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Abstract

This dissertation presents Bayesian models of microphone array processing for computational

auditory scene analysis in multisource environments. In such environments where multiple

sounds are inevitably observed at a time, the decomposition function that extracts constituent

sound source signals from the observed mixture of audio signals is essential for robust au-

ditory processing because most audio decoding algorithms, such as speech recognition and

sound source classification, assume clean and isolated audio signals as an input. We develop

microphone array techniques that provide three fundamental functions: sound source separa-

tion, localization, and removal of reverberation (also known as dereverberation) to cope with

multiple sound sources in practical environments.

Microphone array processing must overcome the following three auditory uncertainties

for achieving a robust decomposition function in real environments: (1) uncertainty in the

number of sound sources, (2) reverberation in indoor environments, and (3) dynamic environ-

ments such as moving sound sources. These uncertainty issues have been partly addressed:

(1) Sound source separation methods assuming unknown number of sources ignore the rever-

beration, which results in degraded separation performance. (2) Methods coping with sound

source separation and dereverberation simultaneously are limited to the case where the mi-

crophones outnumber the sound sources. (3) As for microphone array processing in dynamic

environments, the main topic has been focused on only the localization function.

We overcome these uncertainties by using Bayesian nonparametrics so that our models

can have an infinitely extensible flexibility to express the data and deal with observed mixture

signals containing any number of sound sources. When the number of sound sources is uncer-

tain, the selection of model complexity to handle the mixture signal is problematic because

the model should be flexible enough to explain the observed mixture signal. Our Bayesian
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Abstract

nonparametrics-based models can bypass this elaborate model selection depending on envi-

ronments. Thus, a wide applicability is realized in our models.

This dissertation is organized as follows. Chapter 2 provides a literature review on sound

source separation methods. This review clarifies that the aforementioned three auditory uncer-

tainties are critical but unsolved issues in the literature.

Chapter 3 first presents a method for sound source separation and localization based on

Bayesian nonparametrics. This method addresses the source number uncertainty. Experiments

using simulated and recorded audio mixtures show that this model achieves state-of-the-art

sound source separation quality.

Chapter 4 extends the method presented in Chapter 3 such that the dereverberation is si-

multaneously carried out for a robust separation performance in reverberant environments.

We also apply Bayesian nonparametric modeling to the dereverberation function so as to han-

dle an arbitrary number of sound sources. Experiment with the sound source separation task

using mixtures signals of various number of sound sources demonstrates that (1) our method

is capable of separation and dereverberation of mixture signals where the number of sound

sources is larger than that of microphones used to observe the mixture, and that (2) the source

extraction performance is comparable to that of a state-of-the-art method suitable only for

mixtures where the number of sources is less than the number of microphones.

Chapter 5 develops a Bayesian nonparametric infinite order autoregressive model for the

dereverberation function. An appropriate order value of the autoregressive model should be

determined depending on the reverberation time of the acoustic environment. While existing

order determination methods choose an order value from a finite amount of candidate, our

method infers a posterior belief over infinitely many order values, which can theoretically

adapt to any reverberant environment. An experiment with the dereverberation task in three

reverberant environments confirms the efficacy of our model compared to several order deter-

mination methods.

Chapters 6 and 7 tackle the third uncertainty of dynamic environments. Chapter 6 uses the

method explained in Chapter 3 to separate sound sources in a dynamic environment, where

the sound sources or the microphone array move over time. The method first simultaneously

separates and splits the input mixture signal along the time axis, where each separated and split
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segment can be considered a source signal arriving from a stationary direction. Then, the split

segments of source signals are merged to reconstruct a certain moving sound source signal.

The capability of this approach is demonstrated in two environments using a microphone array

embedded in a mobile robot.

In Chapter 7, we develop a Bayesian sound source localization method robust against

environment-dependent aspects, such as reverberation time and changes in the number of

active sound sources over time. While existing localization method requires an environment-

dependent tuning of the threshold for detecting sound sources, our method robustly estimates

the threshold using the observed data in an unsupervised manner. Experimental results demon-

strate our method robustly localizes multiple sound sources in a reverberant environment.

Chapter 8 discusses the contributions of this dissertation with some remarks on future

work. We conclude this dissertation in Chapter 9.
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Chapter 1

Introduction

Auditory sense is essential for understanding a scene. For example, some species of bats

and dolphins use audio signals to detect surrounding objects, which is known as echoloca-

tion (Griffin 1958, Evans 1973). Humans also exert the auditory sense for various purposes

such as verbal communications and an awareness of surrounding events by sometimes using

artificial auditory signs like a phone ring and a siren. Thanks to the capability of perception of

the scene including the auditory sense, we can take an adaptive action in various environments.

Over the last decade, much progress has been made for computational scene understand-

ing such as surveillance systems (Hu et al. 2004) and automated robots (Thrun 2002). These

systems are well-appreciated since computers and robots can deal with tasks that are almost

impossible or costly for humans. For example, an automated surveillance system can moni-

tor a street all day and night, an automatic-driving car may achieve a continuous transporta-

tion (Thrun 2010), or a robot may probe hazardous places that humans cannot reach (Weisbin

and Rodriguez 2000). A key to successful computational scene understanding using vari-

ous sensor inputs is to specify a certain task and to develop an algorithm for the task. This

is because what computers do is after all algorithmic numerical manipulations of data. For

example, one of the tasks for an automated car is to find a path that minimizes the distance be-

tween the current position and the goal while avoiding obstacles in its way using the sensors

embedded on the car. In the development of computational algorithms, probabilistic mod-

els, optimization problems, automatic acquisition of numerical representation have widely

used (Murphy 2012, Bengio 2009). These approaches are useful for developing feasible algo-

rithms thanks to the abstraction of the task and sensor data into mathematical procedures.
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CHAPTER 1. INTRODUCTION

1.1 Computational Auditory Scene Analysis

Computational auditory scene analysis (CASA) (Rosenthal and Okuno 1998, Wang and Brown

2006), recently also known as machine listening (Vincent et al. 2013), tackles an auditory as-

pect of scene understanding for computers. This dissertation aims at a development of CASA

system that can work in real environments. The motivations are twofold:

1. realization of auditory functions for computers and robots, and

2. enhancement of auditory intelligibility of humans.

Figure 1.1 outlines our envisioned system. The primary challenge is that real environments

often contain multiple sound sources. Therefore, an observation of a certain sound source is

interfered by other sound sources. To realize practical CASA systems, the decomposition of

the multisource observation audio signal into the constituent sound source signals is essential.

This is because most high-level auditory processing algorithms, such as speech recognition

and sound source classification, typically assume clean audio signals. If the observed signal

contains the interference of other sound source signals, the performance of these auditory

decodings is degraded.

The decomposition function is beneficial to the enhancement of human auditory intelli-

gibility as well. Humans cope with multisource environments by the selective attention to a

certain sound source, which is known as the cocktail party effect (Cherry 1953, Bronkhorst

2000). In the selective attention mechanism, humans are capable of understanding a part of

sounds of interest, typically a single source, but the rest are ignored (Wood 1990). The compu-

tational decomposition function in multisource environments can facilitate our understanding

of respective sound sources.

We pursue the machine listening function that satisfies the following two requirements:

1. less a priori knowledge about auditory environments and

2. ability for spatial interpretation of sound sources.

First, auditory environments have a wide variety of sound sources and acoustic character-

istics: multiple humans may talk together with some music in an indoor situation or wild

animals call and song in an outdoor place. An ideal decomposition function should cope with

2



1.1. COMPUTATIONAL AUDITORY SCENE ANALYSIS

High-level decoding of each sound source 

Decomposition of observed mixture into each source

type: human speech

content: “Could you take that...”

type: music

key: G major, etc.

(                 ,                  )

Figure 1.1: Machine listening for enhancing human auditory intelligibility and auditory func-

tions on computers. Observed mixture in a multisource environment is first decomposed into

constituent sound source signals. This decomposition contributes to auditory intelligibility of

humans. Then, for each decomposed source, high-level audio decoding for information ex-

traction and decision making of system behavior.

this acoustic variety without a priori knowledge about the environment. The second require-

ment refers to the necessity of the localization of sound sources. Some applications, such as

probing robots (Sasaki et al. 2009a) or telepresence robots driven by a remote human opera-

tor (Mizumoto et al. 2011), require an ability of spatial understanding of the sound sources in

the environment.

As shown in the bottom of Figure 1.1, we use a microphone array that consists of mul-

tiple microphones to achieve the auditory decomposition function that satisfies the require-

ments (Benesty et al. 2008). The above-mentioned two requirements motivate us to use mi-

crophone array processing, also referred to as a multichannel method, for two reasons. First,

multichannel methods are applicable to various types of sound sources. Therefore, multichan-

nel methods can widely be used when the types of sound sources in the environment are

unknown. Second, the localization of sound sources can be carried out with multiple micro-

phones to realize the spatial interpretation of the auditory scene. Microphone array processing

provides three functions for CASA to cope with multisource environments:

3



CHAPTER 1. INTRODUCTION

1. Uncertainty in # of sound sources 2. Reverberation in indoor environments 3. Dynamic environments          

Figure 1.2: Three auditory uncertainties tackled by this dissertation.

(i) sound source separation,

(ii) sound source localization, and

(iii) removal of reverberation, also referred to as dereverberation.

The sound source separation function is the core of the auditory decomposition: from the

observed mixture of sound signals, this function extracts the constituent sound signals. The

sound source localization enables the spatial interpretation by estimating the direction of ar-

rival for each sound source. This function satisfies the second requirement above. Reverber-

ation is typically observed in an indoor environment and caused by the reflections of audio

signals on the walls and floor. Reverberation impairs the auditory intelligibility as well as

degrade the separation performance using a microphone array processing. Therefore, derever-

beration is also an important function provided by microphone array techniques.

1.2 Technical Issues: Auditory Uncertainties

Although various progress has been made in the literature, microphone array processing con-

fronts a challenging problem with regard to the first requirement–the auditory uncertainties in

the environment. These uncertainties include

1. uncertainty in the number of sound sources,

2. reverberation, and

3. dynamic environments such as moving sound sources or microphones,

as depicted in Figure 1.2.

4



1.3. BENEFITS FROM BAYESIAN MODELING

The uncertainty of the number of sources has been a critical parameter in the literature

because most sound source separation algorithms assume that the number of sources in the

observed mixture signal is known. Furthermore, different types of algorithms have been devel-

oped depending on the relationship between the number of sources and that of microphones.

Under the uncertainty of the number of sound sources, we need a consistent algorithm that is

applicable to any number of sources.

To alleviate the degradation of separation performance due to reverberation, dereverbera-

tion is often incorporated in microphone array techniques. Here, the uncertainty of the num-

ber of sound sources is again a problem for the dereverberation function because existing

approaches assume that the source number is less than the number of microphones. However,

this assumption may be violated because the sound sources can possibly outnumber the mi-

crophones in the source number uncertainty. Another uncertainty about reverberation is the

amount of reverberation. The dereverberation model should adapt to the actual amount of

reverberation for the improved dereverberation performance.

A dynamic environment in the sense that the sound sources are moving is problematic

for microphone array-based sound source separation methods because most source separation

methods assume that the source positions as well as microphone positions are static. Tak-

ing into account that moving sound sources can be observed in a natural scene, we need a

separation method that is applicable to dynamic environments.

1.3 Benefits from Bayesian Modeling

This dissertation make the best use of Bayesian models for microphone array processing to

overcome auditory uncertainties. The following two properties of Bayesian modeling are suit-

able points for our problem.

First, some sorts of prior distributions in Bayesian models can be regarded as regular-

ization terms from the viewpoint of optimization problems (Bishop 2003, Fraley and Raftery

2007), when point estimates are computed from posterior distributions. The prior distributions

often prevents latent parameters from overfitting the observed data, which stabilizes the pa-

rameter inference and results in better performance. For example, our Bayesian formulation

of dereverberation uses a prior distribution corresponding to an anechoic situation. Given a
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reverberant observation signal, the reverberation signal component is estimated through the

posterior inference. In this way, our Bayesian dereverberation prevents the direct signal com-

ponents from being regarded as reverberation.

Second, Bayesian nonparametric models (Ferguson 1973, Antoniak 1974, Gershman and

Blei 2012) provide an infinitely extensible flexibility of the model complexity to explain the

observed data. As we explain in the subsequent chapters, microphone array-based methods,

such as sound source separation and dereverberation, are related to the selection of model

complexity depending on the number of sound sources in the observed mixture signal. For

example, our sound source separation method is formulated as a clustering of observed data

points where each cluster corresponds to each sound source. Note that the model complexity,

the number of clusters in this case, should suit the observation: a sufficiently large number

of clusters should be prepared to cope with the sound source separation of unknown num-

ber of sound sources in the observed signal. Some model selection procedure may be neces-

sary to adapt the model to various observed signals with different number of sound sources.

The strength of Bayesian nonparametric models is explained as follows: they provides an in-

finitely many number of clusters so that an elaborate model selection can be bypassed thanks

to infinitely many clusters capable of handling any number of sound sources. These benefits

motivates us to develop a Bayesian microphone array processing.

1.4 Organization

The organization of this dissertation is outlined in Figure 1.3. In the following chapters, we

address each of the three auditory uncertainties described in Section 1.2.

Chapter 2 provides a literature review to clarify that the three auditory uncertainties are

still open problems. The review includes the comparison of separation methods with a single-

microphone observation and microphone array-based methods, multichannel dereverberation

methods, and microphone array techniques for dynamic environments.

Chapter 3 presents a Bayesian nonparametric microphone array processing for sound

source separation and localization. This method tackles the first uncertainty–the unknown

number of sources.

Chapter 4 presents a multichannel source separation and dereverberation method based on

6
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Bayesian nonparametrics. This method is an extension of the method presented in Chapter 3

so that the separation performance can be robust against the reverberation. This chapter deals

with the uncertainties about the number of sources and reverberation at the same time by

presenting a method that is consistently applicable to any number of sound sources.

In Chapter 5, we discuss an adaptive fitting of dereverberation model depending on the

amount of reverberation, where the amount of reverberation is posed as an uncertainty. We

develop a Bayesian nonparametric model called infinite order autoregressive process to realize

an adaptive dereverberation method.

Chapters 6 and 7 tackle the third uncertainty of dynamic environments. In Chapter 6, we

apply the Bayesian nonparametric sound source separation method presented in Chapter 3 so

as to separate the audio signal of moving sound sources. Chapter 7 presents a sound source

localization method for moving sound sources. We construct a Bayesian model for a robust

localization against environment-dependent aspects.

Chapter 8 discusses the contributions of this dissertation with some remarks on future

work. We conclude this dissertation in Chapter 9.
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8. Discussion
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Figure 1.3: Organization of this dissertation.
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Chapter 2

Literature Review

This chapter reviews existing methods for handling multisource environments in the litera-

ture. The review includes methods for noise reduction, sound source separation, reduction of

reverberation (referred to as dereverberation), and tracking of moving sound sources. Through

this review, we reveal that the following issues are critical:

1. uncertainty in the number of sources,

2. performance degradation of source separation by reverberation, and

3. dynamic environment such as movements of sound sources or microphones.

Sound source separation methods are divided into two categories as to whether the mix-

ture of sound sources is observed by a single microphone (single channel methods) or by a

microphone array (multichannel methods). In the following, single channel methods are out-

lined with some remarks on their limitations. Then, we review existing multichannel methods

for sound source separation, dereverberation, and dynamic environments.

2.1 Single Channel Sound Source Separation Methods

Single channel methods are advantageous since they can be implemented with a simpler hard-

ware architecture with only one microphone in comparison with multichannel methods. Early

work on single channel noise reduction includes the Wiener filter (Wiener 1949), and spectral

subtractions (Boll 1979, Martin 2001). These methods assume that the noise to be suppressed

is generated from a stationary distribution. In other words, the statistical characteristics of the
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interfering noise are time-invariant, or slowly change over time. Therefore, these methods are

inapplicable to the separation of two or more dynamic signals such as speech signals.

Recent single channel source separation methods belong to two categories. Methods in the

first category carry out a pre-training using isolated source signals so as to generate dictionar-

ies or to train statistical models for the target sounds (Roweis 2000, Davies and James 2001,

Jang and Lee 2003, Benaroya and Bimbot 2003, Pearlmutter and Zador 2004, Smaragdis et al.

2009). Some methods decompose the source signals for pre-training into fragment signals, the

dictionary of target signals, using independent component analysis (ICA) (Davies and James

2001, Jang and Lee 2003), and reconstruct the constituent sources from the observed mixture

using the fragments. Some methods train the parameters of statistical models such as hidden

Markov models (HMMs) so that the constituent sources in the observed mixture signal can be

restored by the statistical models (Roweis 2000, Benaroya and Bimbot 2003, Pearlmutter and

Zador 2004). Smaragdis et al. develop a single channel source separation method that extracts

the target signals using the pre-training audio signals themselves where a plenty amount of

pre-training dataset is assumed to be available (Smaragdis et al. 2009). The limitation of these

methods is that the coverage of the dataset in the pre-training phase is critical to the separa-

bility of a variety of sound sources. For example, if the pre-training data contains only speech

signals, the resulting algorithm is only applicable to mixtures of speech signals.

Methods in the second category assume a stationary form or slow transitions of spectra

over time in the frequency domain. Nonnegative matrix factorization (NMF) is often used to

handle the spectral stationarity (Schmidt and Olsson 2006, Virtanen 2007, Ozerov et al. 2007,

Hoffman et al. 2010a). While NMF is suitable for audio signals with little fluctuation in the

spectral form such as instrumental sounds in music audio signals Kameoka et al. (2012a), it

is difficult to apply NMF to the separation of multiple source signals that dynamically change

the spectral forms over time such as speech signals.

2.1.1 Limitations of single channel methods

Though single channel methods are easily deployable with a simple observation device, they

have two limitations:

1. limited applicability to various types of source signals, and
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2. lack of spatial interpretation.

The first limitation has been explained above. The pre-training methods require an appropriate

coverage of training dataset for specific applications whereas NMF-based methods assume

the spectral stationarity. Regarding the second limitation, the lack of the spatial interpretation

means that single channel methods give no idea about the location of the sound source in the

environment. Localization of sound sources is an essential function for certain applications

such as mobile probing robots (Sasaki et al. 2010).

2.2 Multichannel Sound Source Separation Methods

Multichannel methods that use a microphone array can overcome the aforementioned limita-

tions: multichannel source separation methods make much milder assumptions on the sound

source signals to extract and are capable of estimating the direction of arrivals of the con-

stituent sound sources as a sound source localization function. This is because multichannel

methods in principle analyzes the modulation of audio signals during the propagation of them

instead of the characteristics of audio signals themselves. To be specific, multichannel meth-

ods use the difference in time of arrivals and in sound pressure levels of the signals observed

at each microphone for the separation and localization. Therefore, multichannel methods are

suitable to cope with multisource environment where the type of sound sources are unknown

a priori, or the estimation of source location is necessary. One limitation about multichannel

methods is the difficulty in separating source signals that come from the same direction be-

cause the time difference of arrivals between the microphones is identical when the sources

arrive from the same direction. While we may need to combine a single channel separation

method with a multichannel method to cope with this source overlap problem, the multi-

channel approach provides a general framework to cope with multisource situations with less

assumptions on the type of sound sources.

In the following, we outline the existing multichannel methods keeping in mind the three

uncertainties to overcome. Specifically, Section 2.2.1 reviews existing multichannel separa-

tion methods from the viewpoints of the relationship between the number of sources and the

number of microphones, and the uncertainty in the source number. Section 2.2.2 presents dere-
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verberation methods with a discussion on the combination with other multichannel process-

ing such as a separation of sound sources. Section 2.2.3 outlines the microphone array-based

methods for dynamic environments where the position of the sound sources or the microphone

array may change over time.

2.2.1 Source separation in source number uncertainty

ICA is one of the most widely used models for multichannel sound source separation (Lee

et al. 1999, Hyvärinen et al. 2001, Common and Jutten 2010, Sawada et al. 2007). This is

because ICA is applicable to the separation of a wide range of sound sources and works well

even when the propagation of the sound source signals to each microphone is unknown, which

is highly dependent on the acoustic environment. Variants of ICA, called independent vector

analysis (IVA), have also been developed (Lee et al. 2007, Ono 2011) for a unified modeling

for the separation in the frequency domain to cope with the reverberation to a certain degree.

These ICA and IVA-based multichannel source separation methods have two problems when

the number of sources is uncertain. First, most methods assume that the number of sources is

known in advance. Second, ICA and IVA are intractable when the sources outnumber the mi-

crophones, i.e., the mixture is underdetermined. This is problematic because underdetermined

conditions may possibly occur in practical situations when the number of sources is uncertain.

While the first problem is addressed in (Knowles and Ghahramani 2007, Nagira et al. 2013),

the second problem remains as a limitation.

For the separation of more sources than microphones, time-frequency (TF) masking meth-

ods are helpful (Yilmaz and Rickard 2004, Mandel et al. 2010, Araki et al. 2010, Sawada et al.

2011). These methods extract the constituent source signals based on the assumption that at

most one sound source is dominant at a time frame in a certain frequency bin since the power

of each source signal in the TF domain is sparsely distributed. TF masking methods provide

a consistent way to separate any number of sources because TF masking-based separation is

applicable even when the source number is equal to or less than that of microphones.

Here, the uncertainty in the number of sources arises as a problem again. In order to sepa-

rate the sound sources, at least the same number of TF masks as that of the sound sources are

necessary. To cope with the source number uncertainty issue, some methods use a sufficiently
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large number of TF masks (Araki et al. 2009, Loesch and Yang 2010, Taghia et al. 2012).

In order to avoid the degradation of the separation performance cause by unused TF masks,

these methods impose some regularization on the TF mask estimation algorithms to suppress

unnecessary TF masks.

Indeed, the source number uncertainty is closely related to the selection of model com-

plexity in that an appropriate choice of the number of TF masks is crucial for the separation

performance. Since redundant TF masks may degrade the separation performance at the risk

of splitting a single source signal into multiple TF masks, the TF mask number is preferably

matched with the actual number of sources. While source number estimation methods are

developed in the literature (Yamamoto et al. 2003, Loesch and Yang 2008), these methods

lacks the general applicability since these source number estimation requires an environment-

dependent training.

In the subsequent chapter, a Bayesian nonparametric model is used for the capability of

handling an arbitrary number of sound sources as well as avoiding the performance degra-

dation due to unnecessary TF masks. Concretely, the prior distribution of Bayesian nonpara-

metric modeling allows for infinitely many TF masks for a theoretical flexibility, while also

penalizes the emergence of unnecessary TF masks so as to stabilize the parameter estimation

for the source separation.

2.2.2 Dereverberation methods

When we observe a sound in an indoor environment, the observed sound signal inevitably

contains reverberation caused by the reflections of the sound signals on the walls and floor.

The reverberation is known to degrade the sound source separation performance because the

sound reflections virtually act as ghost sounds, which complicates the separation process.

