) and 3.8(c) belong to the MIP algorithm. The given

communication graph G is represented in Fig. 3.7(a). Fig. 3.7(b) shows the com-

plete distance graph G1 of all nodes in the multicast group. Here, the cost of each
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edge is proportional to the total distance of the shortest path between each pair of

nodes in G. Then, in Fig. 3.7(c), we construct the minimum spanning tree T1 of

G1 connecting all nodes in S. Note that each edge in T1 represents a shortest path

in G, which connects each pair of terminals using some other sensors as forward-

ing nodes. All nodes participating in T1 are shown in Fig. 3.7(d). After that, we

construct the communication graph G2 between all nodes in T1 (Fig. 3.8(a)). Note

that, in contrast to the approach in [46], we have reduced the set of nodes from

the network that can be in the multicast tree by constructing a graph only with

the nodes in T1. Finally, as illustrated in Fig. 3.8(b), we build the W-MST of G2

following the MIP algorithm. As mentioned before, the resulting W-MST can be

improved by applying the sweep operation. Note that in Fig. 3.8(c), we can reduce

the power level of node 20, since node 13 has node 3 within its radio range. Thus,

node 20 is not needed in the tree. In addition, node 9 can reach node 17 in a single

transmission, so we also do not need nodes 15 and 18.

In conclusion, in this section, we have presented a new algorithm that builds a

multicast routing tree, based on the minimum Steiner tree problem, and taking into

consideration the broadcast property of wireless communications. This contribution

can be applied not only to WSN, but it is also applicable to any kind of wireless ad

hoc network (such as wireless mesh networks), where a multicast routing strategy

is needed.
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(a) Directed communication graph G(V,E, c)
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(b) Complete distance graph G1(V1, E1, d1)
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Figure 3.7: The Wireless Minimum Steiner Tree construction.
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(b) W-MST before the Sweep Operation
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(c) Improved W-MST after the sweep operation

Figure 3.8: The Wireless Minimum Steiner Tree construction.
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Algorithm 5 The Wireless-Minimum Steiner Tree algorithm (W-MST)

Given G(V,E, c), with V = {r, n1, n2, ...., nk, d1, d2, ..., dn}. The subset S = {r, d1, d2, ..., dn}

denotes the multicast group, which consists of the source r and all the destinations D =

{d1, d2, ..., dn}.

1: Construct the complete distance graph G1 = (V1, E1, d1) from G, where V1 = S, and d1(u, v)

is the total distance of the shortest path tree between u and v in G.

2: Find the minimum spanning tree T1 of G1.

3: Construct the subgraph G2 with all nodes in T1, and replacing each edge by its shortest path

tree in G. Add also all edges due to broadcast communications.

4: Set M = {r}

5: Set lastnode = {r}

6: while S /∈M do

7: Obtain lastnode’s distance to its closest neighbor from outside the tree (uln /∈ M and

uln ∈ G2). Compute cost(lastnode, uln) = d(lastnode, uln)
2.

8: Calculate for all nodes mi ∈ M , the minimum incremental cost for reaching another node

ui /∈M (but ui ∈ G2).

9: Find node u =
{
uln, u1, u2, ...., u|M |

}
, which involves less additional cost.

10: u→M

11: lastnode = {u}

12: end while

13: Delete edges of leaf nodes that are not from the multicast group.

14: Run the Sweep Operation.

46



Graph-based Wavelet Transforms in Multisink WSN

Algorithm 6 The Sweep Operation

Given a multicast tree T = (VT , ET ), with VT = {r, n1, n2, ...., nk, d1, d2, ..., dn}. The subset

S = {r, d1, d2, ..., dn} denotes the multicast group, which consists of the source r and all the

destinations D = {d1, d2, ..., dn}.

1: Assign to each node an index ni = n1, n2, ..., n|VT |.

2: TTEST = T

3: Obtain Cost(T )

4: for node = n1 to n|VT | do

5: List all nodes within node’s radio range.

6: Delete from the list the nodes that participate in the path from r to node.

7: In TTEST , connect node to the remaining nodes in the list.

8: In TTEST , disconnect from all the remaining nodes in the list those that are currently

covering them in T .

9: Obtain Cost(TTEST )

10: if Cost(TTEST ) < Cost(T ) then

11: T = TTEST

12: Cost(T ) = Cost(TTEST )

13: end if

14: end for

3.3 Graph-based Lifting Transforms for Multisink WSN

In this section, we show briefly how the graph-based lifting transform described in

Section 1.3 can also be applied in multisink WSN.

First of all, assume that we have a communication graph G(V,E), where V

consists of N sensors and M sinks, V = {n1, n2, ..., nN , s1, s2, ..., sM}. Let T =

(V,ET ) be a multicast routing tree along which data from every sensor flows towards

the complete set of destinations. Assume that T is constructed as the union of all

the multicast trees spanning each sensor with all the sinks. In order to build each

tree, we can use any of the methods previously mentioned in this chapter. Note

that the radio range of every node in G is chosen based on the distance of its most
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distant parent in T .

