41 research outputs found

    Direction of Arrival with One Microphone, a few LEGOs, and Non-Negative Matrix Factorization

    Get PDF
    Conventional approaches to sound source localization require at least two microphones. It is known, however, that people with unilateral hearing loss can also localize sounds. Monaural localization is possible thanks to the scattering by the head, though it hinges on learning the spectra of the various sources. We take inspiration from this human ability to propose algorithms for accurate sound source localization using a single microphone embedded in an arbitrary scattering structure. The structure modifies the frequency response of the microphone in a direction-dependent way giving each direction a signature. While knowing those signatures is sufficient to localize sources of white noise, localizing speech is much more challenging: it is an ill-posed inverse problem which we regularize by prior knowledge in the form of learned non-negative dictionaries. We demonstrate a monaural speech localization algorithm based on non-negative matrix factorization that does not depend on sophisticated, designed scatterers. In fact, we show experimental results with ad hoc scatterers made of LEGO bricks. Even with these rudimentary structures we can accurately localize arbitrary speakers; that is, we do not need to learn the dictionary for the particular speaker to be localized. Finally, we discuss multi-source localization and the related limitations of our approach.Comment: This article has been accepted for publication in IEEE/ACM Transactions on Audio, Speech, and Language processing (TASLP

    雑音特性の変動を伴う多様な環境で実用可能な音声強調

    Get PDF
    筑波大学 (University of Tsukuba)201

    Multichannel Source Separation Using Time-Deconvolutive CNMF

    Get PDF
    This paper addresses the separation of audio sources from convolutive mixtures captured by a microphone array. We approach the problem using complex-valued non-negative matrix factorization (CNMF), and extend previous works by tailoring advanced (single-channel) NMF models, such as the deconvolutive NMF, to the multichannel factorization setup. Further, a sparsity-promoting scheme is proposed so that the underlying estimated parameters better fit the time-frequency properties inherent in some audio sources. The proposed parameter estimation framework is compatible with previous related works, and can be thought of as a step toward a more general method. We evaluate the resulting separation accuracy using a simulated acoustic scenario, and the tests confirm that the proposed algorithm provides superior separation quality when compared to a state-of-the-art benchmark. Finally, an analysis of the effects of the introduced regularization term shows that the solution is in fact steered toward a sparser representation

    An Efficient Optimal Reconstruction Based Speech Separation Based on Hybrid Deep Learning Technique

    Get PDF
    Conventional single-channel speech separation has two long-standing issues. The first issue, over-smoothing, is addressed, and estimated signals are used to expand the training data set. Second, DNN generates prior knowledge to address the problem of incomplete separation and mitigate speech distortion. To overcome all current issues, we suggest employing an efficient optimal reconstruction-based speech separation (ERSS) to overcome those problems using a hybrid deep learning technique. First, we propose an integral fox ride optimization (IFRO) algorithm for spectral structure reconstruction with the help of multiple spectrum features: time dynamic information, binaural and mono features. Second, we introduce a hybrid retrieval-based deep neural network (RDNN) to reconstruct the spectrograms size of speech and noise directly. The input signals are sent to Short Term Fourier Transform (STFT). STFT converts a clean input signal into spectrograms then uses a feature extraction technique called IFRO to extract features from spectrograms. After extracting the features, using the RDNN classification algorithm, the classified features are converted to softmax. ISTFT then applies to softmax and correctly separates speech signals. Experiments show that our proposed method achieves the highest gains in SDR, SIR, SAR STIO, and PESQ outcomes of 10.9, 15.3, 10.8, 0.08, and 0.58, respectively. The Joint-DNN-SNMF obtains 9.6, 13.4, 10.4, 0.07, and 0.50, comparable to the Joint-DNN-SNMF. The proposed result is compared to a different method and some previous work. In comparison to previous research, our proposed methodology yields better results

    ベイズ法によるマイクロフォンアレイ処理

    Get PDF
    京都大学0048新制・課程博士博士(情報学)甲第18412号情博第527号新制||情||93(附属図書館)31270京都大学大学院情報学研究科知能情報学専攻(主査)教授 奥乃 博, 教授 河原 達也, 准教授 CUTURI CAMETO Marco, 講師 吉井 和佳学位規則第4条第1項該当Doctor of InformaticsKyoto UniversityDFA

    Principled methods for mixtures processing

    Get PDF
    This document is my thesis for getting the habilitation à diriger des recherches, which is the french diploma that is required to fully supervise Ph.D. students. It summarizes the research I did in the last 15 years and also provides the short­term research directions and applications I want to investigate. Regarding my past research, I first describe the work I did on probabilistic audio modeling, including the separation of Gaussian and α­stable stochastic processes. Then, I mention my work on deep learning applied to audio, which rapidly turned into a large effort for community service. Finally, I present my contributions in machine learning, with some works on hardware compressed sensing and probabilistic generative models.My research programme involves a theoretical part that revolves around probabilistic machine learning, and an applied part that concerns the processing of time series arising in both audio and life sciences

    Mathematics and Digital Signal Processing

    Get PDF
    Modern computer technology has opened up new opportunities for the development of digital signal processing methods. The applications of digital signal processing have expanded significantly and today include audio and speech processing, sonar, radar, and other sensor array processing, spectral density estimation, statistical signal processing, digital image processing, signal processing for telecommunications, control systems, biomedical engineering, and seismology, among others. This Special Issue is aimed at wide coverage of the problems of digital signal processing, from mathematical modeling to the implementation of problem-oriented systems. The basis of digital signal processing is digital filtering. Wavelet analysis implements multiscale signal processing and is used to solve applied problems of de-noising and compression. Processing of visual information, including image and video processing and pattern recognition, is actively used in robotic systems and industrial processes control today. Improving digital signal processing circuits and developing new signal processing systems can improve the technical characteristics of many digital devices. The development of new methods of artificial intelligence, including artificial neural networks and brain-computer interfaces, opens up new prospects for the creation of smart technology. This Special Issue contains the latest technological developments in mathematics and digital signal processing. The stated results are of interest to researchers in the field of applied mathematics and developers of modern digital signal processing systems

    Time-Frequency Masking Performance for Improved Intelligibility with Microphone Arrays

    Get PDF
    Time-Frequency (TF) masking is an audio processing technique useful for isolating an audio source from interfering sources. TF masking has been applied and studied in monaural and binaural applications, but has only recently been applied to distributed microphone arrays. This work focuses on evaluating the TF masking technique\u27s ability to isolate human speech and improve speech intelligibility in an immersive cocktail party environment. In particular, an upper-bound on TF masking performance is established and compared to the traditional delay-sum and general sidelobe canceler (GSC) beamformers. Additionally, the novel technique of combining the GSC with TF masking is investigated and its performance evaluated. This work presents a resource-efficient method for studying the performance of these isolation techniques and evaluates their performance using both virtually simulated data and data recorded in a real-life acoustical environment. Further, methods are presented to analyze speech intelligibility post-processing, and automated objective intelligibility measurements are applied alongside informal subjective assessments to evaluate the performance of these processing techniques. Finally, the causes for subjective/objective intelligibility measurement disagreements are discussed, and it was shown that TF masking did enhance intelligibility beyond delay-sum beamforming and that the utilization of adaptive beamforming can be beneficial
    corecore