Dereverberation methods are categorized into two classes: spectral subtraction methods and

linear transform methods.

Spectral subtraction methods reduce reverberation from the reverberant observation in the

power spectrum domain, where the phase information is discarded (Lebart et al. 2001, Ha-

bets et al. 2008, Löllmann and Vary 2009, Wang et al. 2012, Erkelens and Heusdens 2010).

Spectral subtraction methods are often designed for single channel observations (Lebart et al.

13



CHAPTER 2. LITERATURE REVIEW

2001, Habets et al. 2008, Erkelens and Heusdens 2010). The limitation of these methods is

the difficulty of the incorporation of these dereverberation techniques with multichannel sep-

aration algorithms because the dereverberation process discards the phase information that

convey the time difference of arrivals information, which is essential to the separation pro-

cess. Furthermore, the lack of the phase information may produce distorted resulting signals.

Dereverberation methods on the basis of linear transform of the multichannel observa-

tion overcome these limitations. The inverse filtering using a microphone array explicitly uses

the phase information for a better dereverberation quality (Miyoshi and Kaneda 1988). Many

multichannel dereverberation methods formulate the linear transform as an autoregressive pro-

cess, or also called linear prediction, of the sequential observations (Triki and Slock 2006,

Delcroix et al. 2007, Nakatani et al. 2010). A hybrid dereverberation method combining an

autoregressive process and spectral subtraction is also developed for improved dereverbera-

tion performance (Kinoshita et al. 2009). The problem with these methods is that these meth-

ods assumes a single sound source in the reverberant observation, which results in a limited

dereverberation performance when applied to a mixture of sound sources in a reverberant en-

vironment. The autoregression-based dereverberation model has been extended to multiple

sound sources (Yoshioka and Nakatani 2012).

Multichannel dereverberation methods based on an autoregressive process can be com-

bined with source separation methods to attain the robust extraction of sound sources in rever-

berant environments (Huang et al. 2005, Buchner and Kellermann 2010, Yoshioka et al. 2011,

Takeda et al. 2012, Togami et al. 2013). While these joint models for sound source separation

and dereverberation achieve a robust separation of reverberant sound source mixtures, these

models assumes the number of sources is known in advance. In this sense, existing simulta-

neous separation and dereverberation methods fail to overcome the issue of the uncertainty

in the source number. In addition, the liner multichannel dereverberation methods using an

autoregressive process has a limitation that the reverberation is accurately estimated when the

mixture is overdetermined (Gorokhov and Loubaton 1997). In summary, the linear multichan-

nel dereverberation is suitable for combination with multichannel separation methods, though

the state-of-the-art dereverberation methods are limited to overdetermined conditions, which

is possibly undermined in the source number uncertainty.
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2.2.3 Moving sound sources in dynamic acoustic environment

Most multichannel sound source separation methods are designed under the assumption that

the propagation of the source signals to each microphone is time-invariant, that is, the relative

position between the sources and microphones are fixed. The difficulty of sound source sepa-

ration using only observation mixtures is that both the propagation of each sound source and

the source signals themselves are unknown. To resolve this problem, most separation meth-

ods assume that only source signals are time-varying whereas the propagation of each source

signal is fixed over time. If the movements of sound sources are allowed, the separation is re-

garded as a severely ill-posed problem because the temporal changes in the observed mixture

may result from either the sound propagation or the changes in the source signals.

The application of microphone arrays to dynamic environments have been mostly focused

on the tracking of sound sources (Affes and Grenier 1995, Brandstein et al. 1997, Valin et al.

2003, Murase et al. 2005, Ma et al. 2006), i.e., the temporal smoothing of sound source local-

ization. The source number uncertainty problem is addressed in (Ma et al. 2006) in the sound

source tracking task.

Some methods tackle the separation of moving sound sources by segmenting the observed

mixture signals along the time axis, such that the source position can be regarded as stationary

within each segment, to apply an ordinary separation method such as ICA (Koutvas et al.

2000, Prieto and Jinachitra 2005, Addison and Roberts 2006). Here, the determination of the

window length for the segmentation is a critical problem. We prefer a long segment containing

more data samples so as to stabilize the parameter estimation for the separation, although the

stationarity of the sound sources may be unsatisfied in a too long segment.

A multimodal method has been proposed to address this problem, where the visual infor-

mation is used to track the sound sources (Naqvi et al. 2010). If the sources are not moving,

ICA is applied to separate the sources; whereas a beamforming is applied to separate moving

sound sources. Though beamforming-based separation methods dispense with the assumption

of source position stationarity, the separation quality is usually worse than separation methods

that adaptively estimates the parameters such as ICA.
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2.3 Summary

This chapter has reviewed various auditory processing methods to handle multisource envi-

ronments. Multichannel methods have advantages in comparison with single channel methods

due to their general applicability to various kinds of sound sources as well as the capability

of source localization. Nevertheless, multichannel processing still faces three challenges re-

garding the auditory uncertainties: the uncertainty in the source number, reverberation, and

dynamic environments.

In the subsequent chapters, Bayesian nonparametric models play the key role to cope with

these three auditory uncertainties. In particular, the number of sources is a critical parameter

to determine the model complexity of multichannel sound source separation and dereverbera-

tion. Bayesian nonparametric models are beneficial in that they are capable of bypassing the

selection of model complexity thanks to the infinitely extensible modeling capability.
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Chapter 3

Bayesian Nonparametric Multichannel

Sound Source Separation and

Localization

This chapter presents a basic multichannel model for sound source separation and localization

on the basis of Bayesian nonparametrics. The Bayesian nonparametric model is designed to

copes with the uncertainty in the number of sound sources.

3.1 Introduction

Computational auditory scene analysis (CASA) aims at a machine listening that can extract

and analyze useful information and/or meaningful auditory events such as speech content

and sound source type from audio recordings (Rosenthal and Okuno 1998, Wang and Brown

2006). The decomposition of these constituent sound sources is essential for CASA systems

because a mixture of audio signals containing multiple sound sources is common in our daily

environment (Common and Jutten 2010).

Many CASA systems use multiple sensors, e.g., a microphone array, to decompose the

observed mixture into the individual sound sources (Benesty et al. 2008). Microphone arrays

spatially filter the sound sources to act as a decomposition function. That is, they retrieve audio

signals from different directions, which is referred to as sound source separation (Common

and Jutten 2010, Sawada et al. 2011). If the alignment of the microphone array is available,

the direction of arrival of each sound source can be realized as a sound source localization
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function (Mandel et al. 2007). While these two problems of separation and localization are

mutually dependent, most existing methods deal with a specific part of these problems, and

combined in a cascade manner to handle both problems. The overall quality of this cascade

approach is prone to be determined by the worst component. For example, the HARK sound

source localization and separation system first localizes the sound sources, and then sepa-

rates the mixture signal using the estimated direction of each source (Nakadai et al. 2010).

Therefore, a failure in the localization step affects the separation. Thus, a unified method is

necessary to optimize the mutually dependent problems.

Designing a unified framework for sound source localization and separation involves two

challenges: how to model a unified microphone array processing and how to overcome the

auditory uncertainties such as reverberation and an unknown source number. Though the lo-

calization and separation have been unified by a Bayesian topic model (Otsuka et al. 2012),

this method assumes that the source number is available a priori, which is not always the case

in practice. On the other hand, the estimation of the source number has also been tackled sep-

arately from the separation (Yamamoto et al. 2003, Loesch and Yang 2008). The drawbacks of

these approaches are the necessity of parameter learning in advance or elaborate configuration

depending on the auditory environments. An overall framework that unifies the localization

and separation under the uncertainty of the source number will contribute to a more flexible

CASA system than that by cascade approaches.

This chapter presents a model based on Bayesian nonparametrics for sound source separa-

tion and localization with source number estimation using a microphone array. We formulate

this as a unified twofold clustering problem in which the sound source separation is formu-

lated as a clustering of time-frequency points in the time-frequency domain of the observed

spectrogram and sound source localization is formulated as an assignment of each cluster to

a certain direction. The clusters corresponding to the different sound sources are generated

using a hierarchical Dirichlet process to cope with the source number uncertainty. To infer

the latent variables, we derive a collapsed Gibbs sampler that drastically improves the source

number estimation accuracy.
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Figure 3.1: Illustration of our problem; sound source localization and separation with source

number estimation. The process is carried out in the time-frequency domain to generate TF

masks. Our Bayesian nonparametrics-based model dispenses with environment-dependent

model configurations such as a priori source number information.

3.2 Problem and Related Work

Figure 3.1 outlines our problem. The inputs are a multichannel mixture audio signal and steer-

ing vectors that carry information about the alignment of microphones. The outputs are the

respective audio signals comprising the observed mixture, the arrival directions of the sound

sources, and the number of sources. Steering vectors are necessary for sound source localiza-

tion. A steering vector conveys the time difference of sound arrivals at each microphone given

a certain direction and a frequency bin. We use the steering vectors measured in an anechoic

chamber so that the vectors can be used independently of the reverberation or environment.

We can also synthesize steering vectors when we use a microphone array in a simple shape

such as a linear array in Figure 3.1.

We make three assumptions on our auditory setup: (1) spatial sparsity of sound sources, (2)

power sparsity of the audio in the time-frequency domain, and (3) non-moving sound sources.

The first assumption means that all sound sources are located in different directions because a

microphone array extracts audio signals coming from distinct directions. The second assump-

tion is often satisfied by most audio signals due to their non-stationarity: non-stationary audio

signals, such as speech, music, and so on, have their power on certain frequency bands that

may vary over time. This leads to a sparse power distribution in the time-frequency domain.

By the second assumption, we can assume that only one source signal is likely to be dominant
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at each time-frequency point even for a mixture of sound sources. This supports the use of

a clustering-based approach for sound source separation (Sawada et al. 2011, Otsuka et al.

2012, Bofill and Zibulevsky 2001). The third assumption means that the sound sources do not

change their directions over time and is made for simplicity.

Sound source separation and localization in practical situations have two inherent prob-

lems: reverberation and source number uncertainty. When we observe a sound in a room,

the observation contains reverberation that can be modeled as a convolutive process (Peder-

sen et al. 2007). Though methods in the time-frequency domain through a short-time Fourier

transform (STFT) are often used to cope with the reverberation, this causes a permutation

problem (Sawada et al. 2004). The permutation problem occurs when the separation is carried

out independently of frequency bins in an unsupervised manner, e.g., using independent com-

ponent analysis (ICA) (Common and Jutten 2010). To aggregate the spectrogram of a certain

source, we must identify the signals of the same sound source from all frequency bins. Inde-

pendent vector analysis (IVA) (Lee et al. 2007, Ono 2011) avoids the permutation problem

by maximizing the independence of the constituent sound sources across all frequency bins

simultaneously.

Due to the uncertainty of the number of sources, we have to deal with a model complexity

problem and a possibly underdetermined situation. With ICA and IVA, the number of sources

N is assumed not to exceed the number of microphones M . However, in practice, N is not

always guaranteed to be capped at M , especially when we are unaware of the source number.

The case in which N > M is called an underdetermined problem. An approach to this condi-

tion is the clustering formulation that generates a time-frequency (TF) mask for each sound

source (Yilmaz and Rickard 2004, Mandel et al. 2010, Sawada et al. 2011, Taghia et al. 2012,

Mandel et al. 2007).

3.2.1 Problem formulation

We outline a general convolutive mixture model for observation of multiple sound sources

with a microphone array in a reverberant environment. For the separation of the observed

mixture signal, we explain the idea of Bayesian nonparametric model so as to cope with the

source number uncertainty.
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Consider a multichannel convolutive mixture of sound sources in the time domain:

x time
m (τ) =

N
∑

n=1

btime
mn (τ)∗ stime

n (τ),

where τ is the time index, x time
m is the signal observed by the mth channel (m = 1 . . .M) in

the time domain, stime
n is the nth source signal (n = 1 . . .N ), and btime

mn (τ) denotes the impulse

response from the location of source n to microphone m. Operator ∗ denotes convolution. We

assume the impulse responses have finite lengths.

The observed audio signal is converted into the TF domain through short-time Fourier

transformation (STFT). Let xt f be the multichannel observation in the TF domain in time

frame t and frequency bin f . The audio signal mixture for N sources is observed with M

microphones; that is, xt f ∈ C
M is an M-dimensional complex-valued vector. We assume that

the N sources are mixed through a convolutive process in the TF domain:

xt f = B0
f st f +

J−1
∑

j=1

B
j

f
st− j , f , (3.1)

where st f ∈ C
N is the source signal, with each element corresponding to a distinct sound

source. The instantaneous mixing coefficients are denoted by B0
f
∈ CM×N , where the ele-

ment in the mth row and nth column, b0
f ,mn

, denotes the propagation coefficient from the nth

source to the mth microphone. Similarly, the elements in B
j

f
∈ CM×N denote the propaga-

tion coefficients from the previous source signals with a time lag of j. We assume that the

propagation coefficients depend on the direction of arrival of each source. Therefore, each

column in B
j

f
(0 ≤ j < J) is determined by the location of each source. Here, we manipu-

late each frequency bin independently for simplicity. This means that we ignore the spectral

leakage between adjacent frequency bins caused by STFT. A discussion of spectral leakage is

presented in (Nakatani et al. 2008a).

The task of sound source separation is to estimate source signal vector st f on the basis of

observations xt f so as to extract the sound source signals. In our implementation, we extract

the image of the kth source x̂k
t f
= b0

f k
sk
t f

, where b0
f k

denotes the kth column of instantaneous

mixing matrix B0
f

and sk
t f

denotes the kth element of st f . The difficulty is that we have to

retrieve source signals st f using only the observed mixture xt f without knowing propagation

B
j

f
and source number N .
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3.2.2 Separation without dereverberation

We first formulate the separation and localization problem without considering the reverbera-

tion. In this chapter, Eq. (3.1) is approximated as

xt f ≈ B0
f st f . (3.2)

Since the size of B0
f

is M × N , if the number of sources matches the number of microphones

(N = M), a linear transform can be used to recover the sources from the observed mixture

such that st f =W f xt f by, for example, using ICA (Hyvärinen et al. 2001, Common and Jutten

2010, Sawada et al. 2007) and its variants (Lee et al. 2007, Ono 2011). If the mixing process

is overdetermined, that is, the number of sources is less than the number of microphones

(N < M), dimensionality reduction based on principal component analysis is often used as a

preprocessing to reduce the dimensionality to N (Winter et al. 2006). In this case, the linear

transform for the separation is still tractable.

We use a TF masking approach (Yilmaz and Rickard 2004, Mandel et al. 2010, Sawada

et al. 2011) to deal with situations in which the source number information is unavailable with

a consistent approach. In such situations, we need to consider both the overdetermined and

underdetermined conditions, where the underdetermined condition means that N >M . The TF

masking approach provides a consistent way of dealing with both conditions. This approach is

based on two assumptions: the powers of the sound sources are sparsely distributed in the TF

domain and the powers of different sources rarely overlap. In other words, at most one sound

source is assumed to be dominant for each time t and frequency f (TF point). This enables us

to further approximate the observation:

xt f ≈ b0
f kt f

s
kt f

t f
, (3.3)

where kt f represents the dominant source at time t and frequency f , and b0
f k

is an M-dimensional

vector corresponding to the propagation coefficients of the kth source (1 ≤ k ≤ N ), which is

the kth column vector of B0
f

in Eq. (3.2), and s
kt f

t f
is the kth source signal of the dominant

source. Note that coefficients b0
f k

depends on the direction from which the kth source arrives.

The source sparsity assumption implies that sk
′

t f
= 0 if kt f = k and k′ , k . Thus, we simply

write st f instead of s
kt f

t f
in the context of source sparsity.
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Figure 3.2: Plot of complex-valued multichannel signals for two sources in a frequency bin of

1000 (Hz). X-marks correspond to TF points xt f in frequency bin. Each axis corresponds to

a distinct channel of microphone array: horizontal axis is real part of channel 1 and vertical

axis is imaginary part of channel 2. Colors represent distinct sound sources. Arrows along TF

points of each source are parallel with propagation coefficients of that source.

TF mask generation is formulated as a clustering problem in the following manner. As

illustrated in Figure 3.2, the source signals coming from different directions span distinct sub-

spaces in the TF-domain observation space of each frequency bin. The TF masks for extracting

constituent sound sources are estimated through the clustering of each TF point depending on

the subspace along b0
f k

for each frequency bin f . We use the covariance model (Duong et al.

2010) defined as follows to achieve this clustering.

xt f ∼ NC(xt f |0, λt f H f kt f ), (3.4)

where NC(x|µ,Λ) represents the complex normal distribution of x with mean µ and preci-

sion matrix (inverse of covariance matrix) Λ. This choice of notation is for precision matrices

instead of covariance matrices because we use conjugate prior distributions for precision ma-

trices. In Eq. (3.4), the precision term is factorized into two terms: scale factor λt f and matrix

H f kt f . These two terms are defined as λ−1
t f
= E[st f ] and H−1

f k
= E[b0

f k
b0 H
f k

], respectively, where

E[·] means the expectation and ·H denotes Hermitian transposition. This factorization is de-

rived by taking the outer product of both sides of Eq. (3.3). The clustering of the observations

at each TF point xt f is achieved by estimating the class index kt f for each TF point on the

basis of likelihood defined by Eq. (3.4). The sound source localization (direction of arrival
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CHAPTER 3. SEPARATION & LOCALIZATION

estimation) can be simultaneously carried out by inspecting matrix H f k associated with prop-

agation coefficient b0
f k

because the propagation coefficients that form the subspace are related

to the direction from which the source is arriving.

3.2.3 Source number uncertainty and Bayesian nonparametrics

The source number uncertainty is closely related to the selection of model complexity. For

example, source separation methods using ICA or IVA often reduce the dimensionality of the

multichannel observation from the microphone number to the source number by using prin-

cipal component analysis when the number of sources is available (Winter et al. 2006). PCA

is employed in order to reduce the number of latent parameters in the separation matrices as

a preprocessing of ICA (Vaseghi and Jetelová 2006, Kovacevic and McIntosh 2007). Simi-

larly, TF masking-based separation methods often use the same number of TF masks as that

of sources so that the model complexity should fit the source separation problem (Sawada

et al. 2011). In case of source number uncertainty, where an appropriate model complexity is

unknown, a simple solution is to use a sufficiently flexible model (Araki et al. 2009, Taghia

et al. 2012). For example, if we can assume the source number is at most four, four TF masks

are sufficient. This approach is problematic in two ways: first, a model with a finite number of

TF masks fails in the separation when the source number exceeds the number of TF masks.

Second, using a too flexible model may affect the performance because redundantly flexible

models are apt to overfit the data.

Nonparametric Bayesian models are helpful in such situations since we can bypass a care-

ful selection of the mask number K by assuming an infinite number of TF masks in the model.

Furthermore, the prior distribution for the TF masks penalizes unnecessary emergence of TF

masks. This property helps the inference to avoid an overfitting that may affect the separa-

tion and localization performance. Some Bayesian nonparametric models have been related to

microphone array processing techniques. Infinite independent component analysis (Knowles

and Ghahramani 2007) is a nonparametric counterpart of ICA. Because this model allows only

for real-valued variables, the separation is limited to the time domain, which is vulnerable to

reverberation. While Nagira et al. extend the model into the time-frequency domain (Nagira

et al. 2013, 2012), they cope with the permutation resolution separately after the separation.
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This naïve extension into the time-frequency domain is problematic because the inference

results in each frequency bin may converge to a different number of sources.

The contribution of this chapter is twofold. (1) We present a nonparametric Bayesian

model that unifies sound source localization, separation, and permutation resolution using a hi-

erarchical Dirichlet process (HDP) (Teh et al. 2006). This hierarchical model is advantageous

in that the number of sources is globally handled instead of locally for each frequency bin.

(2) We derive a collapsed Gibbs sampler (CGS) that promotes the shrinkage of the classes for

more accurate sound source estimation. This collapsed inference accelerates the inference by

marginalizing out the multichannel precision matrices. While Kameoka et al. develop a sim-

ilar framework based on Bayesian nonparametrics without an HDP (Kameoka et al. 2012b),

the use of this hierarchical structure in our model is convenient to encourage the temporal syn-

chronization of source dominance over frequency bins so as to generate the time-frequency

masks. This mechanism gains a robustness against the reverberation because reverberation is

apt to obscure the temporal synchronization in the time-frequency domain.

3.3 HDP-Based Sound Source Localization and Separation

As mentioned, the problem of sound source separation and localization is tackled as a cluster-

ing problem. The observed multichannel mixture signal is converted into the TF domain by

using STFT. The separation is the clustering of multichannel vectors at each TF point while

the localization is the matching of each cluster with steering vectors. A separation with per-

mutation resolution has been developed based on latent Dirichlet allocation (LDA) (Blei et al.

2003) in which the time frames are regarded as documents and the TF points are treated as

words (Otsuka et al. 2012). In this model, a few sound sources (corresponding to topics in

the context of LDA) are preferred in each time frame to help the permutation resolution by

synchronizing the appearance of the same source across frequency bins. Because LDA is lim-

ited to a finite number of sources, a direct application of LDA fails to take into account the

uncertainty about the number of sources. To solve this, we introduce an unbounded model in

terms of the number of sources by using HDP (Teh et al. 2006).

Our model is designed to achieve a balance between the capability to deal with an un-

bounded number of sound sources and tractable inference of the latent parameters. In order to
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Figure 3.3: Histogram of time-frequency am-

plitudes |xt f |. The power of each time-

freuqency point is close to zero in most cases.

This implies the power sparsity of sound

sources in the time-frequency domain. That

is, at most one source is assumed dominant

at each time-frequency point.

Figure 3.4: Graphical model depicting the

generative process. Observed variables are

double-circled. Latent random variables are

denoted with a single circle. Fixed values are

denoted by plain symbols. Variables inside a

box with an upper-case symbol are indepen-

dent and identically distributed with respect

to the corresponding lower-case index.

satisfy these properties, we employ a likelihood distribution suitable to model multichannel

observation of directional sound sources as well as conjugate prior distributions. The con-

jugate priors are helpful to develop an efficient inference procedure in that the parameter

estimation is accelerated and stabilized with analytic derivation of the posterior distribution

and marginalization of some of the latent parameters.

The notations used in this section are listed in Table 3.1. Figure 3.4 shows the graphical

representation of our model. The double-circled xt f is the observation, the circled symbols are

latent probability variables, and the plain symbols are fixed values. Section 3.3.1 explains how

the multichannel input signal is observed and associated with steering vectors. Section 3.3.2

describes the inference by using CGS. Section 3.3.3 shows how the sound sources are retrieved

or localized and how the number of sources is estimated using the sampled latent variables.