Basically, the difference in this case with respect to the single sink scenario is

how we define the routing strategy. Once we have the multicast routing tree and

its corresponding communication graph defined, the graph-based lifting transform

can be computed following the same method as in Section 1.3.

As we already know, for implementing the lifting scheme, it is necessary to

perform first a Raw/Aggregating Node Assignment (RANA). Remember that how

the RANA is implemented affects the energy efficiency of the complete compression

scheme. In Chapter 2, we have shown that the most energy efficient RANA can be

achieved by reducing the number of raw data nodes, while allowing some of these

nodes to increase their radio range. Note that, if the RANA is solved as a minimum

weighted set covering problem as in [25], the weight of each node now has to be

proportional to the transmission cost of routing data from the node to the complete

set of sinks.

After that, the processing strategy is independent of the number of sinks in

the network. First, raw data nodes broadcast their data to all their aggregating

neighbors. Then, the aggregating nodes compute the detail coefficients using the

data that they have received. After the aggregating nodes have compressed their

data, all nodes forward it following the multicast routing tree T until all data is

gathered at the sinks. In this section, since nodes can have more than one parent in

the tree, we assume that each node has a routing table specifying the corresponding

parent in T to which data needs to be forwarded, depending on what sink data is

being sent to. By doing so, we are considering that nodes have a variable radio

range, and that it can be modified depending on to which of their parents are they

transmitting.

For ensuring invertibility at all the sinks, as mentioned for the single sink case

and as proved in [35], the aggregating nodes have to compute the detail coefficients

using only data from their raw data neighbors. Moreover, in order to get the original

data, either each aggregating node has to piggyback in its packet the indexes of the
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raw data nodes from which it has used data to compress its measurements, or all

the sinks need to have information about the topology and the RANA implemented

in the network. With the fulfillment of these conditions, invertibility is ensured for

any kind of network, independently of the number of sinks and RANA.

The procedure of the graph-based lifting transform in a multisink network is

illustrated in Figures 3.9 and 3.10. Fig. 3.9(a) and Fig. 3.9(b) are examples of

multicast trees for different nodes. As we have mentioned, the complete routing

tree is computed as the union of the multicast trees for all the nodes. Once we have

the routing strategy, we perform some sort of RANA in order to split the sensors

into raw data or aggregating nodes. Fig. 3.10(a) shows the complete communication

graph and an example of a RANA where the raw data nodes have been minimized.

Fig. 3.10(b) illustrates the first step of the compression procedure. Raw data nodes

broadcast their data to all their aggregating neighbors. Then, after the aggregating

nodes have computed the detail coefficients, all nodes forward the data towards the

destinations following the multicast tree shown in Fig. 3.10(c).
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Figure 3.9: Graph-based lifting transform in multisink WSN.
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Figure 3.10: Graph-based lifting transform in multisink WSN. In (a) and (b) raw data nodes are

pink circles, and aggregating nodes are the green circles.
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3.4 Experimental Results

In this section, we simulate and compare the performance of different algorithms

for the construction of multicast trees in wireless networks. Focusing on an scenario

where the data of all the nodes has to be gathered in more than one sink, we prove

that our distributed transform allows nodes to compress their measurements, and

as a result, to reduce considerably the energy consumption in the network. We

compare the W-MST presented in this chapter to the union of SPTs, the link-based

MST in [16], the pruned-based MIP in [46], and the MIP3S and MIP3Sb methods

presented in [23]. Specifically, we compare these algorithms in terms of the energy

consumption due to the communication costs needed to send all data to the sinks.

We show that our proposed approach outperforms all the aforementioned methods.

3.4.1 Simulation Setting

We are going to simulate the performance of different routing algorithms in networks

with 70 sensors and different number of sinks. In our simulations, we use the same

experimental setup as in Section 2.3.1. However, in this case the data is forwarded

towards the complete set of sinks following different kinds of multicast routing

algorithms. We assume that the complete multicast tree is the union of all the

multicast trees that connect each sensor with all the sinks. For the construction of

each routing tree, we let the nodes transmit with a radio range within the interval

[Rmin
u , Rmax], where R

min
u is the minimum radio range that keeps node u connected

to the network, and Rmax can be an arbitrary value common for all nodes. In our

experiments, we have considered Rmax to be the maximum of all the Rmin
u in the

network. Once the tree has been built, the maximum radio range of each node is

defined by the distance between that node and its most distant parent in the tree.

The performance of the different algorithms is evaluated in terms of commu-

nication costs. We perform the spatial compression using the graph-based lifting

transform of Section 3.3. The RANA is formulated as a minimum weighted set
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covering (MWSC) problem, and is solved using the centralized algorithm presented

in [25]. The cost model, parameters of the filters, and transform coefficients are

also defined in the same way as in Section 2.3.1.

We first compare the energy consumption for gathering raw data in all the sinks

using the different routing algorithms. Then, we evaluate the performance of the

distributed lifting transform as the trade-off between the energy consumption and

the reconstruction quality at each quantization level. The energy consumption is

expressed in Joules, and the reconstruction quality in dB. Note that, fixing the cost,

higher SNR implies higher fidelity in the reconstruction of the original data, and a

difference of 1 dB in SNR translates to a decrease by a factor of 10 in MSE.

