30,264 research outputs found

    On multi-degree splines

    Full text link
    Multi-degree splines are piecewise polynomial functions having sections of different degrees. For these splines, we discuss the construction of a B-spline basis by means of integral recurrence relations, extending the class of multi-degree splines that can be derived by existing approaches. We then propose a new alternative method for constructing and evaluating the B-spline basis, based on the use of so-called transition functions. Using the transition functions we develop general algorithms for knot-insertion, degree elevation and conversion to B\'ezier form, essential tools for applications in geometric modeling. We present numerical examples and briefly discuss how the same idea can be used in order to construct geometrically continuous multi-degree splines

    Computation of multi-degree B-splines

    Full text link
    Multi-degree splines are smooth piecewise-polynomial functions where the pieces can have different degrees. We describe a simple algorithmic construction of a set of basis functions for the space of multi-degree splines, with similar properties to standard B-splines. These basis functions are called multi-degree B-splines (or MDB-splines). The construction relies on an extraction operator that represents all MDB-splines as linear combinations of local B-splines of different degrees. This enables the use of existing efficient algorithms for B-spline evaluations and refinements in the context of multi-degree splines. A Matlab implementation is provided to illustrate the computation and use of MDB-splines

    Isogeometric preconditioners based on fast solvers for the Sylvester equation

    Full text link
    We consider large linear systems arising from the isogeometric discretization of the Poisson problem on a single-patch domain. The numerical solution of such systems is considered a challenging task, particularly when the degree of the splines employed as basis functions is high. We consider a preconditioning strategy which is based on the solution of a Sylvester-like equation at each step of an iterative solver. We show that this strategy, which fully exploits the tensor structure that underlies isogeometric problems, is robust with respect to both mesh size and spline degree, although it may suffer from the presence of complicated geometry or coefficients. We consider two popular solvers for the Sylvester equation, a direct one and an iterative one, and we discuss in detail their implementation and efficiency for 2D and 3D problems on single-patch or conforming multi-patch NURBS geometries. Numerical experiments for problems with different domain geometries are presented, which demonstrate the potential of this approach

    SPLINE DISCRETE DIFFERENTIAL FORMS AND A NEW FINITE DIFFERENCE DISCRETE HODGE OPERATOR

    Get PDF
    We construct a new set of discrete differential forms based on B-splines of arbitrary degree as well as an associated Hodge operator. The theory is first developed in 1D and then extended to multi-dimension using tensor products. We link our discrete differential forms with the theory of chains and cochains. The spline discrete differential forms are then applied to the numerical solution of Maxwell's equations

    IGA-based Multi-Index Stochastic Collocation for random PDEs on arbitrary domains

    Full text link
    This paper proposes an extension of the Multi-Index Stochastic Collocation (MISC) method for forward uncertainty quantification (UQ) problems in computational domains of shape other than a square or cube, by exploiting isogeometric analysis (IGA) techniques. Introducing IGA solvers to the MISC algorithm is very natural since they are tensor-based PDE solvers, which are precisely what is required by the MISC machinery. Moreover, the combination-technique formulation of MISC allows the straight-forward reuse of existing implementations of IGA solvers. We present numerical results to showcase the effectiveness of the proposed approach.Comment: version 3, version after revisio

    Multi-patch discontinuous Galerkin isogeometric analysis for wave propagation: explicit time-stepping and efficient mass matrix inversion

    Full text link
    We present a class of spline finite element methods for time-domain wave propagation which are particularly amenable to explicit time-stepping. The proposed methods utilize a discontinuous Galerkin discretization to enforce continuity of the solution field across geometric patches in a multi-patch setting, which yields a mass matrix with convenient block diagonal structure. Over each patch, we show how to accurately and efficiently invert mass matrices in the presence of curved geometries by using a weight-adjusted approximation of the mass matrix inverse. This approximation restores a tensor product structure while retaining provable high order accuracy and semi-discrete energy stability. We also estimate the maximum stable timestep for spline-based finite elements and show that the use of spline spaces result in less stringent CFL restrictions than equivalent piecewise continuous or discontinuous finite element spaces. Finally, we explore the use of optimal knot vectors based on L2 n-widths. We show how the use of optimal knot vectors can improve both approximation properties and the maximum stable timestep, and present a simple heuristic method for approximating optimal knot positions. Numerical experiments confirm the accuracy and stability of the proposed methods
    • …
    corecore