Finally, Section 3.3.4 shows the initialization procedures. A set of variables is denoted with

a tilde without subscripts, e.g., x̃ = {xt f |1 ≤ t ≤ T ,1 ≤ f ≤ F}. As revealed in the subsequent

sections, the inference of z̃ corresponds to the estimation of TF masks for separation, and the

inference of w̃ corresponds to the localization.
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Table 3.1: Notations.
Symbol Meaning

t Time frame index from 1 to T

f Frequency bin from 1 to F

k Class index from 1 to K

d Direction index from 1 to D

M Number of microphones

N Number of sound sources

xt f Observed M-dimensional complex column vector

zt f Class indicator at time frame t and frequency bin f

πt Class proportion at time frame t

wk Direction indicator for class k

ϕ Direction proportion for all classes

λt f Inverse scale parameter for xt f

H fd Inverse covariance of direction d at frequency bin f

ntk Number of time-frequency points assigned to class k at time frame t

n fk ,n fd Number of time-frequency points at frequency bin f of class k or direction d, respectively

cd Number classes assigned to direction d

3.3.1 Multichannel observation and generative model

This section explains the generative process described in Figure 3.4. As outlined in Sec-

tion 3.2.2, we use a covariance model (Duong et al. 2010) for the likelihood function of the

multichannel observation in the TF domain: each sample follows a complex normal distribu-

tion with zero mean and time-varying covariance.

The likelihood function is a complex normal distribution:

xt f |zt f , w̃, λt f , H̃ ∼ NC(xt f |0, λt f H f wzt f
), (3.5)

where zt f and wk indicate the class of xt f and the direction of class k , respectively. Note that

the precision matrix H f wzt f
is indexed with frequency bin f and the direction of arrival of the

sound source. Here, wzt f denotes the direction in which xt f is located. The probability density

function (pdf) of a complex normal distribution NC(x|µ,Λ) is defined as
|Λ|

πM
exp

(

−xH
Λx

)

(van den Bos 1995) with mean µ and precision Λ. |Λ| is the determinant of matrix Λ.

The direction matrix H f d follows the conjugate prior, i.e., complex Wishart distribu-

tion (Conradsen et al. 2003).

H f d ∼WC(H f d |ν f d ,G f d), (3.6)

27



CHAPTER 3. SEPARATION & LOCALIZATION

where the pdf of complex Wishart distribution WC(H|ν,G) is
|H|ν−M exp{−tr(HG−1)}

|G|νπM (M−1)/2
∏M−1

m=0 Γ(ν−m)
; tr(A) is

the trace of A and Γ(x) is the gamma function. The hyperparameters of the complex Wishart

distribution are set as ν f d = M and G f d = (q f dqH
f d
+ ǫIM)−1. G f d is generated from the given

steering vectors q f d, where q f d is normalized s.t. qH
f d

q f d = 1 and ǫ is set to 0.01 to enable

inverse operation.

An HDP (Teh et al. 2006) is used as the generative process of zt f , which is an infinite

extension of an LDA. We introduce this hierarchical generative process to resolve the per-

mutation ambiguity (Otsuka et al. 2012). First, global class proportion β is generated, where

the dimensionality of β is infinitely large. Each element represent the average weights of

infinitely-many classes throughout the spectrogram. Then, the time-wise class proportion πt

is sampled in accordance with β. Again, πt is an infinite-dimensional vector where the ele-

ments represent the weights of infinite classes at the specific time frame t . Finally, each zt f

is sampled in accordance with the time-wise class proportion πt . As Figure 3.5 shows the

dominance of each source is synchronized across frequency bins. Therefore, we achieve the

permutation resolution by introducing πt . The stick-breaking construction for an HDP (Teh

et al. 2006) is given by:

β |γ ∼ GEM(γ), πt |α,β ∼ DP(α,β), zt f |πt ∼ πt , (3.7)

where GEM(γ) is the Griffiths-Engen-McCloskey distribution with concentration γ; DP(α,β)

denotes the Dirichlet process with concentration α and base measure β. Here, the expecta-

tion of πt satisfies E[πt] = β. We place gamma distribution priors for concentrations γ ∼

G(γ |aγ ,bγ) and α ∼ G(α |aα ,bα). The hyperparameters are set as aγ = 0.05,bγ = 5,aα = 0.01,

and bα = 1.

Direction indicator wk contributes to the sound source localization as well as to the permu-

tation resolution because classes from the same direction are associated with each other across

all frequency bins. This variable is drawn from proportion ϕ generated from a flat Dirichlet

distribution.

ϕ|κ ∼ D

(

ϕ

∣

∣

∣

∣

∣

κ

D
1D

)

, wk |ϕ ∼ϕ, (3.8)

where 1D is a D-dimensional vector in which all elements are 1 and D(·|α) denotes the Dirich-

let distribution with parameter α. Our model is a finite mixture with regard to direction due
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Figure 3.5: Left: class proportion πt for each

time frame. Right: TF mask of two sources

denoted by zt f . Each TF point is assigned to a
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0◦, and 60◦ indicated by red arrows. Some

echo component (e.g., reflection on the wall)

is observed as TF masks with small weights.

to the limitation of the spatial resolution of microphone arrays. We also place a gamma prior

over κ as G(κ |aκ ,bκ), where aκ = 1 and bκ = 1.

3.3.2 Inference by collapsed Gibbs sampler

For sound source separation and localization, the inference of z̃ and w̃ is important. These

variables are inferred by using a CGS with π,ϕ, and H̃ marginalized out. The joint distribution

of x̃, z̃, and w̃ is

p(x̃, z̃, w̃|λ̃, ν̃ , G̃,α,β,γ,κ)

=

$
p(x̃, H̃|z̃, w̃, λ̃, ν̃ , G̃)p(z̃, π̃ |α,β,γ)p(w̃,ϕ|κ)dH̃dπdϕ

=
∏

t f

(

λt f

π

)M
∏

f d

∏M−1
m=0 Γ(ν̂ f d −m)|Ĝ f d |

ν̂ fd

∏M−1
m=0 Γ(ν f d −m)|G f d |

ν fd

×
∏

t















Γ(α)

Γ(α+nt ·)

∏

k

Γ(αβk +ntk)

Γ(αβk)















Γ(κ)

Γ(κ + c·)

∏

d

Γ( κ
D
+ cd)

Γ( κ
D

)
, (3.9)

where a dot in the subscripts denote summation over the index, e.g., nt · =
∑

k ntk and c· =
∑

d cd.

Note that, as explained in (Teh et al. 2006), a finite k can be handled during the inference so

that the product over k is valid. The dimensionality of β dynamically changes over sampling
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iterations in accordance with the number of classes actually drawn. The posterior parameters

of the complex Wishart distribution, ν̂ f d and Ĝ f d, are updated using sufficient statistics:

ν̂ f d = ν f d +
∑

t:wzt f
=d

1 = ν f d +n f d ,

Ĝ−1
f d =G−1

f d +
∑

t:wzt f
=d

λt f xt f x
H
t f ,

(3.10)

where
∑

t:wzt f
=d · means a summation over the samples assigned to direction d in frequency

bin f .

From Eq. (3.9), zt f and wk are stochastically updated:

p(zt f = k |x̃,ϑ\zt f ) ∝ (αβk +n
\t f

tk
)
Γ(ν̂
\t f

f wk
+1)

Γ(ν̂
\t f

f wk
−M +1)

×

∣

∣

∣

∣

inv(Ĝ
\t f

f wk
)
∣

∣

∣

∣

ν̂
\t f

fwk

∣

∣

∣

∣

inv(Ĝ
\t f

f wk
)+ λt f xt f x

H
t f

∣

∣

∣

∣

ν̂
\t f

fwk
+1
, (3.11)

p(wk = d |x̃,ϑ\wk) ∝

(

κ

D
+ c
\k

d

)

×
∏

f























































M−1
∏

m=0

Γ(ν̂
\k

f d
+n f k −m)

Γ(ν̂
\k

f d
−m)

∣

∣

∣

∣

inv(Ĝ
\k

f d
)
∣

∣

∣

∣

ν̂
\k

fd

∣

∣

∣

∣

∣

∣

∣

∣

inv(Ĝ
\k

f d
)+

∑

t:zt f =k

λt f xt f x
H
t f

∣

∣

∣

∣

∣

∣

∣

∣

ν̂
\k

fd
+n fk























































, (3.12)

where ϑ\z denotes all latent variables except z, superscripts \t f and \k mean the statistics

without the sample at t and f or samples of class k , respectively, and inv(G) is the inverse

matrix of G.

Let K be the number of sampled classes. To allow for the probability of zt f taking an

unassigned class K +1 in Eq. (3.11), β has K +1 elements, as explained in (Teh et al. 2006).

To calculate the probability of zt f = K + 1, wK+1 = d is temporarily drawn with probability

κ/D+cd
κ+c·

. If zt f is chosen to be K + 1, K is updated as K ← K + 1, and the dimensionality of

β increases by one with βK ← bβK and βK+1 ← (1 − b)βK , where b is drawn from a beta

distribution: b ∼ B(1,γ).
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The updates of the other parameters, α,β,γ, and κ, follow a procedure described in (Teh

et al. 2006, Escobar and West 1995). These parameters are updated using auxiliary variables.

3.3.3 Localization, separation, and source number estimation

The collapsed Gibbs sampler described in Eq. (3.11, 3.12) produces the samples of latent

variables indexed by i: {z̃(i), w̃(i)}I
i=1

. Sound sources are retrieved by applying a TF mask cor-

responding to a certain direction. The multichannel spectrogram of a sound source in direction

d, denoted by x̂d
t f

, is retrieved using

x̂dt f =
1

I

I
∑

i=1

δ

(

w
(i)

z
(i)

t f

,d

)

xt f , (3.13)

where δ(m,n) is the Kronecker delta, i.e., δ(m,n) = 1 if m = n, and 0 otherwise. The factor

1
I

∑I
i=1δ(w

(i)

z
(i)

t f

,d) is the estimated TF mask for direction d at time t and frequency f . We can

distinguish in which direction sound sources are located by defining the posterior weight for

each direction as

Pd =
1

I

I
∑

i=1

∑

t f

δ

(

w
(i)

z
(i)

t f

,d

)

. (3.14)

If we want N sources from the mixture, we choose N directions in descending order of Pd.

The sound sources are thereby localized and separated.

The number of sound sources is estimated using the posterior weights defined in Eq. (3.14).

Figure 3.6 shows the posterior weights of a three-source mixture with a reverberation time of

400 (ms). We can see three salient peaks (indicated by red arrows) with smaller peaks in

the adjacent directions (blue arrows). Reverberation causes additional peaks corresponding

to echoes (green arrows). The number of sources is estimated using a three-step process. (1)

Ignore the weights adjacent to larger peaks: Pd ← 0, if Pd < Pd+1 or Pd < Pd−1. (2) Sort the

weights in descending order: P′
1
> P′

2
> ... > P′

D
. (3) Find the number N̂ where the weight

drops most sharply: N̂ = argmaxNP
′
N
/P′

N+1
while P′

N+1
> 0. If P′

N
/P′

N+1
monotonically in-

creases until P′
N+1
= 0, N̂ = N .
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Figure 3.7: Microphone array configuration and positions of sound sources. The number of

microphones M is 2, 4, or 8 whereas the number of sources N is set as 2 or 3. When M = 2,

blue microphones are used. When M = 4, blue and red microphones are used. All microphones

are used when M = 8. When N = 2, the center source illustrated in red is omitted.

3.3.4 Initialization of the inference

The inference is initialized in a similar way as previously reported (Otsuka et al. 2012). The

inference starts with a certain number of classes K . First, wk is initialized with a uniform

distribution whose support has no overlap with the other classes. Then, each zt f is drawn

using the sampled wk and the hyperparameter of Wishart distribution, G f d, generated from

the steering vectors:

p(wk = d) = U

({

d

∣

∣

∣

∣

∣

k − 1

K
D ≤ d <

k

K
D

})

,

p(zt f = k) ∝ exp
(

−xH
t f G f wk

xt f
)

,

(3.15)

where U(A) is a pdf of uniform distribution on set A.

3.4 Experimental Results

We evaluate the sound source separation, localization, and source number estimation perfor-

mances of our HDP-CGS method using simulated and recorded mixtures. We compare the
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source separation performance with those of state-of-the-art sound source separation meth-

ods: LDA-VB (Otsuka et al. 2012) and IVA (Ono 2011) for M ≥ N and TF masking with per-

mutation resolution (TF-perm) (Sawada et al. 2011) for M < N . The localization and source

number estimation performance are compared between HDP-CGS and LDA-VB.

3.4.1 Experimental setup

Figure 3.7 illustrates the experimental setup. We used two, four, or eight microphones (M =

2,4,8) to observe two or three sound source mixtures (N = 2,3) with the interval θ = 30, 60,

and 90◦. The microphones depicted in shaded blue were used when M = 2, those depicted

in blue and red were used when M = 4, and all microphones in Figure 3.7 were used when

M = 8. The center speaker (in red) was omitted when N = 2. The steering vectors, q̃, of the

microphone array were measured in an anechoic room such that D = 72 with 5◦ resolution.

When M = 2, we used the steering vectors ranging from −90◦ to 90◦ so as to avoid the front-

back ambiguity. The steering vectors were generated from a Fourier transform of the first 1024

points of the anechoic impulse responses.

The experiments used both simulated and recorded mixtures in three rooms with reverber-

ation times (RT) of 150, 400, and 600 (ms). The simulated mixtures were generated by convo-

luting the impulse responses measured in each room. The impulse responses are explained in

the appendix. For each condition, 20 mixtures were tested using JNAS phonetically-balanced

Japanese utterances. The average length of these mixtures is around 5 (sec). The audio signals

were sampled at 16,000 (Hz), and STFT was carried out with a 1024 (pt) hanning window

and a 256 (pt) shift size.

We use the signal-to-distortion ratio (SDR) as the metric for separation quality (Vincent

et al. 2006). Since this ratio is calculated from the N original signals and the identical number

of separated signals, we extracted N sound sources regardless of the source number estimation

results. We compare five methods in this experiments: HDP-CGS, LDA-VB, IVA, ICA with

permutation resolution (Sawada et al. 2007) (ICA-perm), and TF masking with permutation

resolution (TF-perm). HDP-CGS and LDA-VB separate N sources in descending order of the

posterior weight, as explained in Section 3.3.3, whereas IVA and ICA-perm take N sources

in descending order of the power of the separated audio signals, and TF-perm carries out TF
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mask clustering assuming N sources. Note that TF-perm uses the fact of N sources for the

inference while the inferences of HDP-CGS and LDA-VB are independent of N . The number

of classes K used by LDA-VB was 12, and HDP-CGS was initialized with K = 12.

In Section 3.4.4, the source number estimation results are compared between HDP-CGS,

LDA-VB, and source separation and source counting method developed by Araki et al. (Araki

et al. 2009). Since this method is developed for stereo observation (M = 2), we refer to this

method as Stereo hereafter. The idea of the source counting of Stereo is similar to our method

in that Stereo generates TF masks for each source and then estimates the source number by

counting the TF masks the weight of which is above a certain threshold. The TF masks are

estimated through the EM algorithm where the observation is based on the phase difference of

two microphone, that is, the phase of non-diagonal elements of xt f x
H
t f

. In contrast, our method

uses both the phase and level difference by considering λt f xt f x
H
t f

in Eq. (3.10), and extends

the model to any number of microphones.

The inference (parameter estimation) procedures are configured as follows. The collapsed

Gibbs sampler for HDP-CGS was iterated 50 times with the first 20 cycles discarded as a

burn-in period. The other methods are iterated until the evaluation function converges. LDA-

VB typically converged in about 15 iterations. The iteration of IVA was 50 cycles. ICA-perm

carried out 50 iterations for the separation for each frequency bin and 30 iterations for the per-

mutation resolution. TF-perm required 50 iterations for the separation and 30 iterations for the

permutation resolution, respectively. Computational complexity of each method is compared

in Table 3.2. The number of iterations is the necessary cycles for the convergence. Here, one

iteration involves the whole spectrogram; for example, TF masking-based methods updates

the weight of TF masks at all TF points in one iteration whereas linear separation methods

updates the separation matrices of all frequency bins in each iteration. The class number K

for HDP-CGS is the number of instantiated classes during the inference. HDP-CGS requires

iterative M3 operations due to the calculation of matrix determinants in Eqs. (3.11) and (3.12).

In practice, we can accelerate the computation by skipping the evaluation of the probability

for almost empty classes and directions.
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Table 3.2: Computational complexity of each method.

Method Complexity per iteration
# of iterations

until convergence

HDP-CGS O(TFKM3+FKDM3) 50

LDA-VB O(TFKDM2+FDM3) 15

IVA O(TFM3) 50

ICA-perm. O(TFM2) 50

TF-perm O(TFNM +TFN2) 50

3.4.2 Separation results

Figures 3.8–3.11 show the separation results for simulated and recorded mixtures with two or

three sources. The bars are grouped by the microphone number M for each method. The SDR

scores are averaged over the source interval θ because the interval θ makes little difference

in the separation quality. The color represents each method according to the legend in the

rightmost figures. In general, a longer reverberation time degrades the SDR of all methods. A

comparison of Figures 3.8 with 3.9, and Figures 3.10 with 3.11 shows that a larger number of

sources in the observed mixture degrades the separation quality of the respective sources.

Our method is superior to or competitive with the other methods when M = 4 and 8. In

particular, HDP-CGS tends to produce better SDR than LDA-VB. This is as expected because

LDA-VB has more than N masks with non-negligible weights due to local optima, which

results in the limited SDR scores. In contrast, the performance of our method is limited espe-

cially when M = 2. This is explained as follows. Even though the microphone number is small

M = 2, the proposed approach separates the sources considering a variety of possible numbers

of sources with the limited dimensionality of the observation. This source number uncertainty

limits the performance of HDP-CGS. On the other hand, linear models including ICA and

IVA can assume that the possible source number is two when M = 2. The determined problem

of two-source and two-microphone is also suitable for the linear models in terms of the model

complexity. Thus, the M = 2 setup is advantageous for linear models. Similarly, TF-perm uses

the same number of TF masks as that of the sources. This assumption improves the separation

quality of TF-perm method. Another remaining issue is the reverberation. We can note that

the long reverberation (600 ms) in the recorded mixtures deteriorates the separation quality of

any methods. To cope with these situations, an explicit model for the reverberation is left for
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Figure 3.8: Separation results for simulated mixtures with two sources. Larger value means

better separation. Bars are the means, and the segments are the standard deviations. Color

represents each method. Left: RT = 150 (ms); middle: RT = 400 (ms); right: RT = 600 (ms).
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Figure 3.9: Separation results for simulated mixtures with three sources.
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Figure 3.10: Separation results for recorded mixtures with two sources.
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Figure 3.11: Separation results for recorded mixtures with three sources.

future work.

The performance with the recorded mixtures in Figures 3.10 and 3.11 is worse than that
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with the simulated mixtures in Figures 3.8 and 3.9. This is because the recorded audio con-

tains more reverberation in the lower frequency region than simulated mixtures. As shown

in the appendix, the energy of the reverberation in the impulse responses used to generate

the simulated mixtures is attenuated in the lower frequency range. In contrast, the recorded

mixtures preserve the lower frequency reverberation of the environments. The intensity of

the reverberation in the low frequency region severely affects the separation and localization

performance because the subspace structure shown in Figure 3.2 is originally vague and is

further disturbed by the reverberation. Furthermore, the SDR score is likely to be influenced

from the disturbance of the separation quality in the lower frequency region because speech

signals concentrate their power on the lower part in the frequency domain.

3.4.3 Localization results

Figures 3.12–3.15 show the localization results of HDP-CGS and LDA-VB in terms of the ab-

solute errors of the localization results. Similarly to the separation results, the larger number

of microphones improves the localization performance while the reverberation tends to affect

the localization due to the reflection of the sounds. The errors in LDA-VB is more promi-

nent than those in HDP-CGS because the posterior probability of wk = d can fall into a local

optimum with the variational Bayesian inference of LDA-VB.

For some applications, the localization resolution specified by the steering vectors (5◦

in our experiment) may be insufficient. We can apply the following post-processing to the

separated sound image x̂d
t f

to enhance the localization resolution. Let Rd
f

:=
∑

t x̂d
t f

be the

autocorrelation of the sound image and q̂ f d be the eigenvector associated with the largest

eigenvalue of Rd
f
. The vector q̂ f d is a clue to investigate the direction of the sound source

since this vector is parallel to one of the subspaces illustrated in Figure 3.2. The direction that

matches q̂ f d is investigated by interpolating the given steering vectors of adjacent directions,

q f d and q f d±1 (Matsumoto et al. 2003, Nakamura et al. 2013).

3.4.4 Source number estimation results

Figures 3.16–3.19 show the source number estimation results with HDP-CGS, LDA-VB, and

Stereo. Each figure show the histogram of source number estimates for each microphone
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Figure 3.12: Localization results for simulated mixtures with two sources in terms of absolute

errors. Smaller value means better localization. Bars are the means, and the segments are the

standard deviations. Color represents each method. Left: RT = 150 (ms); middle: RT = 400

(ms); right: RT = 600 (ms).

0

20

40

60

0

20

40

60

0

20

40

60

RT=150 ms RT=400 ms RT=600 ms

A
b

so
lu

te
 l

o
ca

li
za

ti
o

n
 

er
ro

r 
(d

eg
)

M=2M=4M=8 M=2 M=4M=8 M=2 M=4 M=8 M=2M=4M=8 M=2 M=4M=8 M=2 M=4 M=8 M=2M=4M=8 M=2 M=4M=8 M=2 M=4 M=8

Figure 3.13: Localization results for simulated mixtures with three sources.
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Figure 3.14: Localization results for recorded mixtures with two sources.
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Figure 3.15: Localization results for recorded mixtures with three sources.

number and reverberation. Note that the results of Stereo is only presented for M = 2 case.

The results are merged in terms of θ for this evaluation because this parameter made little
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Figure 3.17: Source number estimation results for simulated mixtures with three sources (N =

3).
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Figure 3.18: Source number estimation results for recorded mixtures with two sources (N = 2).
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Figure 3.19: Source number estimation results for recorded mixtures with three sources (N =

3).
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difference to the source number estimation performance. An ideal result of the estimation is

that the bar is concentrated at the ground truth source number N .

A comparison of HDP-CGS and LDA-VB reveals that HDP-CGS clearly outperforms

LDA-VB because the blue bars are mostly located at the true source number where as the

red bars overestimate the number of sources. These results demonstrate that the CGS works

well for source number estimation because it avoids local optima of the latent space, unlike

variational Bayes inference. The results of Stereo tend to have a larger variance than HDP-

CGS with the M = 2 case. This is considered because the observation model of Stereo uses

only the phase difference between the two microphones and thus the TF mask generation is

sometimes unstable. This makes it difficult to set a static threshold for the source counting

in general setups. Three points in particular are observed. (1) VB tends to estimate more

sources than CGS apparently because local optima obtained by VB have many tails in the

posterior weights, which prevents correct source number estimation. (2) A larger number of

microphones contributes to a better estimation with HDP-CGS. This means the number of

microphones affects source number estimation as well as source separation quality.