3.4.2 Performance Comparisons

We have evaluated the performance of six algorithms for the construction of mul-

ticast trees in wireless networks. Specifically, we compare our W-MST algorithm

against two link-based methods, the Union of SPT and the MST as in [16], and also

against three node-based approaches, the MIP algorithm presented in [46], and the

MIP3Sb and MIP3S algorithms described in [23]. As mentioned before, to the best

of our knowledge, in terms of energy efficiency, MIP3S and MIP3Sb are the best

multicast routing algorithms for wireless ad hoc networks. All values presented in

this section are an average of 30 iterations simulated under the same conditions.

Figures 3.11 and 3.12 show the corresponding multicast tree for the same node

in a network consisting of 30 nodes and 5 sinks. As we can see in Fig. 3.12(a), MIP

solution requires a longer path to span the entire multicast group, and therefore

the overall routing cost will be higher in comparison to other alternatives. This is

because MIP is based on pruning a broadcast tree, and a broadcast tree seeks to

optimize the overall cost of spanning all nodes in the network (not only a specific

subgroup). Thus, pruning it back is not always a good local solution. As expected,

W-MST in Fig. 3.12(c) is similar to the link-based MST in Fig. 3.11(b). However,
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note that in our proposed method the broadcast property of wireless communica-

tions is properly exploited. As can be seen in Fig. 3.12(c), Node 5 covers 3 sinks

with only one transmission, reducing in that way the amount of energy consumed

in the network. Note that in this multicast tree the paths to route data from the

source to all the sinks have more links in common than most of the other alterna-

tives. Because MIP3S incorporates a “shortest path” from one node in the tree to

an uncovered sink at each iteration, solutions 3.11(a) and 3.12(b) are quite similar

in this example. However, with the sinks located further from each other the solu-

tion given by the union of SPT would be much worse compared to those using the

other approaches, since it does not take into consideration neither the minimization

of the overall routing cost of spanning the source with all the destinations nor the

broadcast advantage of wireless communications.
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Figure 3.11: Examples of multicast trees using different algorithms.
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Figure 3.12: Examples of multicast trees using different algorithms.

Figure 3.13 illustrates, for each algorithm, the communication cost for gathering

raw data in a network with 70 sensors, and an increasing number of sinks. The

horizontal axis represents the number of sinks, and the vertical axis is the overall

energy consumed in the network due to communication costs. In our experiments,

54



Graph-based Wavelet Transforms in Multisink WSN

W-MST outperforms all other algorithms for any size of the multicast group. As

expected, MIP3S provides the second best performance. Note that MIP works

better in networks with a large number of sinks. As mentioned earlier in this

chapter, and in the related literature [46, 23], pruning a broadcast tree in order to

obtain a multicast routing scheme might be a good solution for networks such that

more than 65% of the nodes are part of the multicast group.
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Figure 3.13: Energy consumption for raw data gathering using different routing algorithms and

different number of sinks in networks with 70 sensors.

In Figure 3.14, we have added the energy consumption curves for gathering

compressed data after implementing the graph-based wavelet transform presented in

this chapter. Note that, since each tree entails a different communication graph, the

RANA can be different in each case. This means that the difference in performance

is not only related with the routing tree, but also with the number of raw data nodes
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in the network. For example, it can be possible that a multicast tree with high

routing costs provides a highly connected communication graph. In that case, after

the splitting process, it can have lower number of raw data nodes in comparison

with a better routing algorithm. Therefore, in this kind of situation, a better

routing algorithm does not always imply a lower overall energy consumption in

the network. However, note that the complete compression scheme using W-MST

still outperforms all the other approaches for any size of the multicast group. Our

experiments show that, in comparison with gathering raw data, we can reduce the

energy consumption in the network up to a 40% by implementing the graph-based

lifting transform. This reduction is independent of the number of sinks, or the

routing algorithm used.
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Figure 3.14: Energy consumption for raw and compressed data gathering using different routing

algorithms and different number of sinks in networks with 70 sensors.
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Finally, the cost versus distortion curves are shown in Figure 3.15 and Fig-

ure 3.16. As in the previous figures, W-MST outperforms all other routing algo-

rithms for both raw and compressed data gathering, closely followed by MIP3S and

MIP3Sb. MIP works better in networks with a large number of sinks, and the worst

approach is the union of SPTs.

In conclusion, in this chapter, we have presented a new multicast routing algo-

rithm that provides lower energy consumption than other proposed methods, and a

distributed compression scheme for multisink data gathering applications that leads

to considerable energy savings in comparison with transmitting raw data.
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Figure 3.15: Cost-distortion curves for various routing algorithms in a network with 70 sensors

and 7 sinks.
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Figure 3.16: Cost-distortion curves for various routing algorithms in a network with 70 sensors

and 25 sinks.
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Chapter 4

Distributed Spatial Compression

and Data Broadcasting in WSN

4.1 Introduction

The cooperative nature of wireless sensor networks (WSN), where nodes coordi-

nate with each other in order to perform a certain task, makes the energy-efficient

broadcast of data an important research topic for the development of many appli-

cations in which nodes need to disseminate some data all over the network. For

example, broadcasting has traditionally been used as an efficient way to distribute

control information for topology management purposes. In some scenarios, due

to the instability of wireless communications, and considering that the sensors are

working under severe conditions, the network topology becomes highly volatile and

dynamic, with link and node failures becoming the norm instead of a rarity. In

these cases, in order to broadcast data throughout the network, centralized routing

algorithms, such as spanning trees or connected dominating sets, are impractical

since they are based on the knowledge of the entire network topology at a central

node or base station. Therefore, after any change or failure in the network, central-

ized algorithms have to be recomputed, involving additional high communication

and computational costs. On the other hand, distributed algorithms do not require
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any kind of global knowledge, and are robust to node failures and unreliable wireless

network conditions.