HDP-CGS sometimes underestimates the source number when M is small and reverber-

ation time is large. This is because the reverberation component is led to merge with most-

weighted TF mask due to HDP prior that encourages a sparsity of activated masks. Thus, the

ratio between the largest weight P′
1

and the second largest weight P′
2

is maximized, where

the notation P′ comes from Section 3.3.3. On the other hand, Stereo can estimate a larger

source number as long as the threshold for the TF mask weight is accurately configured. For

the improvement of this underestimation of HDP-CGS, more sophisticated source number

estimation mechanism may be necessary.

3.4.5 Discussion and future work

The experiments revealed that our method can outperform state-of-the-art methods in terms

of separation quality. In addition, our method is capable of robust source number estimation

from a multichannel mixture even in a reverberant environment thanks to the CGS.

They also show that reverberation particularly affects the separation quality. We may incor-

porate a reverberation reduction technique such as (Yoshioka et al. 2011) for further improved
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performance. Our method assumes non-moving sound sources. The use of a hidden Markov

model would be a natural way to cope with moving sound sources (MacKay 1997) as it would

make the direction indicator wk a time-series sequence. For source number estimation, a model

selection approach, such as (Fujimaki and Morinaga 2012), may be useful.

We used the measured impulse responses from the directions we consider as prior infor-

mation about the microphone array we use. Reducing the necessary prior information about

the microphone array can also be enumerated as the future directions. For example, the im-

pulse responses can be simulated from the position of microphones or obtained through more

casual and automatic calibration.

3.5 Summary

Our sound source localization and separation method using a microphone array achieves the

decomposition function that is essential to CASA systems in a unified manner based on

hierarchical Dirichlet process. Source separation experiments using simulated and recorded

mixtures under various conditions demonstrated that our method outperforms state-of-the-art

methods without a priori source number knowledge.

41





Chapter 4

Bayesian Nonparametric Multichannel

Sound Source Separation, Localization,

and Dereverberation

This chapter presents a unified method for sound source separation, localization and derever-

beration to overcome the performance degradation due to reverberation in observed mixture

signals. Unlike the method presented in Chapter 3 ignoring the reverberation in the obser-

vation process, the method developed in this chapter uses autoregressive (AR) processes to

model the reverberation for achieving the dereverberation function.

4.1 Introduction

In actual acoustic environments, the microphone array processing for sound source separation

and localization often faces the uncertainty about the number of sources as well as reverber-

ation, as illustrated in Figure 4.1. Regarding the source number issue, state-of-the-art source

separation methods using independent component analysis (ICA) (Hyvärinen et al. 2001) or

independent vector analysis (IVA) (Lee et al. 2007) are limited to cases where the sources

do not outnumber the microphones. When this assumption is violated, i.e., on the underde-

termined condition, we need to use non-linear models such as time-frequency (TF) mask-

ing (Yilmaz and Rickard 2004, Mandel et al. 2010, Araki et al. 2010, Sawada et al. 2011).

In addition, the separation and localization performance are degraded when the observed sig-

nals are highly reverberant. A common approach to mitigating this problem is to incorporate
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SeparationLocalization

(a) Machine listening functions by microphone array (b) Challenges in practical auditory scenes

(b-2) reverberation

(observed in indoor environments)

(b-1) source number uncertainty

(possibly more sources than microphones)

Figure 4.1: (a) Illustration of sound source separation and localization using a microphone

array. (b) Acoustical challenges that limit performance and applicability of microphone ar-

ray processing. Since conventional microphone array algorithms require several assumptions

about the environment, we need a priori knowledge about the environment or the ability to

identify the environment so as to choose appropriate algorithms, which is generally a diffi-

cult task. Our method is designed to handle two situations. (b-1) Source number uncertainty

with two elements. First, the number of sources is a critical parameter for most source separa-

tion models. Second, the observation can be underdetermined, i.e., the sources outnumber the

microphones. This situation is problematic for multichannel dereverberation, as explained in

Section 4.2. (b-2) Reverberation leads to separation and localization degradation.

dereverberation processing (Huang et al. 2005, Buchner and Kellermann 2010, Yoshioka et al.

2011, Togami et al. 2013). However, existing methods have limited applicability because they

are based on the assumption that the number of sources is known. Furthermore, these methods

require that the observation process be overdetermined; that is, the number of sources must

be less than the number of microphones. This requirement is possibly unsatisfied in practice.

Since a priori knowledge about the environment including the source number is often difficult

to obtain, an all-round method applicable to a wide range of environments is desirable.

This chapter presents a Bayesian method for analyzing multi-source reverberant acoustic

scenes with an unknown number of sound sources by jointly performing sound source lo-

calization, separation, and dereverberation. This method is based on a previously proposed

Bayesian model for localization and separation (Otsuka et al. 2012, 2013) that is capable of

dealing with any number of sources under possibly underdetermined conditions. The model

has been extended to incorporate the dereverberation process in a unified manner. Unlike ex-

isting joint source separation and dereverberation methods (Huang et al. 2005, Buchner and

Kellermann 2010, Yoshioka et al. 2011, Togami et al. 2013), our model can handle situations

in which the source number is unavailable and in which the conditions are underdetermined.
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Localization and separation are formulated as two types of clustering problems, and the rever-

beration signals are modeled as AR processes. We tackle the model selection problem in both

separation and dereverberation caused by the source number uncertainty. Bayesian nonpara-

metrics plays a key role in our method. Thanks to the infinitely extensible flexibility of the

Bayesian nonparametrics-based model, our model bypasses the model the selection problem

and is able to handle any number of sound sources in a consistent manner.

The rest of this chapter is organized as follows. Section 4.2 introduces our Bayesian non-

parametric framework for model selection regarding the separation and dereverberation prob-

lem for any number of sources even under underdetermined conditions. Following the dis-

cussion in Section 4.2, Section 4.3 presents our separation and dereverberation model, which

is applicable to an arbitrary number of sources without the source number being specified in

advance. Section 4.4 presents the results of our evaluation of separation and dereverberation

performance in comparison with a state-of-the-art separation and dereverberation method.

Section 4.5 summarizes the key points of this chapter.

4.2 Bayesian Nonparametric Multichannel Dereverberation

This section incorporates Bayesian nonparametrics with multichannel dereverberation tech-

nique using AR processes. We explain why conventional multichannel dereverberation meth-

ods are limited to overdetermined conditions. Then, an infinite mixture of AR processes based

on Bayesian nonparametrics is introduced to overcome this limitation.

The goal of dereverberation and separation is explained as follows using Eq. (3.1). Given

the reverberant observation of mixture signal xt f in Eq. (3.1), we would like to estimate the

source signals st f , or equivalently the source image signals extracted in the previous chapter.

For the dereverberation, we need to estimate and remove the reverberation component from

observed mixture xt f , where the second term in Eq. (3.1) is the reverberation component. For

the separation, we have to extract each source in the first term in Eq. (3.1).

This section is organized as follows. First, we explain how multiple sources are observed

with a microphone array. Section 4.2.1 explains how reverberation affects the separation per-

formance. Section 4.2.2 reviews the mechanism of existing reverberation modeling based on

an AR process and shows that the reverberation is accurately modeled only when the mix-
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(a) Anechoic observation (RT= 20 ms) (b) Reverberant observation (RT= 600 ms)

Figure 4.2: Comparison of TF point subspaces between anechoic and reverberant environ-

ments. Axes are the same as those in Figure 3.2. (a) Scatter plot of TF points for reverberation

time (RT) of 20 (ms). Subspaces corresponding to signals from different directions are sharp

and distinct. (b) Scatter plot of TF points for RT of 600 (ms). Reverberation obscures sub-

spaces, complicating the clustering of TF points for TF mask estimation.

ture is overdetermined (Yoshioka et al. 2011, Gorokhov and Loubaton 1997). Section 4.2.3

presents our novel idea for modeling the reverberation for an arbitrary number of sources,

which is to model the reverberation signal as an infinite mixture of AR processes based on

Bayesian nonparametrics. Section 4.2.4 compares our dereverberation method with those of

several existing methods.

4.2.1 Influence of reverberation on separation methods

In Chapter 3, Bayesian nonparametric sound source separation and localization method is de-

veloped to cope with the source number uncertainty issue. While effective in less reverberant

environments, the separation performance is significantly degraded when there is severe rever-

beration. If the observed mixture signal contains reverberation, the subspace structures tend to

be indistinguishable from each other, as depicted in Figure 4.2. Thus, separation performance

is degraded because the clustering of TF points becomes difficult.

A Bayesian nonparametric model using the likelihood in Eq. (3.4) copes with reverbera-

tion in two ways. First, the effect of reverberation is absorbed to some extent by the full-rank

covariance matrix (Duong et al. 2010) in Eq. (3.4) because a full-rank covariance matrix can
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fit the vague subspace, to some extent. Second, some reflected sound can be separated as a

distinct source by using extra masks. In particular, early reflections can be detected with such

extra masks, where early reflections are a few strong reflections that are observed sporadically

immediately after direct sound arrival. If such a salient reflection is observed from a direction

that is different from all the source directions reverberation can partly be removed. Never-

theless, reverberation still affects separation performance, as shown in Section 3.4, which

motivates us to explicitly incorporate dereverberation into microphone array processing.

4.2.2 Modeling reverberation component with autoregressive process

Now we return to the original observation model presented in Eq. (3.1) and explain how we

model the reverberation component, the second term on the right-hand side of Eq. (3.1), by

using an AR process of the multichannel observations. We estimate the reverberant compo-

nent needed to achieve dereverberation, that is, to remove the reverberant component from the

observed signal, thereby uncovering the latent subspace structure formed by the propagation

coefficients of direct sounds B0
f

for accurate separation and localization. The derivation of

the model of the reverberant component clarifies why the overdetermined condition has been

assumed in previous work to achieve dereverberation (Huang et al. 2005, Buchner and Keller-

mann 2010, Yoshioka et al. 2011). We extend the AR processes so that the model can fit the

reverberant components even in underdetermined situations by taking account of the sparsity

of sound sources, as we did for separation in the previous section.

We model the reverberant component as an AR process of order R:

J−1
∑

j=1

B
j

f
st− j , f =

R
∑

r=1

AH
f rxt−r , f

:= AH
f xt f , (4.1)

where A f r ∈ C
M×M is the AR coefficients of the r th lag, and xt−r , f is the observed mixture

at time t − r . We put a comma in the subscript when some operation is involved to clarify the

notation, e.g., between t − r and f (as in xt−r , f ), which represent the time frame and frequency

bin, respectively, and omit the comma if the correspondence of the notation is clear. In the
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second line of Eq. (4.1), we used stacked notation, defined as

A f := [AH
f 1, . . . , A

H
f R]H ∈ CMR×M ,

xt f := [xH
t−1, f , . . . ,x

H
t−R, f ]

H ∈ CMR .

While effective for overdetermined situations, this model does not work effectively when

there are more sources than microphones. To clarify this, we next show that the overdeter-

mined condition is a prerequisite for the above model to accurately represent the reverberation

component.

The relationship between propagation coefficients B
j

f
and AR coefficients A f is clarified

by stacking Eq. (3.1) to remove xt f from Eq. (4.1). By stacking Eq. (3.1), we get
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:= B f st−1, f . (4.2)

Let B f ∈ C
MR×N (R+J−1) be a large matrix consisting of propagation coefficients and st−1, f ∈

C
N (R+J−1) be the sequence of source signals on the right side of Eq. (4.2). Using this notation,

we can derive the following equation by substituting Eq. (4.2) into the right side of Eq. (4.1):

[

B1
f , . . . ,B

J−1
f ,0

]

st−1, f = AH
f B f st−1, f . (4.3)

We can interpret Eq. (4.3) as follows: if we can set the AR coefficients A f such that Eq. (4.3)

is satisfied for any source signal ∀st f , we can fit the reverberant component with the autore-

gression of the sequence of observations. The equality is fulfilled if the AR coefficients satisfy

AH
f = B

†

f

[

B1
f , . . . ,B

J−1
f ,0

]

,

where C† is the left inverse of matrix C such that C†C = I. The existence of the left inverse of

B f requires two conditions:

• The number of rows is larger than the number of columns.

• The column vectors of B f are linearly independent.
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These conditions are paraphrased as follows. The first condition is rewritten as MR > N (R+

J − 1). This is satisfied when M > N and R is sufficiently large compared with L. For the

second condition, the linear independence of the columns in each propagation matrix B
j

f
is

the sufficient condition. This is in practice satisfied when the sound sources are located in

distinct directions. In summary, the AR process of the observed mixture can fit the reverberant

components under three conditions:

1. The mixture is overdetermined (M > N ).

2. The order of AR process R is sufficiently large compared with the amount of reverbera-

tion J .

3. The sources are located in distinct directions.

These conditions have been confirmed elsewhere, e.g., (Yoshioka et al. 2011, Gorokhov and

Loubaton 1997). We derived these conditions using the notations above to clarify our idea for

extending the AR-based reverberation modeling for any number of sources in the following

section.

Note that while the overdetermined mixture process (M > N ) is required to guarantee the

equality in Eq. (4.1), this AR model can, in practice, approximate the reverberant component,

as shown by the experimental results in Section 4.4. We can interpret this in two ways. First,

we can reduce the difference between the both sides of Eq. (4.3) empirically by using the

provided source signals st f , (t = 1, . . . ,T ) and setting the AR coefficients A f such that a cer-

tain criterion (for example, the least squared error) is minimized. Second, the estimation of

AR coefficients A f is carried out by reducing the correlation between previous observations

xt f and present observation xt f or the present constituent source signals st f (Takeda et al.

2012). When the sources outnumber the microphones, although complete decorrelation is im-

possible, existing methods can partly remove the temporal correlation that results from the

reverberation.
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4.2.3 Infinite mixture of AR processes for dereverberation of arbitrary

number of sources

We extend the AR process so that the reverberation component of any number of sources can

be constructed from the previous observations of the mixture signal. Our idea is to use the

sparsity of source power at each TF point and to incorporate Bayesian nonparametrics again

to enhance the flexibility of the model to form the reverberant component.

Since the left inverse of B f is a key requirement for the AR model to fit the reverberant

component and since the rows should outnumber the columns in matrix B f , that is, MR >

N (R + J − 1), we need some modification to cope with any number of sources, even when

M ≤ N . In a similar way that Eq. (3.2) is approximated by Eq. (3.3), we can reduce the

number of columns in B f by approximating the right side of Eq. (4.2) as

B f st−1, f ≈
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fkt−1, f

... bJ−1
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st−1, f
st−1, f

...
st−R−J+1, f

















:= B
′

t−1, f s
′
t−1, f , (4.4)

where B
′

t−1, f ∈ C
MR×(R+J−1) and s

′
t−1, f ∈ C

R+J−1. This approximation results from the power

sparsity of source signals in the TF domain. Thanks to this approximation, the left inverse

of B
′

t−1, f is tractable, so the AR model can fit the reverberant component even when M ≤

N . However, this approximation undermines the stationarity of the propagation coefficients;

B
′

t−1, f varies depending on time index t . This means that stationary AR coefficients A f can

no longer form the reverberant component for all time frames. Strictly speaking, we have to

switch the AR coefficients on the basis of the history of the source indices kt−R−J+1, f , . . . ,kt−1, f ,

or, more specifically, the history of directions of the dominant sources at each time. However,

exact switching on the basis of the history of directions is prohibitive because the possible

number of combinations of the previous directions grows exponentially large. This combi-

natorial explosion would affect the estimation of the AR coefficients because only a small

portion of the observed sequence is available for the parameter estimation corresponding to

each direction history.

We therefore develop an infinite mixture of AR processes to achieve a balance between the
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capability of the model and the feasibility of parameter estimation (Fox et al. 2011). The infi-

nite mixture model is constructed using the Dirichlet process (DP) (Ferguson 1973), which is

a widely used Bayesian nonparametrics framework, and a tractable parameter inference proce-

dure is derived using the Chinese restaurant process (Aldous 1985, Neal 2000). We model the

AR coefficients as A f lt f , where lt f is an index of the switching, which varies over time. Index

lt f is unbounded, so the model can handle an arbitrary switching of the AR processes to fit the

reverberant component for M < N . At the same time, the prior probability of lt f penalizes the

emergence of unnecessary switching, which prevents the overfitting in the parameter estima-

tion. The aim with this model is to stabilize the estimation of AR coefficients while preserving

the flexibility of the model rather than to exactly trace the history of dominant directions and

to generate the corresponding AR coefficients. Note that this model encompasses the conven-

tional single AR model; when lt f = 1 for ∀t , the model suffices to remove the reverberation

from an overdetermined mixture.

While xt f has been used to denote the previous observations (from xt−1, f to xt−R, f ), in

practice, some samples close to time t are omitted from xt f so as to form the reverberation

component at time t:

xt f = [xH
t−δ−1, f , . . . ,x

H
t−δ−R, f ]. (4.5)

This is because the samples in adjacent time frames are correlated due to overlapped windows

in STFT. If δ = 0, there is a risk of undesirable removal of the direct component in xt f because

of the correlation between xt f and xt−1, f . Nevertheless, the derivation of an infinite mixture of

AR processes above holds even when D > 0. Thus, xt f is defined as Eq. (4.5), hereafter.

4.2.4 Comparison to existing dereverberation methods

The discussion of AR-based dereverberation in Section 4.2.3 leads to a mixture of AR pro-

cesses. The notation A f lt f can be viewed as a time-varying AR coefficient since the index to

specify an AR process lt f depends on time t . Time-varying AR coefficients are equivalent to

time-varying propagation of source signals, as represented in Eq. (4.4). While some nonlinear

dereverberation methods can be used for the setup of the time-varying propagation (Lebart

et al. 2001, Habets et al. 2008), they do not work well in combination with multichannel
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Table 4.1: Notations.
Symbol Meaning

t Time frame index from 1 to T

f Frequency bin from 1 to F

k Class index (positive integer)

K Instantiated number of classes during inference

d Direction index from 1 to D

M Number of microphones

N Number of sound sources

l AR coefficient index (positive integer)

xt f Observed M-dimensional complex column vector

zt f Class indicator for time t and frequency bin f

πt Class proportion for time frame t

wk Direction indicator for class k

ϕ Direction proportion for all classes

λt f Inverse scale parameter for xt f

H fd Precision matrix corresponding to subspace for direction d and frequency bin f

xt f Stacked notation of R previous observations for AR process at time t and frequency f

vt f AR class indicator for time t and frequency bin f

A fl lth AR coefficient for frequency f

ntk Number of TF points assigned to class k at time frame t

n fk ,n fd Number of TF points for frequency bin f of class k or direction d, respectively

cd Number of classes assigned to direction d

r fl Number of TF points assigned to AR class l for frequency bin f

source separation because the nonlinear processing destroys the subspace structures shown in

Figure 3.2.

Togami et al. develop a dereverberation method robust against time-varying propagation

caused by the speaker head movements (Togami et al. 2013, 2012). Their approach is to treat

the AR coefficients as probability variables that absorb fluctuations in the propagation coef-

ficients. This is similar to the approach in our model: our Bayesian model also treats the AR

coefficients as probability variables, as described in the following section. The difference is

that their method uses a single AR process for each frequency bin and evaluates the disper-

sion of the reverberation components whereas our method uses multiple AR processes for

each frequency bin. In fact, our model subsumes their method in that each AR coefficient is a

probability variable and that setting lt f = 1 for ∀t reduces it to a single-AR model.
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4.3 Unified Model for Dereverberation and Separation of

Arbitrary Number of Sources

This section presents our unified model for a dereverberation and separation method capable

of handling an unbounded number of sources and underdetermined conditions. Our method

uses a TF masking-based separation and localization framework (Otsuka et al. 2013) and

the reverberation model incorporating an infinite mixture of AR processes described in Sec-

tion 4.2.3.

The problem to be solved with our algorithm is specified as follows.

Input: Multichannel observation of sound source mixture denoted by xt f (t = 1, . . . ,T , f =

1, . . . ,F).

Output: Separated source signals arriving from distinct directions denoted by xd
t f

, where

d is direction index.

Assumptions:

(1) Number of sources in observation is unspecified. (2) Steering vector q f d of microphone

array is provided for each frequency f and direction d. (3) Sources stay at the same position.

A steering vector is used for two reasons. First, the steering vector is necessary for sound

source localization because the subspace depicted in Figure 3.2 is associated with a certain

direction via this steering vector. Second, broadband sound source separation can be attained

by implicitly resolving the permutation alignment (Sawada et al. 2004), as previously re-

ported (Otsuka et al. 2012, 2013). We obtain the steering vectors for discrete directions, e.g.,

5◦ resolution on the azimuth plane. Thus, the sound sources are localized with this resolution,

and the direction is specified by an integer index d = 1, . . . ,D. Note that the steering vec-

tors are determined independently of the environment but only dependent on the microphone

array. The steering vectors for our microphone array are generated using impulse responses

measured in an anechoic chamber, as noted in Section 4.4.1. We show that these steering

vectors are useful for various reverberant setups in Section 4.4. Therefore, the instantaneous

propagation coefficients, the column vectors of B0
f
, are not necessarily equal to one of the

steering vectors q f d partly because the propagation coefficients are affected by the reverbera-

tion and partly because the sound may arrive from a direction between the grids on the azimuth
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plane. Thus, our problem is a blind source separation problem in the sense that the constituent

source signals are extracted using the observed mixture without access to the propagation co-

efficients and source signals while the steering vectors are provided as knowledge in the form

of a microphone array.

The rest of this section has two main parts. Section 4.3.1 presents the generative model,

which incorporates the infinite TF masks and infinite AR processes explained in Sections 3.2.2

and 4.2.3, respectively. Section 4.3.2 explains the inference based on the Markov chain Monte

Carlo (MCMC) method for the parameter estimation used to obtain the constituent signals.

The notations used in this section are summarized in Table 4.1.

4.3.1 Generative process

The likelihood of a multichannel reverberant signal mixture is modeled as a multivariate com-

plex normal distribution:

xt f |xt f , zt f , w̃, vt f , Ã, λt f , H̃ ∼ NC(xt f |A
H
f vt f

xt f , λt f H f wzt f
), (4.6)

where the mean and precision correspond to the reverberant component and direct sound at

time t and frequency f , respectively. A bold symbol with a tilde means the set of all variables,

e.g., x̃ = {xt f |∀t , f }. If zt f = k and wk = d, the kth source signal coming from direction d is

dominant at time t and frequency f . Matrix H f d determines the subspace corresponding to

direction d in the frequency bin. Similarly, if vt f = l, the lth AR coefficient A f l is used to form

the reverberant component at time t and frequency f .

The sound source separation and localization correspond to the estimation of the latent

variables z̃ for the TF masks and w̃ for the direction of each mask. The dereverberation is

carried out by subtracting the reverberant component AH
f vt f

xt f from the observation xt f .

The choice of prior distributions of latent variables related to the separation and localiza-

tion basically follows those used previously (Otsuka et al. 2013). These priors are selected

so that a tractable inference procedure can be derived. The prior of zt f follows a hierarchical

Dirichlet process (HDP), allowing for an unbounded number of classes.