Another constraint in WSN are the limited energy resources of the sensor devices,

which are often supplied by weak batteries or small solar cells. Thus, energy-efficient

broadcasting algorithms are also necessary to optimize the battery power, and to

prolong the lifetime of the network in any kind of application or task.

Assuming an scenario in which all the nodes want to disseminate their mea-

surements all over the network, and in order to tackle all the aforementioned re-

quirements and limitations; our aim in this chapter is the development of a spatial

compression and data dissemination framework, where the entire procedure is done

in a distributed manner. In other words, we propose a decentralized scheme where

sensors compress their measurements exploiting the spatial correlation existing be-

tween spatially close neighbors, and then the data is shared with all other nodes in

the network using a decentralized routing algorithm.

Specifically, our contribution in this chapter is the implementation of the graph-

based wavelet transform described in Section 1.3 when a deterministic routing strat-

egy has not been defined, and data from all over the network has to be available

at each node. In order to disseminate the measurements, we are going to focus on

probabilistic broadcast methods known as gossip algorithms, which do not require

any specialized routing or centralized coordination, and lead to networks working

in a self-organized and autonomous manner.

The remainder of this chapter is organized as follows. Section 4.2 gives an

overview of gossip algorithms and explains several existing methods. Our dis-

tributed framework for spatial compression and data broadcasting is introduced

in Section 4.3. Section 4.4 presents simulation results of the proposed scheme.
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4.2 Gossip Algorithms

Gossip algorithm are peer-to-peer communication protocols which are based, as

their name suggests, on how a rumor is spread over a social network. Imagine that

one node has a piece of data and wants it to be known by all the other nodes in a

network. First of all, the node randomly selects a peer to communicate with and

gossips its message. Once one node receives the message, it selects a new peer and

keeps spreading the rumor over the network. The algorithm finishes when all nodes

know the original data. Gossip algorithms are characterized by their distributed

and random operation, and because they do not need a reliable network topology

in order to disseminate the information.

Gossip algorithms have been widely studied recently for information processing

and data dissemination in arbitrarily connected networks. Since they do not require

any kind of centralized routing scheme, and are robust to node failures and topology

changes, gossip algorithms are practical for WSN. However, there is a trade-off that

has to be considered in the implementation of gossip algorithms, since they might

require more time to converge, and more communications than centralized routing

approaches.

At first, gossip algorithms were proposed as solutions for the consensus prob-

lem [15], in which all nodes in the network have to achieve a common opinion

about the value of a certain parameter through local exchanges of data. One ex-

ample of this problem is the computation of aggregated information, such as sums

or averages. Imagine that we want each node to have an estimation of the av-

erage temperature in the area covered by the network. Each node n starts the

algorithm fixing as the average its own value xn
avg(0) = xn. Then, using a sim-

ple gossip algorithm, such as the proposed in [4], nodes can start exchanging and

updating their average values until the consensus is achieved. At each time t, a

randomly chosen node n exchanges its value with a random neighbor m. After

each iteration, all the participating nodes have the same updated average value,
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xn
avg(t) = xm

avg(t) = (xn
avg(t − 1) + xm

avg(t − 1))/2. The algorithm finishes when all

nodes arrive at a consensus value which is the average of the initial measurements

from all over the network.

There are several different gossip algorithms proposed in the literature, and they

all follow the same basic intuition. In gossip-based protocols, at each iteration, one

node forwards packets to one or a few other random nodes with a certain probability.

How this probability is specified classifies the different methods into static or adap-

tive algorithms. Pair-wise randomized gossip [4] is a common static approach in

which a node chosen uniformly at random contacts a neighbor also chosen uniformly

at random and exchange values with it. Broadcast gossip [3] follows the same idea,

but exploiting the broadcast advantage of wireless communications. Thus, when one

node transmits, all neighbors within its radio range receive the data. By doing so,

the algorithm needs less number of communications to converge. Geographic gossip

is proposed by Dimakis et al. in [8]. Assuming that each node knows its location in

the network, they combine geographic routing with gossip-based broadcast in order

to accelerate the diffusion of information among the nodes. The main idea is that

nodes can communicate with other random nodes located anywhere in the network,

instead of only exchanging data with nodes within their one hop neighborhood.