β |γ ∼ GEM(γ), πt |α,β ∼ DP(α,β), zt f |πt ∼ πt , (4.7)
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where GEM(γ) is the Griffiths-Engen-McCloskey distribution with concentration γ; DP(α,β)

denotes the DP with concentration α and base measure β. We use gamma distribution pri-

ors for concentrations γ ∼ G(γ |aγ ,bγ) and α ∼ G(α |aα ,bα). The hyperparameters are set as

aγ = 0.05,bγ = 5,aα = 0.01, and bα = 1. This hierarchical generative process is aimed at

implicitly resolving the permutation ambiguity by synchronizing the dominance of a cer-

tain source throughout the frequency bin for each time frame (Otsuka et al. 2012). First,

infinite-dimensional global class proportion β is generated. Each element represents the aver-

age weight of infinitely many classes throughout the spectrogram. Then, the time-wise class

proportion πt is sampled in accordance with β. Again, πt is an infinite-dimensional vector in

which the elements represent the weights of infinite classes for specific time frame t . Finally,

each zt f is sampled in accordance with the time-wise class proportion πt .

Direction indicator wk follows a categorical distribution, and its conjugate prior is a Dirich-

let distribution:

ϕ|κ ∼ D

(

ϕ

∣

∣

∣

∣

∣

κ

D
1D

)

, wk |ϕ ∼ϕ, (4.8)

where 1D is a D-dimensional vector in which all elements are 1, and D(·|α) denotes a Dirichlet

distribution with parameter α.

The priors for the parameters in the precision part of the likelihood in Eq. (4.6) are defined

as follows so that the inference procedure is made tractable. The scale parameter λt f follows

a gamma distribution, and the matrices depending on direction H f d follow complex Wishart

distributions:

λt f |at f ,bt f ∼ G(λt f |at f ,bt f ), (4.9)

H f d |ν f d ,G f d ∼WC(H f d |ν f d ,G f d), (4.10)

where G(a,b) denotes a gamma distribution with shape a and scale b, and WC(ν,G f d) means

a complex Wishart distribution (Conradsen et al. 2003) with degree of freedom ν and scale

matrix G f d. The hyperparameters are set as at f = 1, bt f = xH
t f

xt f , ν f d =M , and G−1
f d
= q f dqH

f d
+

ǫIM , where IM is an M ×M identity matrix and q f d is the anechoic steering vector correspond-

ing to frequency f and direction d. The steering vector is normalized such that qH
f d

q f d = 1. To

make G f d a positive definite matrix, ǫIM is added, where ǫ = 0.01 in our implementation.
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The priors for the indicator of AR coefficients vt f and the AR coefficients themselves are

defined for each frequency bin f as

̺ f |ζ f ∼ GEM(ζ f ), vt f |̺ f ∼ ̺ f , (4.11)

A f l |M f l ,K f l ,L f l ∼MN C(A f l |M f l ,K f l ,L f l), (4.12)

where ̺ f is the infinite-dimensional weight vector and vt f is generated in proportion to the

vector for each time. The prior for AR coefficients A f l ∈ C
MR×M is the complex matrix nor-

mal distribution MN C(A|M,K,L), where M ∈ CMR×M is the mean matrix, K ∈ CMR×MR is

the row-wise precision matrix, and L ∈ CM×M is the column-wise precision matrix. These

hyperparameters are set as follows. A DP mixture of AR coefficients is independently con-

structed for each frequency bin because the complexity of the AR coefficient mixture may

differ for each frequency bin in accordance with the acoustic propagation at the correspond-

ing frequency. Therefore, the concentration parameter is also independently generated as ζ f ∼

G(ζ f |aζ f ,bζ f ), where aζ f = 1 and bζ f = 1. To assume an absence of reverberation a priori,

the prior of A f l is set as a zero mean variable, that is, M f l = 0. We also assume that the AR

coefficients are uncorrelated in the prior. Therefore, K f l = IMR and L f l = IM .

The matrix normal distribution is equivalently converted into a normal distribution using

a vectorization operator and Kronecker product:

MN C(A|M,K,L) ≡ NC(vec(A)|vec(M),L⊗K), (4.13)

where ⊗ denotes the Kronecker product operator. This property is used in the inference.

4.3.2 Inference using Markov chain Monte Carlo method

The inference of the posterior distribution of the latent variables (z̃, w̃, ṽ, Ã, and so on) given

observation x̃ is carried out by sampling the values through a Markov chain Monte Carlo

(MCMC) method. A partially collapsed Gibbs sampler (PCGS) (Park and van Dyk 2009) is

used to accelerate and stabilize the mixing of the Markov chains. To be more precise, we

found that collapsing matrix H f d when possible makes inference more efficient.

The overall inference procedures using PCGS are summarized in Algorithm 1. Gibbs

sampling (including PCGS) draws samples from a joint distribution of targeted variables by
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Algorithm 1 PCGS-based inference

Initialize variables, as in Section 4.3.3

loop

for all f , t in random order, update zt f by Eq. (4.14)

for k ← 1, . . . ,K in random order, Update wk by Eq. (4.17)

for all f ,d, update H f d by Eq. (4.18)

for all f , t , update vt f by Eq. (4.19)

for all f , l, update A f l by Eq. (4.20)

for all f , t , update λt f by Eq. (4.21)

Update other hyperparameters α,β,γ,κ, ζ f (for ∀f ).

end loop

stochastically updating some of the variables using the conditional probability distribution of

the variables to be updated conditioned on the rest of variables. In the following, we present

the conditional distributions used to update each variable and then explain the initialization of

the latent variables.

The assignment of each TF point to a certain class zt f is updated as follows. When the

number of current sampled classes is K , the probabilities of k = 1, . . . ,K + 1 are evaluated

for use in updating zt f by Eq. (4.14). Two variables, π̃ and H̃, are marginalized out. The

marginalization over the time-wise class proportions π̃ is described in (Teh et al. 2006). The

marginalization over matrices H̃ is tractable because the Wishart distribution is the conjugate

prior to the normal distribution likelihood.

p(zt f = k |x̃,Θ\{zt f , π̃, H̃})

∝

∫

p(zt f = k |πt , z̃\zt f )p(πt |α,β)dπt

∫

p(xt f |x̃\xt f , zt f = k ,Θ\zt f )p(H̃)dH̃

= (αβk +n f k)
Γ

(

ν̂
\t f

f wk
+1

)

Γ

(

ν̂
\t f

f wk
−M +1

)

∣

∣

∣

∣

Ĝ
\t f −1

f wk

∣

∣

∣

∣

ν̂
\t f

fwk

∣

∣

∣

∣

Ĝ
\t f −1

f wk
+ λt f yt f y

H
t f

∣

∣

∣

∣

ν̂
\t f

fwk
+1
, (4.14)

where Γ(·) denotes the gamma function, |G| is the determinant of matrix G, and Θ is all

the latent variables; Θ\{zt f , H̃} means all latent variables except zt f and H f d (for ∀f ,d). The

calculation of the conditional probability above involves posterior parameters ν̂ f d and Ĝ f d and
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dereverberated signal yt f using the current hypothesis of AR coefficients A f l .

yt f = xt f −AH
f vt f

xt f , (4.15)

ν̂ f d = ν f d +n f d = ν f d +
∑

t:wzt f
=d

1,

Ĝ−1
f d =G−1

f d +
∑

t:wzt f
=d

λt f yt f y
H
t f ,

(4.16)

where n f d is the number of TF points assigned to direction d for frequency bin f . The other

counts, n f k and ntk , are defined in a similar way. A posterior parameter with ·\t f means that

the calculation of the parameter excludes the sample at time t and frequency f .

The time-wise class proportion parameter πt is collapsed out.This marginalization results

in the first term (αβk + n f k) in Eq. (4.14) (Teh et al. 2006). Similar marginalization is applied

to the subsequent conditional probabilities of the discrete latent variables. The purpose of this

manipulation is to make the inference tractable and to accelerate the mixing.

To allow for the probability of zt f taking an unassigned class K + 1 in Eq. (4.14), β is

given K + 1 elements, as explained in (Teh et al. 2006, Otsuka et al. 2013). To calculate the

probability of zt f = K + 1, wK+1 = d is temporarily drawn with probability
κ/D+cd
κ+c·

. If zt f is

set to K + 1, K is updated as K ← K + 1, and the dimensionality of β increases by one with

βK ← bβK and βK+1← (1− b)βK , where b is drawn from a beta distribution: b ∼ B(1,γ).

The conditional probability of wk = d is derived as follows.

p(wk = d |x̃,Θ\{wk ,ϕ, H̃})

∝

∫

p(wk = d |ϕ, w̃\wk)p(ϕ|κ)dϕ

∫

p(x̃k |x̃\k ,wk = d,Θ\wk)p(H̃)dH̃

=

(

κ

D
+ c
\k

d

)

∏

f



























M−1
∏

m=0

Γ

(

ν̂
\k

f d
+n f k −m

)

Γ

(

ν̂
\k

f d
−m

)

∣

∣

∣

∣

Ĝ
\k −1

f d

∣

∣

∣

∣

ν̂
\k

fd

∣

∣

∣

∣

Ĝ
\k −1

f d
+R

yy

f k

∣

∣

∣

∣

ν̂
\k

fd
+n fk



























, (4.17)

where ·\k means that the posterior parameter is calculated while excluding the samples as-

signed to source class k . For example, n
\k

f d
=

∑

t:wzt f
=d and zt f ,k 1. In the second line of Eq. (4.17),

the sets of observed TF points assigned to class k and not assigned to class k are denoted by

x̃k and x̃\k , respectively. Matrix R
yy

f k
represents the correlation of dereverberated signal yt f
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assigned to class k for frequency bin f . Therefore,

R
yy

f k
=

∑

t:zt f =k

λt f yt f y
H
t f .

In Eq. (4.17), ϕ is collapsed out using the conjugacy of the Dirichlet distribution to the discrete

probability variable wk , which results in the term ( κ
D
+c
\k

d
), where cd is the number of classes

assigned to direction d. c
\k

d
is the number of classes for direction d without class k .

Matrix H f d, which represents the subspace corresponding to direction d, is updated using

the distribution

p(H f d |x̃,Θ\H f d) =WC(H f d |ν̂ f d , Ĝ f d), (4.18)

where WC(·) means the probability density function of the complex Wishart distribution. The

posterior parameters ν̂ f d and Ĝ f d are given by Eq. (4.16).

Similarly to the update of zt f , the class of the AR coefficient at each TF point vt f is

updated to 1, . . . , L f +1, where L f is the number of instantiated AR coefficients. The following

conditional probabilities are calculated for l = 1, . . . , L f +1, and vt f is chosen in proportion to

the probability.

p(vt f = l |x̃,Θ\vt f )

∝ (ζ f + r
\t f

f l
)exp

{

−(xt f −AH
f lxt f )

HH f wzt f
(xt f −AH

f lxt f )
}

, (4.19)

where r f l is the number of TF points at which the reverberant component is formed by AR

coefficient A f l for frequency bin f ; r f l =
∑

t:vt f =l 1. The first term is derived from the Chinese

restaurant process (Aldous 1985), where ̺ is marginalized out, and the second term results

from the likelihood given by Eq. (4.6). To allow for unassigned class index v f ,L f +1, A f ,L f +1 is

drawn from the prior of the AR coefficients given by Eq. (4.12).

The conditional probability distribution of the AR coefficients is derived using the vector-

ized notations in Eq. (4.13). A similar derivation was presented in (Yoshioka et al. 2011).

p(vec(A f l)|x̃,Θ\A f l) = NC(vec(A f l)|m̂ f l , Σ̂ f l), (4.20)
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where the posterior parameters m̂ f l and Σ̂ f l are given as

Σ̂
−1

f l =
∑

t:vt f =l

H∗f wzt f
⊗ λt f xt f x

H
t f ,

m̂ f l = Σ̂
−1

f l vec(Q f l), Q f l =
∑

t:vt f =l

λt f xt f x
H
t f H f wzt f

,

where H∗ denotes the complex conjugate of matrix H.

The probability of λt f is a gamma distribution:

p(λt f |x̃,Θ\λt f ) = G(λt f |ât f , b̂t f ), (4.21)

ât f = at f +M , b̂t f = bt f +yH
t f H f wzt f

yt f ,

where G(·) is the probability distribution of the gamma distribution.

The hyperparameters related to the discrete latent variables are updated so that the cluster-

ing algorithm can reflect the variability of the observed data. The parameters related to HDP,

α,β, and γ, are updated as described in (Teh et al. 2006). The update of the other parame-

ters such as κ and ζ f (for ∀f ) follows the steps explained in (Escobar and West 1995). These

parameters are updated using auxiliary variables.

We start the MCMC inference by preparing a single AR coefficient for each frequency bin.

That is, we initially try to find the reverberant component with a single AR coefficient. If the

single-AR model is insufficient to analyze the observation, e.g., due to an underdetermined

mixture, additional AR coefficients are instantiated to fit the observation.

4.3.3 Initialization of inference

The initialization procedure comprises five steps:

1. Use one AR class for each frequency bin: vt f = 1,∀t , f .

2. Initialize AR coefficients A f 1 using Eq. (4.22).

3. Calculate dereverberated signal yt f using Eq. (4.15) and initial AR coefficients.

4. Initialize zt f and wk using dereverberated signal yt f and Eq. (4.23).

5. Initialize H f d and λt f using their posterior distributions Eq. (4.18) and Eq. (4.21).
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The initial AR coefficients are calculated using

A f 1 =















K f 1+
∑

t

λt f xt f x
H
t f















−1 













∑

t

λt f xt f xt f















. (4.22)

This value is equivalent to the maximum a posteriori (MAP) and minimum mean square erro

(MMSE) estimate of the subsequent generative process. Since this dereverberation is an ap-

proximation with low computational cost, we use it for the initialization.

xt f |A f 1,xt f ∼ GC(xt f |A
H
f 1, λ

−1
t f IM),

A f 1 |K f 1 ∼MN C(A f 1 |0,K f 1, IM),

where K f 1 = IMR is the same parameter as in Eq. (4.12). Here, we use λt f =
1

xH
t f

xt f
.

The initialization of zt f and wk is carried out as follows. The inference starts with a cer-

tain number of classes K . In our implementation, the initial numberis set to 12. First, wk is

initialized with a uniform distribution for which the support does not the other classes. Then,

each zt f is drawn using the sampled wk and the hyperparameter of the Wishart distribution,

G f d, generated from the steering vectors:

p(wk = d) = U

({

d

∣

∣

∣

∣

∣

k − 1

K
D ≤ d <

k

K
D

})

,

p(zt f = k) ∝ exp
(

−yH
t f G f wk

yt f
)

,

(4.23)

where U(A) is a probability density function of uniform distribution on set A.

4.3.4 Extraction of source signals

The PCGS described in the previous section is iterated to draw I samples of the latent variables

indexed by i: {z̃(i), w̃(i), ṽ(i), Ã(i)}I
i=1

. Since we have no knowledge as to which directions the

source signals come from or the number of sources, we first calculate the weight of the TF

mask for each direction to determine which directions have dominant sound sources. The

weight for each direction is given by

Pd =
1

I

I
∑

i=1

∑

t f

δ

(

w
(i)

z
(i)

t f

,d

)

.

Source number estimation using this weight was previously presented in Chapter 3.
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The source signal from direction d in the observed mixture is extracted in descending

order of weights Pd:

x̂dt f =
1

I

∑

i

δ(w
(i)

z
(i)

t f

,d)

(

xt f −A
(i) H

f v
(i)

t f

xt f

)

, (4.24)

where δ(m,n) is the Kronecker delta; i.e., δ(m,n) = 1 if m = n, and 0 otherwise. The delta

factor corresponds to the TF masking for the separation, and the subtraction using the AR

coefficients corresponds to the dereverberation process.

4.4 Experimental Results

The performance of source separation and dereverberation with our method is experimen-

tally evaluated. The experiments consist of two parts. The first experiment considers various

numbers of microphones and sources. The second experiment investigates the performance

sensitivity to the choice of AR process order R.

We compare the following four methods in our experiment:

DPAR: Our proposed method with a DP mixture of AR processes for dereverberation.

Single: A simplified version of DPAR–only a single AR process was used to model the

reverberation. That is, the AR class indicator was fixed; i.e., vt f = 1 (for ∀t , f ) and the update

of vt f in Eq. (4.19) was skipped during the inference. AR coefficient A f 1 was updated in

accordance with Eq. (4.20) for the dereverberation. Inference was jointly carried out with TF

masking estimation and AR coefficient estimation.

Cascade: The observed mixture was first dereverberated using the AR coefficients in

Eq. (4.22). Then, HDP-based TF masking method (Otsuka et al. 2013) was used to sepa-

rate the sound sources.

Linear: An existing method combining dereverberation using a single AR process and

separation using ICA (Yoshioka et al. 2011). Due to the limitation of ICA, this method is

applicable only when M ≥ N1, and assumes the source number, N , to be available. This

method dereverberates the observed signal using M channels, while N channels are selected

to estimate the separation matrices, as explained in (Yoshioka et al. 2011).

1While an “exact” dereverberation requires M > N , we can dereverberate the input signal in practice even

when M = N , as mentioned in the last part of Section 4.2.2
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28 cm

Figure 4.3: Configuration of microphone array and sound sources. Microphones were posi-

tioned at 90◦ intervals. When M = 2, microphones at ±90◦ (depicted in black) were used

whereas all microphones were used when M = 4. All sound sources were 100 (cm) from mi-

crophone array. Center source in red was at 0◦. Black sources were at ±60◦, and blue sources

were at ±90◦. When N = 2, black sources were presented, when N = 3, black and red sources

were presented, and when N = 5, all sources were presented.

Through the comparison of DPAR and Single, we investigate the effectiveness of an infinite

mixture of AR processes. We evaluate the effectiveness of joint optimization of AR coeffi-

cients and mixing coefficients by comparing the results of Cascade and those of Single or

DPAR. We also show the performance of Linear as it represents the state-of-the-art.

While Single uses a conventional dereverberation model based on a single AR process, this

method is novel in that it combines AR process-based dereverberation and TF masking-based

separation. Unlike existing joint models that incorporate a linear separation method (Buchner

and Kellermann 2010, Yoshioka et al. 2011, Takeda et al. 2012) requiring N ≤ M , Single man-

ages underdetermined mixtures. Single is similar to the joint separation and dereverberation

method proposed by Togami et al. (Togami et al. 2013) in two ways. First, their method uses a

single AR process using Gaussian AR coefficients. Second, they model the direct component

as a time-varying covariance matrix (Duong et al. 2010) as in Eq. (4.6). However, in order to

perform the source separation, they apply a Wiener filter to the observed mixtures instead of

using TF masks, where the Wiener filter estimated based on the source covariance matrices

that correspond to the subspace of each source. The Wiener filter-based separation requires

the source number information and thus limits the applicability of the method.
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4.4.1 Experimental setups

Figure 4.3 illustrates the configuration of the microphone array and sound sources. We used

two or four microphones (M = 2,4) and two, three, or five sources (N = 2,3,5), including an

underdetermined condition: (M ,N ) = (2,3), (2,5), (4,5). The steering vectors, q̃, were calcu-

lated from impulse responses measured in an anechoic room such that D = 72 with 5◦ reso-

lution. The steering vectors were generated from a Fourier transform of the first 512 points

of the anechoic impulse responses. To avoid front-back ambiguity, the steering vectors from

−90◦ to 90◦ were used when M = 2.

The mixture signals were synthesized by convolving impulse responses measured in in-

door environments with recorded speech utterances excerpted from JNAS corpus containing

phonetically balanced Japanese utterances. We used three environments with different rever-

beration times (RTs): 150,400, and 600 (ms). Reference signals for separation and derever-

beration were generated by convoluting impulse responses truncated at the first 512 points to

eliminate the reverberation component from the reference. For each condition, 20 mixtures

were tested. The average length of these mixtures was around 5 (sec). The sampling rate was

16,000 (Hz), with a 512 (pt) hanning window and a 256 (pt) shift for STFT. To avoid the

suppression of direct components by the AR-based dereverberation, parameter δ in Eq. (4.5)

was set to 1.

We used two metrics to evaluate the separation and dereverberation performance. The

signal-to-distortion ratio (SDR) (Vincent et al. 2006) was used to measure both separation

and dereverberation quality. The direct-to-reverberation ratio (DRR) was used to measure

the dereverberation performance. Two types of reference signals, the direct component and

reverberant component of each source signal, were used to calculate to these ratios. The SDR

and DRR (in dB) for the nth signal are given in the time domain with time index τ:

SDRn = 10log10

∑

τ s
dir
n (τ)2

∑

τ(x̂n(τ)− sdir
n (τ))2

,

DRRn = 10log10

∑

τ s
dir
n (τ)2

∑

τ r̂n(τ)2
,

where x̂n, sdir
n , and r̂n are the separated and dereverberated output corresponding to the nth

source, the reference direct component for source n, and the reverberant components of the
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sources in the mixture remaining in output x̂n, respectively. The N separated results {x̂n}
N
n=1

and the direct components for the N sources {sn}
N
n=1

were matched so that the interference

of the other sources was minimized (Yoshioka et al. 2011, Vincent et al. 2006). When the

output signal had multiple channels, we calculated these ratios using the first channel. For the

evaluation of Linear, a multichannel sound image of each sound source was extracted, and

the first channel was evaluated using the criteria above. The separation and dereverberation

qualities are considered to be better when SDR and DRR are larger. Reverberant component

r̂n in output x̂n was obtained using the sum of the synthesized reverberant components:

srev(τ) =

N
∑

n′=1

srev
n′ (τ),

r̂n(τ) =Gsrev(τ −∆) such that min
G,∆

∑

τ

(x̂n −Gsrev(τ −∆))2,

where srev
n is the synthesized reverberant component for source n. We extracted the reverber-

ant components for all sources in each separated signal x̂n to evaluate the DRR because the

separated signal for source n may contain the reverberant component for other sources n′ , n.

The reverberant components were extracted up to a linear amplification of gain G and a time

shift ∆ of 16 (ms).

The direct component sdir
n and reverberant component srev

n were synthesized as follows.

Let sn(τ) be the nth source signal in the time domain and b(τ) be the impulse response used

to generate the simulated signal. The impulse response was further decomposed into two

parts: b(τ) = bdir(τ)+ brev(τ), where bdir(τ) is the truncated impulse response corresponding

to the direct component. After measuring b(τ) in each environment, we obtained bdir(τ) by

truncating b(τ) at 32 (ms), which corresponds to the length of the window for STFT. The

reverberant impulse response brev(τ) was derived by padding zeros to the first 32 (ms) of b(τ).

Then, sdir
n and srev

n were generated using

sdir
n (τ) = bdir(τ)∗ sn(τ),

srev
n (τ) = brev(τ)∗ sn(τ).
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Figure 4.4: SDR of each method for various numbers of microphones (M = 2,4) and sources

(N = 2,3,5). Bars represent means, and segments are standard deviations.
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Figure 4.5: DRR of each method for various numbers of microphones (M = 2,4) and sources

(N = 2,3,5). Bars represent means, and segments are standard deviations.