They prove that the extra cost due to multi-hop routing is compensated with the

reduction in number of communications needed to converge. Smart gossip [18] is

an adaptive method, which focuses on information dissemination applications, the

probability of each node transmitting is adapted in function of the local topological

properties in its surroundings. For example, in areas with high density of sensors,

forwarding packets probability will be lower. As a result, smart gossip can adapt in

a distributed manner to random placements of sensors, and to topology changes or

node failures. In the recent work [40], the greedy gossip with eavesdropping (GCE)

algorithm is presented. In GCE, nodes keep track of their neighbors’ values by

exploiting the broadcast nature of wireless communications. Then, when one node

is going to transmit, instead of choosing a neighbor uniformly at random, it chooses

62



Distributed Spatial Compression and Data Broadcasting in WSN

the node which has the value most different from its own.

Gossip algorithms have been recently applied to solve several distributed prob-

lems in WSN [7]. Examples of applications performed using gossip algorithms are:

distributed linear parameter estimation, compression and dissemination of informa-

tion, distributed field estimation, and source localization. In the following section,

we incorporate the gossip-based algorithms in our framework for distributed com-

pression and data broadcasting in WSN. In our experiments, we propose a gossip

algorithm based on the same idea as in [3], and adding metadata negotiation be-

tween nodes in order to reduce redundant transmissions.

4.3 Distributed Spatial Compression and Data Dissemina-

tion using Broadcast Gossiping

4.3.1 Problem statement and existing approaches

Imagine that we have a network consisting of several randomly deployed sensors,

each of them having its own piece of information. Our objective in this section is to

allow each node to gather all the information available in the network in a decen-

tralized and energy-efficient manner. Considering the limited energy resources, and

assuming that the measurements of spatially close sensors are correlated, we pro-

pose a decentralized approach for spatial compression and data dissemination based

on the implementation of the distributed graph-based lifting transform described

in Section 1.3, and distributing data using a gossip-based routing strategy.

As for the multisink case, there is a lack of proposed work in distributed com-

pression for broadcast scenarios in WSN. One alternative to our method can be the

use of distributed source coding (DSC) techniques, such as Slepian-Wolf coding [6].

The most similar work to ours is described in [29], where Rabbat et al. present a

system for distributed compression and data dissemination via randomized gossip-

ing. In [29], they use compressive sensing (CS) techniques to compress the sensors’

measurements. CS is based on the notion that data is sparse (i.e., compressible) in
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some sort of basis. However, finding a basis which leads to a sparse representation

of the measurements is not always obvious. In [29], each node computes a projec-

tion of its data onto random vectors. Then, all these projections are distributed

among the network using randomized gossip [4]. Assuming that the basis in which

the sensor data is compressible is known; a user can query any node in the network

and reconstruct the real values with small error. In contrast to the aforementioned

methods, our distributed scheme does not need any kind of assumption about the

sensors’ data, and the measurements can be compressed and disseminated all over

the network in a distributed manner.

Assume that the only information we know is that we have N randomly placed

nodes, and each of them can transmit using a discrete number of radio ranges

between some predefined minimum and maximum values. In order to design our

decentralized framework we have to tackle three main different problems. First,

nodes need to collaboratively determine their radio range in order to define the

network topology. Second, the distributed graph-based wavelet transform has to

be implemented to allow some nodes to compress their data exploiting the spatial

correlation existing within their neighborhood. Finally, we need to define the gossip-

based routing strategy that allows nodes to disseminate their measurements all over

the network in a distributed manner. How to define the network topology is solved

in Section 4.3.2, and Section 4.3.3 discusses how to distributively compress and

disseminate the data.

4.3.2 Distributed Topology Control Algorithms

Once the nodes have been placed in the network, the first problem to tackle is how

to choose their radio ranges among all the possible values in order to define an

energy-aware network topology using only local information. This decision affects

to the size of the neighborhood of each node, and therefore it defines the set of nodes

that each sensor can reach in direct transmission. Depending on the distribution
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of the nodes in the network, sometimes it is more efficient to communicate with

some distant sensors using other closer neighbors as forwarding nodes instead of

reaching them in a single transmission using a higher radio range, which may also

incur higher overall communication costs. Thus, first of all, we need to create a

communication graph G = (V,E) by allowing nodes to collaboratively determine

their energy-efficient radio ranges.

One straightforward solution to this problem is to let each node transmit at

maximum power. However, this is not an energy-efficient strategy since it does not

take into consideration the possibility of using other nodes as relay stations, and

nodes would run out of battery in a very short period of time. Therefore, the main

objective of a topology control algorithm is to avoid long-distance links, and instead

propose a communication graph in which nodes can route their data using energy-

efficient multi-hop paths. Other simple approaches are the minimum spanning tree

(MST) and the Delaunay triangulation [11]. Although with MST the overall link

cost in the network is minimized, spatially close neighbors can in the end be far from

each other. On the other hand, the Delaunay triangulation can’t be computed lo-

cally and therefore is not a practical solution for WSN. There are plenty of proposed

topology control algorithms in the literature. However, many of these solutions of-

ten require unrealistic assumptions, such as considering nodes to know their exact

position in the network by using GPS information [20]. Other approaches, for exam-

ple, only consider unit disk graph (UDG) [11], what means that all nodes have the

same radio range. In [44], it is assumed that nodes can estimate the direction from

which another node is transmitting by using more than one directional antennas.