4.4.2 Result 1: separation and dereverberation performance

We first present the separation and dereverberation performances when AR order R was 10.

The SDRs and DRRs for the three environments are shown in Figures 4.4 and 4.5. Note that

the ones of Linear method, shown with yellow bars, are omitted for M < N because Linear is

not applicable to underdetermined setups.

The TF masking-based methods (DPAR, Single, and Cascade) produces larger ratios when

the number of microphones is larger and the number of sources is smaller. Unlike the other

three methods, Linear has a higher SDR with M = 4 and N = 3 than with M = 4 and N = 2. This

is because the linear separation process changed the amplitude of the direct components of

the constituent sources, while the evaluation criterion is affected by the amplification effect2.

Comparison of DPAR and Linear shows that our method performs better than a state-of-the-

art method, except when M = 4, N = 3, and RT = 400 (ms). Note that the TF masking-

2 The interference of the direct component of the other sources was smaller when N = 2 than when N = 3.
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Figure 4.6: SDR of each method for various AR orders (R = 5,10,15,20) for M = 2 and N = 2.
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Figure 4.7: SDR of each method for various AR orders for M = 4 and N = 2.

based methods dispense with the source number information while Linear makes use of the

information during the separation process.

The joint optimization approaches (DPAR and Single) have higher DRRs than Cascade.

Similar results are obtained for SDRs, although the differences in the scores are less. This

indicates that the joint optimization improves the estimation accuracy of AR coefficients for

dereverberation, which results in improved separation performance.

The DRRs for DPAR is slightly but consistently higher than those for Single because

DPAR has a more flexible AR model of reverberation. The flexibility of DPAR contributes

to higher SDRs especially when M = 2, where the AR model has a limited fitting capability

due to a small size of AR coefficient matrices (A f l ∈ C
MR×M), and N = 5, where the mixture

process is underdetermined.

4.4.3 Result 2: performance for various AR orders

The SDRs for the three environments for R = 5,10,15, and 20 and N = 2 are shown in Fig-

ures 4.6 and 4.7 for M = 2 and 4, respectively. The DRRs for M = 2 and 4 are shown in

Figures 4.8 and 4.9, respectively.
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Figure 4.8: DRR of each method for various AR orders for M = 2 and N = 2.
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Figure 4.9: DRR of each method for various AR orders for M = 4 and N = 2.

Overall, Linear is more sensitive to the AR order value than the other methods. In partic-

ular, while the DRRs of Linear method with R = 5 is low, the score is substantially improved

when R is increased to 10. The Bayesian approaches is less sensitive to the AR order value in

the SDRs and DRRs. This is an advantage of the Bayesian approaches: the inference results

are insensitive to the model complexity with regard to the AR order value.

In Figures 4.8 and 4.9, we can see that the impact of the AR order on the DRR varies with

the reverberation time: when the amount of reverberation is the smallest, RT = 150 (ms), the

DRRs almost saturate when R = 5 while the DRRs continue to increase with the AR order

when RT = 600 (ms). A similar tendency is evident for the SDR curves (Figures 4.6 and 4.7).

This indicates that the AR order should be chosen carefully so as to maximize the separation

and dereverberation performances.

The DRRs for DPAR are larger than those for Single due to the flexible AR processes,

especially when the size of AR coefficients is limited (M = 2). We can also observe a slight

difference in the SDRs. While Cascade yields degraded DRRs compared with DPAR and

Single, the SDRs for Cascade are as large as those of DPAR and Single when M = 4. This is

probably because the degradation in dereverberation performance can be compensated for by
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Table 4.2: Computational complexity of each method. Time complexity is per iteration. Total

computation time is product of time complexity and No. of iterations. K and L denote instan-

tiated number of TF masks and average number of instantiated AR classes over frequency

bins, respectively.
Method Space complexity Time complexity # of iterations

DPAR O(LFM2R+M2FD+TFK)
O(TFMRL+FLR3M6

+TFKM3+FKDM3) 30

Single O(FM2R+M2FD+TFK) O(FR3M6+TFKM3+FKDM3) 30
Cascade
derev. O(FM2R) O(TFM2R2+FM3R3) 1
Cascade
separation O(M2FD+TFK) O(TFKM3+FKDM3) 50

Linear O(FMNR+FN2+TFN ) O(TFMNR+FM3N3R3+TFN2) 3

the separation process if the number of microphones is not too small.

4.4.4 Discussion

The experimental results presented above demonstrate that DPAR is effective even when there

is uncertainty about the degree of reverberation and the number of sources, although the per-

formance still depends on environmental conditions to some extent. DPAR method outper-

forms the state-of-the-art Linear method especially when the number of microphones is small

(M = 2). Comparison between the joint optimization approaches (DPAR and Single) with

the Cascade method indicates that the joint optimization methods are better than the Cas-

cade method. This is because the iterative update of the AR coefficients contributes to better

dereverberation and thus better separation.

DPAR has better dereverberation performance than Single due to the flexibility of its infi-

nite AR model based on Bayesian nonparametrics. This leads to better separation in terms of

SDR when M = 2. On the other hand, the SDRs of DPAR and Single are similar when M = 4

because the infinite mixture of AR coefficients is more effective when the dimensionality of

a single AR coefficient is restricted. As shown below, DPAR requires more computational

resources than Single. Therefore, in practice, the use of DPAR is more attractive when the

number of microphones is limited, in which case the mixing process is more likely to be

underdetermined.

The computational complexity of each method is summarized in Table 4.2. The complex-
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ity of the separation (and localization) process, presented as Cascade separation in Table 4.2, is

the same as our previous method (Otsuka et al. 2013). The first and second terms of time com-

plexity for DPAR, O(TFMRL) and O(FLR3M6) come from the sampling of vt f in Eq. (4.19)

and calculation of parameters m̂ f l and Σ̂ f l in Eq. (4.20), respectively. One of the limitations of

the DPAR method is its high computational cost due to many matrix operations. We derived

an inference algorithm based on the MCMC method, which is generally computationally ex-

pensive. Instead, we may develop a variational inference framework for our generative model

presented in Section 4.3.1. Since a typical variational inference procedure is similar to expec-

tation maximization (EM) algorithms, we can expect acceleration of parameter inference due

to parallelizing the computations, e.g., parallelization with regard to the frequency bins. We

chose MCMC-based inference because MCMC avoids local optima while variational methods

susceptible to a local optima issue. Therefore, a MCMC method is a reasonable way to avoid

the optimization issue. Separation and dereverberation of moving sound sources are additional

limitations of current microphone array processing because most microphone array-based al-

gorithms are based on the assumption of the stationary observation process in Eq. (3.1). Our

method may be able to solve this dynamic source problem due to its Bayesian nonparamet-

ric formulation. The switching of AR coefficients can be estimated using the idea expressed

in Eq. (4.4) for dereverberation. The infinite TF masking separation may be able to handle

moving sound sources by generating several TF masks for directions that track the paths of

the sources. In the current framework, a moving source is split into multiple TF masks for

different directions. Merging the TF masks for the same sound source to retrieve the moving

source signal will be a problem. Such a source tracking mechanism is a future direction for

addressing the moving sound source problem.

4.5 Summary

We have presented a unified sound source separation and dereverberation model that is appli-

cable to mixture signals containing an unknown number of constituent sources signals, even

for underdetermined conditions, and that is robust against reverberation. We modeled the re-

verberation as switching AR processes based on the sparsity of the source dominance in the

TF domain. Our unified model uses Bayesian nonparametrics to achieve both the switching
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AR processes for the dereverberation and TF masking-based separation for an arbitrary num-

ber of sources. The experimental results reveal the efficacy of our method for underdetermined

setups as well as superiority of the dereverberation and separation performances to those of a

state-of-the-art method, which is inapplicable to underdetermined conditions. This Bayesian

nonparametrics-based model will contribute to machine listening functions as a general frame-

work that works in our daily environments with auditory uncertainties.
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Chapter 5

Multichannel Dereverberation using

Infinite-Order Autoregressive Model

Multichannel dereverberation methods on the basis of autoregressive (AR) processes need to

select an appropriate AR order value in accordance with the amount of reverberation (rever-

beration time) of the environment. Reverberation time is an auditory uncertainty regarding

the reverberation because reverberation time is dependent on various factors: the width and

height of the room, materials of the walls and floor, locations of sound sources etc. To ro-

bustly achieve the dereverberation in various environments, the selection of AR order value is

discussed in this chapter.

5.1 Introduction

Many phenomena in our life are regarded as a time series sequence where the sequence of

observations are temporally correlated. The AR process is a widely used model to analyze

such sequential data (Box et al. 2008). Applications include an analysis of fMRI measure-

ments (Harrison et al. 2003), enhancement of speech signals (T. Yoshioka and Miyoshi 2009),

econometrics (Dickey and Fuller 1981), and modeling of the dance of honey bees (Fox et al.

2011). Recent incorporation of Bayesian nonparametric models with AR processes enables

us to further handle complex time series data by enriching their fitting capability (Fox et al.

2011, Lucca et al. 2013).

For reliable comprehension and analysis of the temporal structure, an appropriate choice

of the order of AR processes has become a critical issue. A motivative example is the removal
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of reverberation from audio signals, also known as dereverberation (T. Yoshioka and Miyoshi

2009, Nakatani et al. 2008b), to improve audio intelligibility. Reverberations are caused by

the reflection of sound waves on the walls in indoor environments. AR processes can be used

to model reverberation because sound reflections can be modeled as the propagation of past

observations. Here, the AR order is dependent on how reverberant the room is. The choice

of an appropriate order is therefore critical to achieve a good dereverberation performance. If

we have no knowledge about the environment, a sensible way is to estimate the order from

observations.

A number of order selection methods have been developed in the literature. These meth-

ods can be categorized into two classes: model selection approaches and Bayesian inference

of the order. The model selection approaches (Hannan 1980, Ing et al. 2012) use various crite-

ria such as the Akaike information criterion (AIC) (Akaike 1974) or the Bayesian information

criterion (BIC) (Schwarz 1978). An order selection using a variational lower bound of the

marginal likelihood (Penny and Roberts 2002, Roberts and Penny 2002) may also be catego-

rized here. These selection approaches suffer from two limitations, both of which undermine

the flexibility of AR models. First, these order selection approaches require the determination

of a particular order from a finite set of candidate orders. Second, these methods are incom-

patible with other Bayesian models, such as infinite mixture (Lucca et al. 2013), that can be

applied to a wider range of sequential data. This is because it is difficult to carry out order

selection and mixture inference at once; the model selection methods require that all the sam-

ples share the same AR structure to compute the selection criteria whereas Bayesian mixture

models assume each sample stochastically belongs to different AR processes.

Alternatively, we can infer the order from the given data in a Bayesian framework by in-

troducing a prior on the order (Godsill 2001, Vermaak et al. 2004). The posterior belief of

the orders is inferred for given observations to investigate which order fits the observed data.

In contrast to the selection approaches above, this is superior because the flexibility of the

model can easily be enhanced by incorporating other Bayesian models. The limitations of the

existing approaches (Godsill 2001, Vermaak et al. 2004) are twofold; (1) the possible order is

limited to a finite range, which ristricts the modeling capability, and (2) the inference becomes

inefficient. Since the analytic derivation of the posterior of the order and AR coefficients is of-
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Figure 5.1: Order uncertainty problem and our approach. We are uncertain how influential the

past samples are. Existing methods cope with only a finite set of candidate orders. Our model

obtains the posterior belief on infinitely many orders to find an appropriate order for the data.

ten intractable, Markov chain Monte Carlo (MCMC) can be used to draw samples of the order

and AR coefficients from their posterior distribution. Because the number of AR coefficients

varies with different orders, reversible jump (RJ) MCMC (Green 1995) is employed to com-

pensate for the dimensionality difference. This sampler can suffer from slow mixing because

a change in the dimensionality of latent parameters is carried out through the Metropolis-

Hastings algorithm, where the parameters are stochastically updated or unchanged.

This chapter presents Bayesian AR processes with infinite orders, as illustrated in Fig. 5.1.

The order prior follows the infinite Markov model used to construct ∞-gram language mod-

els (Mochihashi and Sumita 2008). We also present an efficient MCMC inference that uses

slice sampling (Neal 2003) to update the order whereas the AR coefficients are collapsed out

to accelerate the mixing, or partially updated using a partitioned matrix notation to avoid RJM-

CMC. Another advantage of our Bayesian model is the capability of enhancing the modeling

flexibility through combinations with other Bayesian models (Fox et al. 2011, Lucca et al.

2013).

5.2 Preliminaries: Bayesian AR process with a fixed order

This section outlines the Bayesian formulation of an AR process with a fixed order. Here, we

assume the observation is multivariate in general, which is also known as a vector or multi-

variate autoregressive process, and introduce conjugate priors that facilitate the computation.

Similar models have been presented in the literature (Penny and Roberts 2002, Godsill 2001).
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Suppose a time series observation {xt }
T
t=1

is generated from the AR process of order r . Then,

the likelihood of D-dimensional column vector xt ∈ R
D conditioned on the past r observation

denoted by x̄
(r)
t = [xt−1

⊤, ...,xt−r
⊤]⊤ ∈ RDr is given by

xt |x̄
(r)
t ,A(r),L ∼ N (A(r)⊤x̄

(r)
t ,L),

A(r) |M(r),K(r),L ∼MN (M(r),K(r),L), L|ν,Λ ∼W (ν,Λ),
(5.1)

where A(r) ∈ RDr×D is the AR coefficient and L is the precision matrix. C⊤ is the tranpose

of matrix C. The likelihood is the normal distribution denoted by N (µ,Λ) with the mean µ

and precision Λ. We can equivalently represent the time series as xt = A(r)⊤x̄t + et , where et

is independent and identically distributed (i.i.d.) from N (0,L). This component is called the

excitation, meaning the energy source of the observation. The prior distribution for A(r) is

the matrix normal distribution MN (M(r),K(r),L) with the mean M(r) ∈ RDr×D, column-wise

precision K(r) ∈ RDr×Dr , and row-wise precision L ∈ RD×D. Finally, the precision matrix L

follows Wishart distribution W (ν,Λ) with the degree of freedom ν and scale matrix Λ.

The attractive property of these prior distributions is their conjugacy; we can analytically

derive the parameters of posterior distributions as well as the marginal likelihood through

matrix operations. The posterior distributions of A(r) and L given the observation X = {xt }
T
t=1

become MN (M̂(r), K̂(r),L) and W (ν̂ , Λ̂) with the following parameters:

K̂(r) =K(r)+R
(r)
x̄ x̄ , M̂(r) = K̂(r)−1

(

K(r)M(r)+R
(r)
x̄ x

)

, (5.2)

ν̂ = ν+T , Λ̂
−1
= Λ−1+Rxx +M(r)⊤K(r)M(r) − M̂(r)⊤K̂(r)M̂(r),

where the matrices R{x̄ x̄ ,x̄ x ,xx} are the correlation of observations R
(r)
x̄ x̄ =

∑

t x̄
(r)
t x̄

(r)
t
⊤, R

(r)
x̄ x =

∑

t x̄
(r)
t xt

⊤, and Rxx =
∑

t xtxt
⊤. The marginal likelihood is given as

"
p(X|A(r),L)p(A(r) |L)p(L)dA(r)dL =

(

1

π

)
DT

2
D

∏

d=0

Γ(ν+T−d
2

)

Γ(ν−d
2

)

(

|K(r) |

|K̂(r) |

)
D
2 |Λ−1 |

ν
2

|Λ̂
−1
|
ν+T

2

, (5.3)

where Γ(·) is the gamma function and |C| is the determinant of matrix C.

To make the prior distributions uninformative, the following choice of the hyperparameters

is reasonable. We can configure the hyperparameters of L as ν = D and Λ = I
D

, where I is the

identity matrix. This is because the lower degree of freedom ν increases the uncertainty of L

and the diagonal scale matrix Λ means each dimensionality is uncorrelated a priori. For M,
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a zero matrix is a preferable choice to assume no temporal correlation before observing the

time series. For K, setting K = I is sensible for the same reason; the lagged autocorrelation is

ignored a priori.

5.2.1 Model variations

While the basic model presented above provides a straightforward inference procedure thanks

to the conjugate priors, the flexibility of the model is somewhat limited. For example, the exci-

tation at each time follows a stationary normal distribution with precision L. This stationarity

cannot satisfactorily describe distributions of many classes of natural signals and phenomena.

To alleviate this restriction in the excitation term, we explain two variations in an effort to

preserve the efficient inference.

First, to account for an excitation distribution with a heavier tail than the normal distribu-

tion, we introduce a scale parameter st > 0 for each time as N (A(r)⊤x̄
(r)
t , stL). When st follows

a gamma distribution, we can interpret that the excitation follows the Student’s t-distribution.

With this auxiliary scale variable st , the modifications in the posterior estimation is the calcula-

tion of autocorrelation matrices: R
(r )
x̄ x̄ =

∑

t st x̄
(r )
t x̄

(r )
t

⊤, R
(r )
x̄ x =

∑

t st x̄
(r )
t xt

⊤, and Rxx =
∑

t stxtxt
⊤.

If we fix this scale with a certain function as st = f (xt), we can use Eqs. (5.2, 5.3) for the

inference with the modified autocorrelation matrices. We use the fixed scales for a speech

dereverberation task in Section 5.4.3 because the excitation, the pure speech signal, better fits

a non-Gaussian distribution with a heavy tail.

Second, we consider a case in which the precision matrix of excitation is different from the

row-wise precision of AR coefficients A, for example, time-varying precision of the excitation

Lt . Here, we omit ·(r) for simplicity. Note that this is a more general case compared to the

case discussed in the previous paragraph, where the modification of the precision is only

up to the scalar scaling by st . If the observation xt and AR coefficients A do not have a

common precision matrix, the posterior computations in Eq. (5.2) no longer hold. We can

still analytically derive the posterior of A using the vectorized notation vec(A). The model

and inference of time-varying precision Lt is beyond the focus of this chapter, but interested

readers can refer to the Wishart processes (Wilson and Ghahramani 2011) for examples.

Finally, we mention the complex-valued observations. Complex values appear in many
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signal processing applications, typically with the use of Fourier-transformed representations.

We can naturally extend the model into the complex region. In this case, we need to replace

the distributions with complex-valued distributions such as those in (van den Bos 1995, Con-

radsen et al. 2003). We can still adopt the update rules in Eq. (5.2).

5.3 Bayesian Autoregressive Models with Infinite Orders

This section presents our autoregressive processes that bypass the truncation of possible orders

to consider. The basic idea is shared with existing approaches (Godsill 2001, Vermaak et al.

2004); we place a prior on the order r and discuss the posterior of r given the observation. The

novelty of our model is that the order is unbounded, unlike the exising models that truncate

the maximum order at some point. Our model is able to exhibit a powerful flexibility thanks to

Bayesian nonparametric modeling over the order of AR processes. For the prior of the order,

we employ a similar approach used for ∞-gram language models where the observations are

discrete words (Mochihashi and Sumita 2008). Our model can be viewed as an extension into

the infinite order model on continuous variables through the linear Gaussian AR processes.

The prior of the order is constructed through the following stick-breaking procedures:

p(r |{θl }
∞
l=0) = θr

r−1
∏

l=0

(1− θl), θl ∼ B(αl , βl), (5.4)

where B(α, β) denotes the beta distribution. We can marginalize out the beta parameter θl in

Eq. (5.4) as explained in (Mochihashi and Sumita 2008). Note that this construction sums up

to unity
∑∞

r=0 p(r) = 1 and penalizes a larger order, which acts like a regularization to avoid

overfitting. With this prior, we can view our model as a mixture model indexed by r :

xt |r ,A
(r),L ∼ N (A(r)⊤x̄

(r)
t ,L), A(r) ∼MN (M(r),K(r),L) for ∀r ≥ 0, (5.5)

where L is the same as in Eq. (5.1). The case r = 0 means that xt is i.i.d. from N (0,L).

Figure 5.2 shows some variations. We basically use shared order model that shares the

same order for one AR proceess, as in Fig. 5.2 (a), though the original model (Mochihashi

and Sumita 2008) varies the order for each point as rt , as in Fig. 5.2 (b). This is because

the point-wise order model often overfits data generated from a stationary AR process, as we
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Figure 5.2: Variation of AR models with infinite orders. (a) A single order r drawn from

the order belief is shared among the samples. (b) Point-wise order model draws orders for

each time rt whereas the AR coefficients are shared. (c) We can also construct a mixture of

shared order AR processes. As a mixture component, the order rk , AR coefficients Ak
(rk ), and

excitation precision Lk are generated.

confirm in our experiments in Section 5.4.1. We can extend the model to a mixture of AR

processes for non-linear regressions, as shown in Fig. 5.2 (c). The order may vary as denoted

by rk , where k is the index for each AR process.1

5.3.1 Inference

We first present the inference of the shared order model where we can analytically collapse

out the AR coefficients A(r) and excitation precision matrix L. We then discuss the point-wise

order case and the sampling of AR coefficients. Though the model considers infinitely large

orders, the inference involves only finite-order computations. We use slice sampling (Neal

2003) to numerically generate the samples from the following posterior distribution:

p(r |X) ∝ p(r)pr (X), pr (X) :=

"
p(X|A(r),L)p(A(r),L)dA(r)dL. (5.6)

In concrete terms, the sampler moves from the current order r to the new order r′ in the

following steps. (1) Draw a height of slice u from the uniform distribution U([0 : p(r)pr (X)]).

(2) Make a slice [0 : r+], where r+ is extended from the current position r with a certain

interval as r+ ← r +∆. (3) If the marginal likelihood of r+ comes above u, extend the slice,

namely, repeat r+← r++∆ until u > p(r+)pr+(X). (4) Randomly choose the candidate order

as r̃ ∼ U([0 : r+]). If p(r̃)pr̃ (X) > u, then r′ = r̃ . If not, shrink the slice such that r+← r̃ and

1Due to the limited space, we leave the detailed presentation of the mixture models as future work.
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repeat until r′ is determined. In practice, step (3) stops at a certain order because both p(r)

and pr (X) decrease rapidly with a large r .

We use the following Gibbs sampler for the point-wise order model to update rt of each

point xt :

p(rt |xt ,X
−t ,r−t) ∝ p(rt |r

−t)

"
p(xt |X

−t ,A(rt ),L)dA(rt )dL, (5.7)

where X−t and r−t is a set of variables excluding the sample at time t . We can use the same

slice sampler to generate each rt . The computation of p(rt |r
−t) is presented in (Mochihashi

and Sumita 2008). The marginalization above is carried out using a correlation matrix cal-

culated through the instantiated orders r−t . For example, the top-left Drt × Drt block of

Rx̄ x̄ =
∑

s,t x̄
(rs )
s x̄

(rs )
s
⊤ is used to marginalize A(rt ).

5.3.2 Construction of AR coefficients by partitioned matrices

This section provides a way to handle the AR coefficients of the infinite order. The inference

presented above enjoys an efficient mixing of orders because A(r) and L are collapsed out.

In case we have to explicitly sample the AR coefficients, we need an efficient and tractable

way to handle a possibly infinite-dimensional variable A(∞). For example, we should sample

the AR coefficients when the precision matrix of xt and row-wise precision of A are different,

as noted in Section 5.2.1. Existing Bayesian models (Godsill 2001, Vermaak et al. 2004) use

RJMCMC (Green 1995) to sample AR coefficients of different dimensionalities. They avoids

considering the infinite-order case by truncating the model up to a certain maximum order.

Furthermore, as in Fig. 5.3 (c), RJMCMC is sometimes inefficient because the samples are

not necessarily updated all time due to the acceptance or rejection procedure. To overcome

these issues, we introduce the partitioned matrices of AR coefficients depicted in Fig. 5.3.

We assume the hyperparameter K(∞) is block diagonal consisting of D × D matrices Kl so

that AR coefficients are partitioned into D × D matrices. Then, generating A(∞) is equivalent

to independnetly generating each partitioned matrix Al ∈ R
D×D, as shown in Fig. 5.3 (a):

A(∞)⊤ = [A⊤1 ,A
⊤
2 , ...,A

⊤
l , ...]

⊤, K(∞) = diag[K1,K2, ...,Kl , ...],

A(∞) ∼MN (M(∞),K(∞),L)⇔ Al
i.i.d.
∼ MN (Ml ,Kl ,L) (l = 1,2, . . .).

(5.8)
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Figure 5.3: (a) Partitioned matrices sharing the same prior. (b) Partition update with a Gibbs

sampler. Updating multiple partitions at once is also tractable using the equivalent matrix

normal distribution. (c) RJMCMC involves acceptance or rejection of newly proposed sample

to move to different dimensionality, for example, order r to r′. The risk of rejection slows the

mixing of MCMC.

This construction comes from the property of the multivariate normal distribution; the un-

correlated elements become independent of each other. The assumption that K(∞) is block

diagonal is not too limiting in practice because we often choose the identity matrix for K to

reflect the uninformative prior knowledge, as discussed in Section 5.2.

We then introduce a sequence of binary variables {zl }
∞
l=1

as an equivalent representation

of the order r . These variables are set as zl = 1 for l ≤ r and zl = 0 otherwise. These binary

variables are used to mask out unnecessary past samples. Using this notation, we can rewrite

the model in Eq. (5.5) into

xt |{zl }, {Al },L ∼ N















∞
∑

l=1

zlA
⊤
l xt−l ,L















, r ∼ p(r), zl = 1(l ≤ r), (5.9)

where p(r) comes from Eq. (5.4) and 1(y) = 1 if y is true or 0 otherwise. We can consider a

partition-wise Gibbs sampler for the inference such as p(Al |X, {zl }, {A}
−l), which dispenses

with the risk of rejection like RJMCMC. See Fig. 5.3 (b) for the graphical explanation. We can

also recover the same posterior distribution with the parameters in Eq. (5.4) with a blocked

inference such as p(A1, ...,Ar |X, {zl }, {A}
−(1:r),L) =MN (M̂(r), K̂(r),L), if the instantiated or-

der represented by {zl } equals r . {A}−(1:r) is a set of partitioned matrices excluding A1, ...,Ar .

This udpate of mutiple partitions accelerates the MCMC-based inference. The rest of the ma-

trices {A}−1:r follow the prior distribution in Eq. (5.8). We can still use the slice sampler to

update r , or equivalently {zl }, by using the instantiated matrices {Al }. If the slice requires a

larger order than the instantiated AR coefficients, we can draw them from the prior distribution

p(Al) on demand. The same applies to the vectorized cases in Section 5.2.1 by considering
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Figure 5.4: Comparison of order selection performance between our method, AIC, and BIC.

Left: results for different lengths with EAR = 0 (dB). Right: different EARs with length 1000.

White-face bars and color-face bars represent the ground truth order r = 5,10, respectively.

Vertical segments at each bar are the standard deviation. Black horizontal lines indicate the

ground truth orders.

the arrangement of vectorized elements corresponding to each partition matrix Al .

At first sight, the likelihood in Eq. (5.9) resembles the latent feature models (Griffiths and

Ghahramani 2006) in that infinitely many features are either activated or suppressed through

the binary variables zl . The essential difference is that the standard latent feature models as-

sume the exchangeability between each zl , and our model does not. Rather, our model parti-

tions the binary variables to all-one region z1...zr = 1...1 and all-zero region zr+1... = 0... with

the stick-breaking construction in Eq. (5.4).

5.4 Experimental Results

This section presents the experimental results using synthetic data and real data. Using syn-

thetic data, we compare the order selection performance of our method with conventional

model selection methods based on AIC (Akaike 1974) and BIC (Schwarz 1978). We also in-

vestigate the prediction performance of a point-wise model where the order rt may vary for

each time t , as in Eq. (5.7), compared with the shared order model where the order is the same

throughout the sequence, as in Eq. (5.6).

As a real dataset, we use audio recordings to perform a multichannel dereverberation

task (T. Yoshioka and Miyoshi 2009). In this experiment, we compare the shared order model

with the fixed-order Bayesian AR model presented in Section 5.2 and the model selection

approaches based on AIC and BIC.
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5.4.1 Synthetic data: order estimation

We first present the order selection results comparing our shared order model with AIC and

BIC. These methods use the maximum likelihood estimation for the parameters to calculate

the selection criterion. AIC and BIC calculate their criteria from order 0 to 30 and choose the

best order.

The objective of this experiment is to investigate the influence of the length of observa-

tions and the power of the excitation component. We use the excitation-to-autoregression ratio

(EAR) to measure the power of excitation. EAR ξ is defined as ξ = 10log10

∑

t ‖et ‖
2

∑

t ‖xt−et ‖2
(dB),

where et is the excitation component generated from N (0,L). When EAR is large, the data

behaves like i.i.d. samples. The order estimation may become more difficult with larger EARs

because the AR component is dominated by the excitation, and vice versa. We can modify

EARs by adjusting the scale of the AR coefficients. The lengths T were set to 100, 500, and

1000 while EAR was −10, 0, and 10. The order of the synthetic data was 5 or 10 with the

dimensionality D = 2. For each condition, we randomly generated 10 sequences with random

AR coefficients and excitation precision matrix, and fed them into the algorithms to estimate

the order. The hyperparameters of our model in Eq. (5.4) were set to αl = 1, βl = 1. Other

parameters were set uninformative, as noted in Section 5.2.

Figure 5.4 illustrates the order selection results with various data lengths and EARs. AIC is

apt to choose larger orders in most configurations mainly because the increase in the likelihood

with a larger order is scarcely penalized by the number of free parameters. In the left figure,

both our method and BIC increase the order estimates as the data length becomes large. While

BIC exceeds the true order with an increasing amount of data, our method robustly refrains

from increasing the order estimates. The right figure shows the results with various EARs.

The results confirm that the estimated order decreases with a larger EAR. Furthermore, our

method outperforms the others when EAR = −10 (dB), where the autoregression is saliently

observed.

5.4.2 Synthetic data: point-wise model

In this experiment, we compare the prediction performances of the point-wise model and the

shared order model. For each given observation sequence, the first 90% Xtrain is used for the
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Figure 5.5: Left: Log prediction probabilities of held-out data by shared order model and

point-wise order model. Larger value implies better prediction performance. Right: Posterior

probability of sampled orders by point-wise model where the ground truth order is indicated

by red arrows.

inference and the log prediction probability (LPP) of the last 10% sequence Xtest = {xt }
T ′

t=1

is computed using MCMC samples in a similar manner to the computation of perplexity per

word.

LPP =
1

T ′
log p(Xtest |Xtrain)

≈
1

T ′N

T ′
∑

t=1

N
∑

n=1

log

"
p
(

xt |r
n ,A(rn),L

)

p
(

rn ,A(rn),L|Xtrain

)

dA(rn)dL,

where rn is the nth MCMC sample of the order of the shared order model. The LPP of the

point-wise model is similarly calculated.

The synthesized data was configured as follows: the order was set to 5 and 10 and the

length was 100, 500, and 1000. EAR was fixed at 0 (dB), and the dimensionality D = 2. For

each configuration, we randomly generated 10 sequences and LPP was calculated by both

models. The left of Figure 5.5 shows the LPPs of both methods for each condition. When the

length of the data is short, the point-wise model has an inferior prediction performance. When

T = 1000, the mean LPP of the point-wise model is better than that of the shared order model,

however, the variance is rather high. Taking into account that the point-wise model requires

more computational resources for the inference due to a larger latent space, the use of the

point-wise model may be costly. The right of Figure 5.5 shows the posterior probability of

the order obtained by the MCMC samples of the point-wise model. The graph exhibits a high

variance in the posterior order, which results in high-variance LPPs.
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Figure 5.6: Dereverberation performance in terms of signal-to-distortion ratio (dB) in three

rooms. Left: RT 150 ms, center: RT 400 ms, right: RT 600 ms. Larger values indicate better

performance.
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Figure 5.7: Mean values of estimated order at each frequency bin with three methods. Left:

RT 150 ms, center: RT 400 ms, right: RT 600 ms.

5.4.3 Multichannel dereverberation

This section presents the results of multichannel dereverberation task, where multichannel

means the sound is observed with multiple microphones. The dereverberation problem is for-

mulated using an AR process as follows. First, we make the observed waveform into the

time-frequency domain through the short-time Frourier transform. In our setup, the waveform

was sampled at 16000 (Hz). We used a 512-point Hanning window with 256-point shift for the

processing and we obtained multichannel vectors {xt f }1≤t≤T ,1≤ f ≤F , where t is the time frame

index, f is the frequency bin index. The dimensionality of xt f is the number of microphones.

As a result of Fourier transform, xt f is a complex number. The reverberation is modeled as

follows. For each frequency bin f , a multichannel reverberant signal follows an AR process

xt f ∼ NC(A f
(r)H x̄t f , st f L f ), where NC(·, ·) denotes the complex normal distribution and CH is

a Hermitian transpose. As discussed in Section 5.2.1, we introduce a scale factor st f = ‖xt f ‖
−2

to adapt to the distribution of speech signals with a heavy tail. The dereverberated signal is re-

stored as x̂t f = xt f − Â
(r)

f
H x̄t f , where Â

(r)

f
is the estimate of the AR coefficients. The Bayesian
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methods use the MMSE estimate in Eq. (5.2) whereas AIC and BIC-based methods use max-

imum likelihood estimates. The shared order model averages the dereverberated signals x̂t

with the sampled orders.

We recorded the impulse responses of three rooms with reverberation times (RTs) of 150,

400, 600 (ms). If RT is large, a larger order is generally required to cope with the long rever-

beration. The reverberation length are also dependent on the frequency bin, and even the rela-

tive position between the sound source and the microphones. Therefore, the order is a critical

parameter for the dereverberation procedure. We used four microphones to record the sound

located at five positions in each room. For each position, 10 utterances of a distinct speaker’s

clean speech signal from JNAS phonetically-balanced Japanese utterances were convolved to

generate a reverberant speech signal. The speakers consisted of three males and two females,

corresponding to each position. The average length was 6 seconds, around T = 350 in the

time-frequency domain. Signal-to-distortion ratio (SDR) (Vincent et al. 2006) was used to

measure the dereverberation quality. This measure is maximized when the algorithm removes

the reverberant component while preserving the original speech component.

Figure 5.6 summarizes the SDR scores of our shared order model, the fixed-order Bayesian

AR, the AIC, and the BIC. Our method, AIC, and BIC estimated the order for each frequency

bin. Meanwhile, the fixed Bayesian model used the same order for all frequency bins. The

fixed order ranged from 0 to 30, whereas AIC and BIC chose their order from 0 to 40. Our

method outperforms AIC and BIC partly because the Bayesian estimation of the AR coeffi-

cients stabilizes the dereverberation. We also find that the score of our method is the maximum

point of the fixed AR models while the performance of the fixed-order model is influenced by

too small or large order values. This indicates that our method can efficiently find an optimum

order depending on different conditions.

Figure 5.7 shows the estimated order at each frequency bin. We can confirm a simliar

tendency as in Figure 5.4: the AIC prefers far larger orders. Comparison of our model and

BIC again shows that our method prefers smaller orders. We can isolate two factors that con-

tribute to the growth of orders: (1) as the RT increases, the order grows accordingly, and (2)

larger orders are selected at lower frequency regions. This is partly because a lower frequency

component is less attenuated on the reflection of the walls. While a similar configuration has
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been manually developed in related studies, for example (Yoshioka et al. 2011), our method

automatically achieves a reasonable order selection.

5.5 Summary

This chapter presented Bayesian autoregressive processes that allows for infinite orders. Our

generative model and corresponding inference scheme aim to determine the appropriate or-

der given the observed sequential data. Our model can be noted as an extension of the infi-

nite Markov model of discrete variables (Mochihashi and Sumita 2008) into the continuous

domain through linear Gaussian modeling. One of the future work is to verify our model

on complex time series beyond the linear Gaussian structure by incorporating nonparametric

Bayesian models (Fox et al. 2011, Lucca et al. 2013). Other work includes a model extension

into AR variants such as autoregressive-moving-average (ARMA) models and application to

time series analyses such as anomaly detection or missing value compensation.
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Chapter 6

Sound Source Separation in Dynamic

Environments

This chapter addresses the third uncertainty in auditory scenes–dynamic sound sources. In

particular, we tackle the sound source separation problem where the relative positions between

the microphone array and the sound sources change over time.

6.1 Introduction

One of the most important functions for mobile robots is the capability to perceive and analyze

the information in the environment with the sensors equipped on the robots. This function

is essential for mobile robots to probe an unknown environment in the both cases when a

stand-alone robot is in operation and when a robot is operated by a remote human operator.

Simultaneous localization and mapping (SLAM) (Thrun et al. 2004, Se et al. 2005) based

on visual information captured by cameras on the robot has recently been developed as a

perception capability of mobile robots. In addition to these visual information processing, the

auditory processing function may enable the robots to acquire the following functions: (1)

the robust perception against occlusions of objects, (2) the detection of changes in objects,

and (3) the spoken communication. For example, (1) while a robot may have difficulty in

detecting an object or a certain event over a wall using only the visual information, the robot

may be capable of listening to them by using its auditory function. (2) A movement of an

object or a change in the situation often accompanies some sounds. Figure 6.1 illustrates an

example of a glass that falls from a table, which emits a cracking sound. Robots with the
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CHAPTER 6. SEPARATION IN DYNAMIC ENVIRONMENTS

Figure 6.1: Auditory functions by a mobile robot.

auditory function are expected to detect this sort of event. (3) Needless to say, the auditory

function can establish a communication channel between robots and humans such that robots

can accepts the humans’ oral commands.

Since many environments contain multiple sounds, a robot that probes the environment

must be capable of extracting the sources from the observed mixture audio signal. A micro-

phone array is often employed to cope with the separation of sound sources (Benesty et al.

2008). An application of microphone array technique to mobile robots involves the following

two issues:

1. the suppression of the noise caused by the mobility of the robot itself, and

2. the changes in the relative positions between the microphone array and the sound sources.

We cope with the suppression of the self noise within the framework of an ordinary micro-

phone array processing: the motor noise of our robot is separated as a sound source arriving

from a distinct direction. The second issue is a critical challenge that we have to overcome

in the application of microphone array-based techniques to mobile robots. In fact, most sep-

aration methods using a microphone array assume that the propagation of sounds is time-

invariant, whereas the sound propagation is determined by the relative position between the

microphones and sound sources.

The basic idea to cope with this changing propagation issue is to segment the observed

mixture signal along the time axis such that each source is assumed to keep a stable posi-

tion, that is, to have a time-invariant sound propagation in each segment. The segmentation of

the observed audio signal is automatically carried out by applying the algorithm presented in

Chapter 3. Using the property of the formulation using Bayesian nonparametrics that enables
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the source separation algorithm to handle any number of sources, this algorithm separates the

sound sources in the mixture while splitting one moving source into several segments local-

ized in different directions. After this separation and localization process, several separated

segmentations are integrated to retrieve the audio signal of moving sources.

6.2 Problem Statement and Method Overview

This section describes the problem of the sound source separation in a dynamic situation, and

outlines our method with comparison to existing methods. Figure 6.2 illustrates the assump-

tion of the separation problem in (a), and the idea of our method using the separation and

localization algorithm based on Bayesian nonparametrics.

The following two points are assumed in the problem of moving sound source separation.

1. Each sound source may change its direction from the microphone array within a disjoint

range from each other, as shown in Figure 6.2 (a).

2. The direction range of each source is known.

These assumptions are used to facilitate the integration of segmented signals into each moving

source signals. As depicted in Figure 6.2 (b), our method estimates some segmented TF masks

from the observed mixture of moving sound sources. The segmentation is simultaneously car-

ried out during the separation and localization process such that the sources in each segment

is regarded as stable and distinct sources. For example, in the experiment presented in Sec-

tion 6.3, two sources are located in the left and right sides of the microphone array equipped

on a mobile robot.

6.2.1 Algorithm

According to the assumptions, we have a set of directionsDn for each source n corresponding

to the direction range in which source n may move. Note that the sets are disjoint as

Dn ∩Dn′ = φ (if n , n′), (6.1)

where φ denotes the empty set.
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(a) Two sources moving in disjoint regions (b) Two sources are extracted by aggregating the separated signals localized in the disjoint regions

Segmented 

TF masks

Figure 6.2: Assumed situation and our method. (a) We assume that the microphone array

observes multiple sound sources, depicted in blue and red, with their range of direction from

the microphone array is disjoint from each other. (b) Our Bayesian nonparametrics-based

algorithm separates and localizes the moving sources through the TF mask estimation while

segmenting the TF-masks along the time axis. This segmentation is automatically achieved

such that the constituent sources are regarded as stable sources in each segment. Then, we can

reconstruct each moving source by integrating the segmented signals localized in each disjoint

range of direction.

Let xt f be the multichannel observation of the mixture of sound sources and x̂d
t f

be the

separation result from direction d, which is obtained by the algorithm presented in Chapter 3.

After obtaining the segmented signals x̂d
t f

, we can integrate these segments into the audio

signal x̂n
t f

corresponding to source n by the following post processing.

x̂nt f =
∑

d∈Dn

xdt f . (6.2)

6.3 Experimental Results with A Mobile Robot

This section first describes the setup of the recording using a microphone array on a mobile

robot, and then presents the separation results in two environments. Figure 6.3 depicts the

location of the sound sources in the recording environment with the path of the robot move-

ment, and the microphone array equipped to the robot. As shown in the left part of Figure 6.3,

the mobile robot moved along the path between the two sound sources to record the audio
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Figure 6.3: Left: positions of sound sources and the path of the mobile robot. Right: Micro-

phone array embedded at the top of the robot. The right arrows represent the directions for

azimuth localization with 5◦ resolution, whereas the green arrow corresponds to the direction

of wheels.

mixture. One source was located on the left side, whereas the other source was located on the

right side of the robot. This configuration meets the assumption in Section 6.2.

6.3.1 Experimental setup

The experiment was carried out in two environments using an eight-channel microphone array

embedded at the top of the robot. One environment is an outdoor situation where the reverber-

ation time is RT60 = 150 (ms), and the other is an indoor environment with the reverberation

time RT60 = 800 (ms). In order to demonstrate the robustness of our source separation algo-

rithm against the type of sound sources, a musical audio signal containing guitar or piano

performance was played from the loudspeaker at the right, illustrated in blue in Figure 6.3,

and various sounds such as human speech signal and calls of crickets or frogs were played

from the loudspeaker at the left side, illustrated in red in Figure 6.3. The length of the record-

ing was 20 (s). In both environments, the robot moved on a flat floor, with a few undulations,

so that the robot can move smoothly.

The steering vectors for the separation and localization algorithm were configured as fol-

lows. For the azimuth localization, 72 steering vectors were used with 5◦ resolution (the red

arrows in Figure 6.3). In order to separate the noise from the moving wheels, the steering

vector toward the mobile unit (the green arrow in Figure 6.3) was also added. In total, D = 73

directions were taken into account for the separation and localization algorithm.
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Observed mixture Separated signal at left (calls by crickets and frogs) Original signal at left (calls by crickets and frogs)

Separated wheel sound Separated signal at right (music) Original signal at right (music)

Figure 6.4: Separation result of outdoor recording with the reverberation time RT60 = 150

(ms).

6.3.2 Results

Figures 6.4 and 6.5 shows the spectrograms of the observed mixture signal, separated signals,

and the original signals in indoor and outdoor environments, respectively. The green frames

in the observed mixture and separated signals indicate the period when the robot was moving.

The separated signals were obtained by integrating the separated segments localized on the

left or right side of the robot. The sound emitted by the moving wheels were removed because

the wheel noise was localized in the direction toward the mobile unit.

The separated signal corresponding to the wheel noise in the outdoor environment shown

in Figure 6.4 is mute when the robot is halting, whereas the separated wheel sound in the

indoor environment shown in Figure 6.5 contains other signals such as human speech even

when the robot is not moving. Furthermore, the separated wheel sound contains the lower

frequency region of the music audio signal, which should be segregated into the right side

signal. Generally, in a reverberant environment, the separation quality, in particular in the

lower frequency region, degrades severely when we use a model that assumes only direct

sounds without an explicit model of reverberation components.

The sound source separation in the outdoor environment in Figure 6.4 is mostly achieved

even during the robot is moving, though the first part of cricket calls on the left side is at-

tenuated. We speculate the reason why the extraction of cricket calls was difficult is that the

energy of the cricket calls is concentrated on a small range of frequency band and that the

temporal duration of each call is also limited. If the energy of the other sound sources conflict

94



6.4. SUMMARY

Observed mixture Separated signal at left (human speech) Original signal at left (human speech)

Separated wheel sound Separated signal at right (music) Original signal at right (music)

Figure 6.5: Separation result of indoor recording with the reverberation time RT60 = 800 (ms).

in this range, the estimation of TF masks to separate the cricket calls may be severely affected.

On the other hand, the separation quality is degraded in the indoor environment, as shown in

Figure 6.5, especially when the robot is moving. The reason for this deterioration is, on top of

the severe reverberation, the power level of the right signal (musical audio signal) was lower

than the other sounds.

Through this experiment, we have confirmed the following advantages of our method:

1. The separation of sound sources while the relative positions of the sources are time-

variant.

2. The capability to suppress the noise signal caused by the movement of the robot itself.

We have also found some limitations that may degrade the separation quality such as the

reverberation, a restricted frequency range of the target audio signal, and the low power level

of the target signals.

6.4 Summary

This chapter tackled the source separation problem in a dynamic environment where the rel-

ative positions between the microphones and the sound sources may change over time. This

problem is motivated by the realization of auditory functions on mobile robots in multi-source

environments. Our method was designed based on the assumption that each source has disjoint

range of directions. Thus, the Bayesian nonparametrics-based source separation and localiza-

tion algorithm is helpful because this algorithm simultaneously separates and segments the
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observed mixture such that each source can be retrieved by integrating the segmented signals

in accordance with the direction range of each sound source. The experimental result showed

the possibility of the separation of sound sources where the sound propagation is time-variant

as well as the capability to suppress the noise caused by the movement of the robot itself. The

result also indicated some limitations of our method such as the degradation of the separation

quality due to the reverberation or the low power of the target signals.