For our distributed framework, we are going to use the XTC algorithm proposed

in [45]. It is, to the best of our knowledge, the simplest decentralized algorithm for

topology control, and it is based on realistic assumptions. In XTC, nodes only have

to communicate two times with their direct neighbors, and make decisions about

which links to keep in the resulting communication graph based only on information

related to the link quality (such as distance, signal strength or packet rate).
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XTC consists of three main steps. First of all, let Gmax(V,Emax) be the com-

munication graph with all nodes transmitting at their maximum radio range. At

the beginning, nodes acquire information about the link quality between them and

their 1-hop neighbors, and compute a total order reflecting which candidates are

the best to communicate with. It can be done in a simple way by allowing nodes to

transmit/receive beacon signals and evaluate their signal strength. In our scheme,

in order to make this algorithm energy-efficient, we are going to consider the link

quality concept as the Euclidean distance between nodes. Each node n, at the end

of the first step, has a total order ≺n with its neighbors ordered with respect to

decreasing link quality. The second step consists in each node sharing its order

information with all its neighbors. Then, once each node knows its own order in-

formation and those from its neighbors, it decides which nodes will be part of its

neighborhood based only on the link quality information. In the third step, node n

starts looking to ≺n in decreasing order (best candidates go first). Imagine that at

a certain time, node n is considering wether to add a node m to its neighborhood.

The criteria is that if there is not any already evaluated node q that appears before

n in node m’s order, then node m will be included in node n’s neighborhood. The

procedure of the XTC Algorithm presented in [45] is detailed in Algorithm 7 from

the point of view of node n. Two points are worth mentioning about the XTC

algorithm. First, note that the resulting communication graph is symmetric, since

the conditions between nodes n and m are the same from the point of view of both

nodes. Second, observe that the entire method is completely local, and nodes only

need to communicate with their direct neighbors.
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Algorithm 7 XTC Algorithm

Assume Gmax(V,Emax) to be the communication graph when nodes transmit at their maximum

radio range.

1: Transmit a pilot signal at maximum radio range.

2: Receive pilot signals from direct neighbors Nn.

3: Compute order ≺n over all the neighbors in Gmax.

4: Broadcast ≺n at maximum radio range.

5: Recieve order information from all neighbors.

6: Set N in
n = {}.

7: Set Nout
n = {}.

8: while there are unprocessed neighbors in ≺n do

9: m = least unprocessed neighbor in ≺n.

10: if (∃q ∈ N in
n ∪Nout

n : q ≺m n) then

11: Nout
n = Nout

n ∪m.

12: else

13: N in
n = N in

n ∪m.

14: end if

15: end while

Figure 4.1 illustrates for a given Gmax(V,Emax) (Fig. 4.1(a)) its resulting com-

munication graph using XTC method(Fig. 4.1(b)). Note that long distance links

have been replaced by energy-efficient multi-hop paths using shorter links. In the

following sections of this chapter, we will refer to the communication graph after

XTC as G(V,E). Once nodes know which are their neighbors and their correspond-

ing radio ranges, we can implement the distributed graph-based lifting transform,

allow nodes to compress their data, and finally distribute both compressed and

uncompressed information all over the network.
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Figure 4.1: XTC Algorithm. Fig. 4.1(a) reflects the original communication graph with nodes

transmitting at maximum radio range. The resulting graph after implementing the toplogy control

algorithm XTC is shown in Fig.4.1(b).

4.3.3 Spatial Compression and Data Broadcasting

Once the communication graph G(V,E) is correctly defined, the main problem

to solve is how to implement the graph-based lifting transform detailed in Sec-

tion 1.3 without having a centralized routing strategy defined. Then, we can use

a gossip-based routing algorithm to allow nodes to broadcast the compressed and

uncompressed data in a distributed manner.

First of all, in order to compute the aforementioned transform, we have to split

the nodes into raw/aggregating sets by means of implementing an energy-efficient

RANA. Since we seek the entire system to work in a decentralized manner, we

are going to use our distributed heuristic algorithm presented in Chapter 2 (Algo-

rithm 2). Then, as we have proved for the multisink case in Section 3.3, we can

implement the simplified graph-based lifting transform with any kind of routing

strategy. The only requirement is that we first need a coordinated step in which
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raw data nodes broadcast their measurements to all their aggregating neighbors.

Then, aggregating nodes can compute the detail coefficients with data received

from raw data nodes. In the lifting scheme, invertibility is ensured by construction

if aggregating nodes only use data from their raw data neighbors. As we have men-

tioned for multisink WSN, in order to obtain real data from the detail coefficients

all nodes will need to know with which raw data nodes each aggregating node has

compressed its measurements. This can be done with low overhead by allowing

aggregating nodes to piggyback the indexes of the raw data nodes used for com-

pression in their respective packets.

Finally, once the coordinated step has finished, we want to make all data in the

network available at each node without the need of a centralized routing algorithm.

In order to do that, we can use any gossip-based approach mentioned in Section 4.2.

However, for the sake of simplicity, we propose a simple gossip algorithm based

on the broadcast gossip method in [3], with the difference that we use metadata

negotiation in order to reduce the number of redundant transmissions. In other

words, we want to disseminate all data using the same intuition as in [3], which

exploits the broadcast property of wireless communications to reduce the number

of iterations that the algorithm needs to converge, with the difference that we do

not allow nodes to receive the same data more than once.

There are several design factors that have to be defined before implementing a

gossip-based algorithm. First, there are two time models for scheduling transmis-

sions. In the synchronous time model, time is assumed to be slotted commonly

across nodes. In each slot, all nodes contact a neighbor to communicate with. Note

that in this time model all nodes communicate simultaneously. On the other hand,

in the asynchronous time model each node has its own Poisson clock. Thus, when

a node’s clock ticks, it is the only one that chooses a random node to transmit

its data. Since only one node transmits at each time slot, the number of packet

collisions is reduced in comparison with the synchronous model. However, more
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iterations may be needed in order to complete the data broadcasting task. We

use the asynchronous time model since it is the one which adapts better to the

decentralized nature of WSN. The second design factor is the data exchange pro-

tocol. In the push protocol, one node chooses another node to transmit its data

to. The oppossite alternative is the pull protocol, in which the node requests the

other node’s data instead of transmitting its data to the selected neighbor. The

third approach is when both nodes exchange their data during the same time slot.

In our algorithm, we are going to use the push protocol as in most of the existing

gossip algorithms. Finally, the gossip communication mechanism can be uniform or

probabilistic. In uniform/static gossip, nodes choose their communication partners

at random. On the contrary, in probabilistic/adaptive gossip, nodes can adapt the

probability to communicate with each of their neighbors in function of the network

topology or any other critical factor in the network. Note that, in this chapter, we

just want to illustrate the possibility to extend the graph-based lifting transform

to a distributed framework for all-to-all data transmission in WSN. Thus, we are

going to implement a uniform mechanism as in [4, 3].

Assume that each node has a Poisson clock that runs independently. Moreover,

in order to keep track of the received data, each node has a vector Avdata in which

it memorizes the indexes of the nodes from which it has data already available. At

the beginning of the algorithm, nodes know their complete set of neighbors and the

different necessary radio ranges to reach each of them. When node n’s clock ticks,

n selects, uniformly at random, one neighbor m to communicate with. First of all,

the participating nodes negotiate which data has to be sent. Node n sends its vector

Avdata(n) data to m. Then, node m compares its vector Avdata(m) with the received

one, and sends to node n the indexes of nodes in Avdata(n) that it lacks to receive

data from. Finally, node n transmits to m only data from the requested nodes. As

in [3], nodes within the radio range of n can also receive the data that n is sending,

reducing in that way the necessary iterations for the algorithm to complete its task.
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The proposed gossip-based algorithm is detailed, from the point of view of a single

node, in Algorithm 8.

Algorithm 9 summarizes the distributed scheme for spatial compression and data

broadcasting in WSN. Assume that we have N randomly deployed nodes, and let

each of them have minimum and maximum possible radio ranges defined by con-

struction. First of all, we run the distributed topology control algorithm XTC

(Algorithm 7), which defines the communication graph G(V,E). Then, after nodes

have identified their neighbors, we run the distributed heuristic for the RANA

implementation (Algorithm 2). After that, sensors know if they are raw data or

aggregating nodes. The implementation of the graph-based lifting transform needs

a coordinated step, in which raw data nodes broadcast their data to their aggre-

gating neighbors. Once they have done that, aggregating nodes can compress their

data and compute the detail coefficients. Then, nodes can broadcast both com-

pressed and uncompressed data using any gossip-based routing algorithm, such as

Algorithm 8, until all data is available at each node.

In conclusion, in this chapter we have presented a framework for data compres-

sion and dissemination, which is computed in a distributed manner, with nodes

only knowing information about their direct neighborhood. Thus, this distributed

scheme is adapted to the decentralized nature of WSN, it does not incur bottlenecks,

and it is robust to topology changes and failures.
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Algorithm 8 Broadcast-Gossip Algorithm with Metadata Negotiation

Set of neighbors, Nn = [m1,m2, ...,mM ].

Set of radio ranges, Rn =
[
R1

n, R
2
n, ..., R

M
n

]
.

Avdata(n) = [n]

Reqdata(n) = []

1: while There are still nodes without all data available do

2: Run Poisson clock t(n).

3: while t(n) > 0 do

4: Listen to data transmissions in the neighborhood.

5: Update Avdata if necessary.

6: if Node q wants to gossip data then

7: Receive Avdata(q).

8: Reqdata(n) = Avdata(q)− (Avdata(q) ∩Avdata(n)).

9: Send Reqdata(n).

10: Receive data from nodes ∈ Reqdata(n).

11: Update Avdata(n) = Avdata(n) ∪Reqdata(n).

12: end if

13: end while

14: Choose one neighbor m at random.

15: Transmit Avdata(n) with radio range Rm
n .

16: Listen to Reqdata(m).

17: Send data from nodes with indexes ∈ Reqdata(m).

18: end while
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Algorithm 9 Distributed Scheme for Data Compression and Broadcasting in WSN

Given N randomly placed sensors,

with possible radio ranges within the interval Rn = [Rmin, Rmax].

1: Run XTC Algorithm for topology control purposes (Algorithm 7).

2: Obtain G(V,E).

3: Run Distributed Heuristic for Minimum Set Cover (Algorithm 2).

4: Obtain the Raw Data/Aggregating nodes assignment.

5: Raw Data nodes broadcast their data.

6: Aggregating nodes compute detail coefficients.

7: Run Gossip Algorithm for data broadcasting (Algorithm 8).

4.4 Simulation Results

In this section, we prove the usefulness of our proposed distributed scheme by

comparing it with raw data broadcasting using the same gossip-based algorithm.

As done before in this thesis, we evaluate the performance of both approaches

as the trade-off between the energy consumption and the reconstruction quality

at each quantization level. The energy consumed is expressed in Joules, and the

reconstruction quality in dB. The results shown in this section are an average of

100 iterations of the respective methods under the same conditions. The simulation

setup used for the cost model and the transform paramaters is the same as in

Section 2.3.1.

Figure 4.2 shows the cost versus distortion curves of both raw and compressed

data broadcasting approaches. As can be seen, our proposed scheme reduces con-

siderably the energy consumption in the network, with savings up to a 40% in

comparison with disseminating raw data.
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Figure 4.2: Cost-distortion curves for compressed and raw data broadcasting in WSN with 70

nodes.

In conclusion, we have presented a decentralized scheme that, starting with N

random deployed nodes, exploits the spatial data correlation, and distributes all

the information in the network among the complete set of nodes, using only local

communications. As shown in our experiments, in contrast to the other methods,

our solution reduces the energy consumed in the network without the need of any

kind of assumption about the sensors’ data.
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Chapter 5

Conclusions and Future Work

In this thesis we have presented several contributions to the field of spatial compres-

sion in Wireless Sensor Networks (WSN) for distributed data gathering applications.

Specifically, our contributions have been mainly focused on extending previous work

related to the use of a graph-based lifting transform to different scenarios in WSN.

First of all, we have introduced a new distributed heuristic for solving the

Raw/Aggregating Node Assignment (RANA) as a Minimum Set Covering Prob-

lem. The RANA is a mandatory requirement for the implementation of the lifting

scheme in WSNs, and how it is solved has been proved to be a critical factor for

the energy efficient performance of the transform. Since centralized algorithms are

not well suited to this kind of networks, mainly because they are not robust to

topology changes and node failures, our proposed method allow nodes to choose

between being a raw data or aggregating node using only information gathered

from their 1-hop neighborhood. In order to compensate the suboptimality of our

low complexity heuristic, we have also developed several distributed set cover mod-

ifications, which iteratively improve the first assignment by allowing some nodes to

increase their radio range and/or switch their parity. We can emphasize that our

complete distributed solution outperforms other centralized methods in reducing

the energy consumption in the network, and it can be used as a practical alter-

native in a real setting due to its simplicity and decentralized performance. The
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proposed distributed algorithms in this part of the thesis have been included in [26].

Our second contribution has been the extension of the graph-based lifting trans-

form to a distributed data gathering scenario in WSN with more than one sink

(multisink). Under the scope of this contribution, we have also proposed a new

multicast routing algorithm for wireless ad hoc networks, which is based on the

minimum Steiner tree problem, and which considers the broadcast advantage of

wireless communications. To the best of our knowledge, our method is the first

routing-driven compression scheme for multisink WSN which, in contrast to all

other approaches, exploits the spatial correlation among neighboring nodes while

data is being forwarded to the sinks. We have proved that our proposed routing

solution outperforms most of the existing multicast routing algorithms, and that

our compression scheme provides energy savings up to a 40% in comparison with

raw data gathering.

Finally, as a natural extension to the distributed data gathering in networks with

more than one sink, we have proposed a decentralized framework for distributed

compression and data broadcasting for applications in which all data has to be

available at each node. In our scheme, after using the same procedure as in the

multisink case in order to perform compression, nodes broadcast all data following a

gossip-based routing algorithm. Moreover, based on the existing Broadcast Gossip,

we have designed a new gossip algorithm which reduces redundant transmissions

via metadata negotiations. To the best of our knowledge, our method is the first

work that combines gossip routing with spatial compression in WSN. It is worth

mentioning that the complete procedure of our scheme is performed in a distributed

manner. Thus, it is a suitable practical solution for multicast and broadcast appli-

cations in this kind of networks. Our simulations show that, in comparison with

raw data gathering, our solution reduces considerably the energy consumption in

the network.

As future work, for the first of our contributions, we should refine our distributed

heuristics to improve their energy efficiency, and provide a deeper analysis of their
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performance. Moreover, following the research trend in WSNs, our algorithms

should also be modified in order to reflect the effects of node mobility. In the

future, the transform for the multicast and broadcast scenarios can be extended to

allow the development of more levels of decomposition, improving in that way the

data decorrelation. Finally, we can consider the implementation of the proposed

distributed compression schemes not only for applications in WSNs, but also in

areas such as social networks or image and video compression.
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