We can consider several future directions to cope with the microphone array processing

in dynamic environments. The first direction is to handle more general configuration unlike

the disjoint range assumption. If the mobile robot moves along a complex path around many

sound sources, the localization information would be unreliable information to integrate the

separated segments to reconstruct each sound source. In order to achieve this integration pro-

cess without the localization information, the identification of the sound sources by using their

timbre (Sasaki et al. 2009b) should be carried out.

Another future direction is the suppression of the self noise. Our method successfully

suppressed the wheel noise because the direction of the noise source was fixed from the mi-

crophone array. This may not be the case when complex movements with many motors cause

the noise signal such as motions of a humanoid robot. Possible approaches are the noise sup-

pression incorporating additional sensors attached to the noise source (Sawada et al. 2010),

and the noise subtraction using noise templates estimated from the motor commands from the

motor control module of the robot (Ince et al. 2011).
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Chapter 7

Sound Source Localization in Dynamic

Environments

In Chapter 6, sound source separation problem in a dynamic environment was tackled under

the assumption that sound sources move but stay in disjoint ranges of direction. In this chap-

ter, the problem is reduced to sound source localization where general movements of sound

sources or microphones are allowed.

7.1 Introduction

Auditory information holds an important place in the human perception. Needless to say oral

speech as a communication channel, humans perceive audio signals emitted by surrounding

objects to understand their situation. For example, the sound of footsteps may inform people

that somebody is approaching or moving away without any glance. Achieving a computational

auditory function will help people, especially hearing-impaired people, to have enhanced au-

ditory awareness by showing trajectories of audio sources or presenting enhanced speech sig-

nals (Kubota et al. 2008).

Sound source localization is the most fundamental and important function for distant

speech enhancement and simultaneous speech separation using a microphone array (Nakadai

et al. 2010), presentation of sound sources to the operator of a tele-presence robot (Mizumoto

et al. 2011), and the detection and mapping of sound sources by a mobile robot (Sasaki et al.

2010). Figure 7.1 illustrates a robot standing in an auditory dynamic environment. There may

be moving and multiple sound sources surrounding the robot or the microphone array system.
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Moving sound 

source(s)

Multiple sound

sources

Figure 7.1: Sound source localization in a dynamic environment.

These system should robustly localize and track each sound source without a time-consuming

parameter tuning.

For localizing sound sources with a microphone array, two methods have been widely

exploited; beamforming (Doclo and Moonen 2001) and multiple signal classification (MU-

SIC) (Schmidt 1986, Asano et al. 2001, Danès and Bonnal 2010). Between these two methods,

MUSIC is said to produce better localization performances because the evaluation function

for the direction of arrival detection called MUSIC spectrum has much sharper peaks at the

directions of sound sources than the evaluation function of the beamforming method. Further-

more, MUSIC is capable of detecting multiple sound sources on condition that the number of

sound sources is less than that of microphones.

In the frame work of MUSIC-based sound source localization, the threshold should be

carefully set for the MUSIC spectrum to detect active sound sources. The problem is that this

threshold is inevitably dependent on the number of sound sources and the reverberation time

of the environment. The estimation of the number of sound sources have so far been tackled

with Akaike information criterion (Danès and Bonnal 2010) or a support vector machine (Ya-

mamoto et al. 2006). However, an elaborate setting of the threshold is still necessary for the

robust detection and tracking of sound sources. Typically, the threshold should be empirically

tuned by looking into the MUSIC spectrum of the recording of the environment in question.

This paper presents a Bayesian extension of MUSIC-based multiple sound source local-

ization and tracking. This method dispenses with most parts of the manual and empirical
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parameter tuning that is critical to existing frameworks. Our method consists of two stages:

(1) The parameters for the localization and tracking are automatically estimated using a pre-

recorded audio signal as the learning data based on the variational Bayesian hidden Markov

model (VB-HMM) (Beal 2003). (2) Our method incrementally localizes and tracks multiple

sound sources with previously estimated parameters based on a particle filter (Arulampalam

et al. 2002).

7.2 MUSIC-Based Sound Source Localization

This section specifies the problem and explains the MUSIC algorithm in general. We assume

the sound source localization problem on the azimuth plane because we use a circular micro-

phone array, as illustrated by Figure 7.2. In our configuration, the localization resolution is set

5 (deg). The problem statement is given as follows:
✓ ✏

Input: M-channel audio signal, D steering vectors 1 for each direction and frequency bin,

Output: N directions where sound sources exist,

Assumption: the maximum number of sources is less than the number of microphones

(N ≤ Nmax < M).
✒ ✑

Here, we briefly outline the procedures of an ordinary MUSIC algorithm. Detailed ex-

planation is provided in (Schmidt 1986, Danès and Bonnal 2010). The MUSIC algorithm is

applied in the time-frequency domain. The short-time Fourier transform is carried out with

the sampling rate 16,000 (Hz), the window length 512 (pt), the hop size 160 (pt).

The notation is defined in a different way from the previous chapters. In particular, the time

frame index t in the TF domain is replaced with τ because the localization method presented in

this chapter is carried out at longer intervals, as we see later on. The time index t denotes unit

time index for this localization interval. Let xτ f denote the amplitude of input M-channel audio

signal at time τ and frequency bin f . For each frequency f and time t at ∆T interval, (1) the

correlation matrix Rt f of the input signal is calculated. (2) Then, the eigenvalue decomposition

of Rt f is obtained. (3) Finally, the MUSIC spectrum is calculated using the eigenvectors and

1D = 72 in our implementation since the localization resolution is 5 (deg) in Fig. 7.2
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Microphones attached to the bowl.

8 microphones 

are embedded

every 45 degrees.

Azimuth 

localization

every 5 (deg)30 (cm) in 

diameter

Figure 7.2: Sound source localization on the azimuth plane using an 8-channel MEMS micro-

phone array on a mobile robot called “Kappa”. The directions of sound sources are localized

as blue arrows show.

the steering vectors.

(1) The correlation matrix is calculated by averaging over observed samples for ∆T (sec)

as follows:

Rt f =
1

∆T

t
∑

τ=t−∆T

xτ f x
H
τ f , (7.1)

where ·H is the conjugate transpose operator. The vector xτ f has M elements corresponding

to each channel.

(2) The eigenvalue decomposition of Rt f is given by

Rt f = Et f Vt f Et f , (7.2)

where Et f is the eigenvector matrix and Vt f is the eigenvalue matrix. The column vectors

of Et f are the eigenvectors of Rt f , that is, Et f = [e1
t f
, . . . ,eM

t f
]. Vt f is a diagonal matrix with

eigenvalues of Rt f , that is, Vt f = diag(v1
t f
, . . . , vM

t f
). The eigenvectors are arranged in descend-

ing order.

When we observe N sound sources, eigenvalues from v1
t f

to vN
t f

have larger values corre-

sponding to the power of each sound source; whereas the rest vN+1
t f

to vM
t f

have smaller values

corresponding to the power of microphone measurement noises. The important feature of the
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eigenvalues is that the noise eigenvectors eN+1
t f

, . . . ,eM
t f

are orthogonal to the steering vector

vectors that correspond to the directions of sound sources (Schmidt 1986).

(3) The MUSIC spectrum is calculated as:

P(t ,d, f ) =

∣

∣

∣

∣

qH
f d

q f d

∣

∣

∣

∣

∑M
m=Nmax+1

∣

∣

∣

∣

qH
f d

em
t f

∣

∣

∣

∣

, (7.3)

where q f d is the M-dimensional steering vector for the dth direction and frequency bin f .

These steering vectors are measured in advance as a calibration of the microphone array. When

we assume the maximum number of sound sources Nmax , the eigenvectors e
Nmax+1

t f
through

eM
t f

are orthogonal to the steering vectors ad( f ) with the direction d where sound source exists.

Thus, the denominator in Eq. (7.3) becomes close to zero at d; in other words, a salient peak

of the MUSIC spectrum P(t ,d, f ) is observed at d. However, in practice, the peaks in the

MUSIC spectrum are smoothed partly because the reverberation in the environment virtually

adds sound sources from all directions.

To account for a range of frequency bins, we integrate the MUSIC spectrum for each f as

follows:

P′(t ,d) =

Fmax
∑

f=Fmin

√

v1
t f
P(t ,d, f ), (7.4)

where v1
t f

is the largest eigenvalue at frequency f , which roughly corresponds to the sound

pressure level of the observed signal. To target at speech signals, we set the range of frequency

bins such that Fmin and Fmax correspond to 500 and 2800 (Hz), respectively.

Basically, we can carry out a localization by detecting the direction d with P′(t ,d) > Pthres,

where Pthres is the threshold to determine whether a sound source is active. Since Pthres is

dependent on Nmax and the reverberation, this threshold is set empirically.

7.3 Bayesian Sound Source Localization And Tracking

This section presents our Bayesian extension of MUSIC-based sound source localization and

tracking method. Our method consists of two steps: (1) off-line posterior estimation with

the variational Bayesian hidden Markov model (VB-HMM), (2) on-line tracking of multiple
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Figure 7.3: Blue: histogram of logarithmic MUSIC spectrum; Red: a Gaussian for non-active

direction; Green: a Gaussian for active direction.

sound sources using a particle filter. The state vector of the HMM is a D-dimensional binary

vector whose element indicates whether the sound source at direction d is active or not. The

counterpart of Pthres is automatically obtained through the training of the VB-HMM.

For the observation model, we employ a Gaussian mixture model. We approximate the

MUSIC spectrum by a Gaussian distribution partly because the spectrum is a sum over the

frequency bins specified in Eq. (7.4) and partly because analytic computation is possible for

this distribution. Figure 7.3 shows the histogram of MUSIC spectrum values on the loga-

rithmic scale. As illustrated in Fig. 7.3, a cluster of non-active MUSIC spectrum is found

in a lower area; on the other hand, active sources are likely to have higher spectrum val-

ues. Through the training of HMM, we obtain the posterior distribution of the parameters for

Gaussian distributions in Figure 7.3.

We use a particle filter for efficient incremental localization and tracking. The reasons why

we use a particle filter are: (1) The number of active sound sources in a state vector is easily

capped at Nmax . (2) Only local peaks of P′(t ,d) can be activated as a sound source using a

proposal distribution. Further explanation is given in Section 7.3.2

102



7.3. BAYESIAN SOUND SOURCE LOCALIZATION AND TRACKING

�

�

�

�

�

�

�

�

�

�

� �� �

� � �

Figure 7.4: Graphical model for VB-HMM

7.3.1 Off-line parameter learning

We use a logarithmic MUSIC spectrum as an observation vector defined as:

xtd = 10log10 P
′(t ,d). (7.5)

Let std be a binary variable. When std = 1, the sound source at direction d and time t is active.

Figure 7.4 shows the graphical model for the VB-HMM. The difference from the ordinary

HMM is that the parameters for the state transition θk and the observation µ and λ are prob-

ability variables instead of deterministic values. By taking account of many possibility of the

parameters as probability variables, the training and the subsequent tracking produce better

results than maximum likelihood-based HMM.

Observation model

The observation model is defined as:

p(xt |st ,µ,λ) =

D
∏

d=1

1
∏

j=0

N (xtd |µ j , λ j)
δ j (std ), (7.6)

where δ j(std) = 1 iff std = j, and N (·|µ, λ) denotes the Gaussian distribution with the mean µ

and precision λ. The vector notations such as xt or st denote a set of variables for all directions,

i.e., xt = [xt1, . . . , xtD]. We use the Gaussian-gamma distribution for µ and λ which is the

conjugate prior distribution of the Gaussian distribution:

p(µ,λ|β0,m0,a0,b0) =

1
∏

j=0

N (µ j |m0, β0λ j)G(λ j |a0,b0), (7.7)

where G(·|a,b) denotes the gamma distribution with the shape a and rate b.
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CHAPTER 7. LOCALIZATION IN DYNAMIC ENVIRONMENTS

State transition model

To account for moving sound sources, the state transition model can be divided into 4 cases

as summarized in Table 7.1. These 4 cases are the combination of previous states, that is, they

depend on whether the previous state st−1,d is active and whether the previous adjacent states

are both inactive (st−1,d−1st−1,d+1 = 0) or not. The state transition probability is defined as:

p(st |st−1,θ) =

D
∏

d=1

4
∏

k=1

1
∏

j=0

(

θ
std
k

(1− θk)1−std
) fk (st−1 ,d)

, (7.8)

where fk(st−1,d) is a classifier that returns 1 if when k matches the condition of the previous

state values from st−1,d−1 to st−1,d+1 as specified in Table 7.1, and returns 0 otherwise. As the

initial state, s0d is set 0 for all d.

θ = [θ1, . . . , θ4] conforms to the beta distribution which is the conjugate prior distribution

of Eq. (7.8).

p(θ |α0) =

4
∏

k=1

B(θk |α0,1,α0,0), (7.9)

where B(·|c ,d) is the beta distribution with parameters c and d.

Table 7.1: State transition probabilities with adjacent values.

previous state adjacent states transition probability

st−1,d 1− st−1,d−1st−1,d+1 p(std = 1|st−1,d−1:d+1)

0 (off) 0 θ1

0 (off) 1 θ2

1 (on) 0 θ3

1 (on) 1 θ4

Variational inference of posterior distribution

Here, the off-line training of the VB-HMM parameters means the estimation of posterior

distribution p(s1:T , θ, µ, λ |x1:T ). We approximate this posterior by a factorized distribution:

p(s1:T , θ, µ, λ |x1:T ) ≈ q(s1:T , θ, µ, λ), (7.10)

q(s1:T , θ, µ, λ) = q(s1:T )q(θ)q(µ, λ), (7.11)
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where ·1:T denotes a set of values with the time from 1 to T . (Beal 2003) explains the general

inference algorithm in detail. The update equations are derived as follows. q(θ) is updated to

the beta distribution with parameters α̂k ,0 and α̂k ,1 for each k , while q(µ, λ) =
∏

j q(µ j , λ j) is

updated to the Gaussian-gamma distribution with parameters β̂ j , m̂ j , â j , b̂ j .

α̂k , j =α0, j +
∑

t ,d

〈stdj fk(st−1,d)〉, (7.12)

β̂ j = β0+n j ,m̂ j = (β0m0+n j x̄ j)/(β0+n j), (7.13)

â j = a0+
n j

2
,b̂ j = b0+

n jS
2
j

2
+
β0n j

(

x̄ j −m0

)2

2(β0+n j)
, (7.14)

where stdj is equal to std , if j = 1 and 1− std , if j = 0. The quantities in Eqs. (7.13,7.14) are n j =
∑

t ,d〈stdj〉, x̄ j =
∑

t ,d〈stdj 〉xtd
n j

, and S2
j
=

∑

t ,d〈stdj 〉(xtd−x̄ j )
2

n j
. 〈·〉 is the expectation over Eq. (7.11).

〈stdj〉 and 〈stdj fk(st−1,d)〉 are calculated as:

〈stdj〉 ∝ α(stdj)β(stdj), (7.15)

〈stdj fk(st−1,d)〉 ∝ α̃(st−1,d,k)p̃(st ,d |st−1)p̃(xt ,d |st ,d)β(stdj), (7.16)

where α(stdj) and β(stdj) are forward backward recursions.

α(stdj) ∝

4
∑

k=1

α̃(st−1,d,k)p̃(std |st−1)p̃(xtd |std), (7.17)

β(stdj) =

1
∑

j′=0

β(st+1,d, j′)p̃(st+1,d, j′ |stdj)p̃(xtd |std). (7.18)

The smoothed transition probability is

p̃(std = j |st ,d−1:d+1) ∝

4
∏

k=1

exp
{

ψ(α̂k , j)−ψ(α̂k ,0+ α̂k ,1)
} fk (st−1 ,d)

,

where ψ(·) denotes the digamma function. The smoothed observation probability is

p̃(xtd |std) ∝
∏

j

exp
{

(ψ(â j)− log b̂ j − 1/β̂ j)/2− a j(xt ,d − m̂ j)
2/2b̂ j

}stdj

Eqs. (7.15, 7.16) are normalized such that the summation over j or j ,k becomes 1. α̃(st−1,d,k)

is the probability regarding the condition k . Parameters are iteratively updated by Eqs. (7.12–

7.16) until convergence. We start this iteration by setting 〈stdj〉 and 〈stdj fk(st−1,d)〉 as 1 or 0

with a threshold m0 on the observation xt ,d.
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CHAPTER 7. LOCALIZATION IN DYNAMIC ENVIRONMENTS

7.3.2 Online localization and tracking using particle filter

This section explains an incremental tracking using a particle filter (Arulampalam et al. 2002)

with the parameters obtained Eqs. (7.12–7.14). Here, the posterior distribution of the sound

source activation vector given a sequence of MUSIC spectrum is approximated by P particles:

p(st |x1:t) ≈

P
∑

p=1

wps
p
t , (7.19)

where wp and s
p
t are the weight and state vector of particle p, respectively. The number of

particle is denoted by P. These wp and s
p
t are obtained with two steps.

(1) Draw s
p
t from the proposal distribution:

s
p
t ∼ p′(st |xt ,m,a,b), (7.20)

p′(s
p
t |xt , m̂, â, b̂) ∝

∏

d

1
∏

j=0

C(xtd)s
p

td1 exp
(

−∆2
dj/2

) s
p

tdj , (7.21)

whereC(xtd)= 1 if xtd is a local peak with respect to the direction d andC(xtd)= 0, otherwise.

We define C(xtd)s
p

td1 = 1 when C(xtd) = 0 and s
p

td1
= 0. Therefore, C(xtd)s

p

td1 is equivalent

to the exclusive or operation between C(xtd) and s
p

td1
. The proposal weight is given by the

Mahalanobis distance ∆2
dj
= (xtd − m̂ j)

2â j/b̂ j .

(2) Calculate the weight wp for each particle p as:

wp ∝
p̄(xt |s

p
t )p̄(s

p
t |s

p

t−1
)

p′(s
p
t |xt , m̂, â, b̂)

, (7.22)

p̄(xt |s
p
t ) =

∏

d

C(xtd)s
p

td1

∫

p(xt |s
p
t ,µ,λ)q(µ,λ)dµdλ, (7.23)

p̄(s
p
t |s

p

t−1
) =

∫

p(s
p
t |s

p

t−1
,θ)q(θ). (7.24)

The observation and state transition probabilities in Eqs. (7.23,7.24) are given by marginaliz-

ing out the parameters with the posterior distributions from those in HMM in Eqs. (7.6,7.8).

These are analytically calculated as

p̄(xt |s
p
t ) =

∏

d

C(xtd)s
p

td1S t(xtd |m̂ j ,
β̂ j â j

(1+ β̂ j)b̂ j
,2â j)

s
p

tdj , (7.25)

p̄(s
p
t |s

p

t−1
) =

∏

d

∏

k

(

α̂k ,std

α̂k ,0+ α̂k ,1

) fk (s
p

t−1
,d)

, (7.26)
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Figure 7.5: Moving talkers and a loudspeaker around the microphone array.
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Figure 7.6: Plots of trajectories of sound sources. White plots are active audio sources. Top:

static thresholding with Pthres. Bottom: Our method with m0. Right: Observed logarithmic

MUSIC spectrum. Musical audio signal is observed at close to 180 (deg).

where S t(·|m, λ,ν) denotes the Student’s t-distribution with the mean m, precision λ, and

the degree of freedom ν. To keep the number of active sources under Nmax , the observation

probability is set 0 if that of active sources in s
p
t exceeds Nmax .

After calculating the weight of all particles, the weights wp are normalized s.t.
∑P

p=1wp =

1. Then, the posterior is obtained as Eq. (7.19). In our implementation, the particles are re-

sampled for each time t in proportion to the weight of each particle.
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7.4 Experimental Results

This section presents the experimental results. Our method is compared to the fixed threshold

approach. The experimental setup is shown in Figure 7.5. For the off-line learning of VB-

HMM, only one talker moves around the microphone array while talking. During the on-line

tracking using the particle filter, two talkers move around while talking and a musical audio

signal is played from the loudspeaker. Both signals are 20 seconds in length. The parameters

are set as follows: Nmax = 3, α0 = [1,1], β0 = 1, a0 = 1, b0 = 500. The number of particles is

set as P = 500. The reverberation time of the experiment chamber is RT20 = 840 (msec).

Figure 7.6 shows the results with threshold Pthres = 23,25,27 and m0 = 23,25,27. Particle

filtering results show the trajectories where the posterior probability exceeds 0.95. The fixed

threshold approach with a low threshold produces enormous false detections, as red circles

show in Figure 7.6. On the other hand, our method produces much more stable results as

green circles show. We also confirmed that the resulting trajectories are almost the same as

long as the threshold of the posterior is in 0.95–1.0. These results confirm that our method

automatically converges to good parameters for the sound source localization and tracking.

Furthermore, our method stably tracks multiple sound sources even if only one sound source

is used in the training phase.

7.5 Summary

This paper presented a Bayesian extension of MUSIC-based sound source localization. Our

method consists of (1) an automatic parameter learning in the VB-HMM framework, and

(2) an incremental localization and tracking using a particle filter. Future work includes the

integration with the robot audition system HARK (Nakadai et al. 2010), and the application

to auditory scene analysis with a mobile robot.
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Chapter 8

Discussion

This chapter summarizes the observations on the developed multichannel methods so as to

clarify the contributions of this work. Then, some open problems are discussed as future di-

rections of the research.

8.1 Observations

In order to realize various auditory processing functions in multisource environments, we have

developed multichannel methods that overcome the following auditory uncertainties:

1. uncertainty of the number of sources in the environment,

2. degradation of sound source separation performance by reverberation, and

3. dynamic acoustic environments such as moving sound sources.

Chapter 3 tackled the source number uncertainty in the multichannel sound source sep-

aration and localization problem. The method is designed on the basis of the TF masking

approach, which is consistently applicable to both overdetermined and underdetermined mix-

tures. We incorporated Bayesian nonparametrics so that the model is capable of handling an

arbitrary number of sound sources. The experimental results confirmed the superiority of our

method to existing source separation methods in terms of the separation performance as well

as its applicability to various number of sound sources regardless of the number of micro-

phones. On the other hand, the experiments also revealed that the reverberation degrades the

separation and localization performance.
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Chapter 4 addressed the second reverberation issue. The dereverberation function is also

related to the source number uncertainty: existing dereverberation methods assume that the

number of sources is known in advance and that the number of microphones is larger than

that of sources. A joint model for sound source separation and dereverberation was developed

on the basis of Bayesian nonparametrics to cope with the source number uncertainty. We

used the infinite mixture of AR processes to model the reverberation of the arbitrary number

of sound sources. The experimental results confirmed the efficacy of our method for both

underdetermined and overdetermined conditions.

In Chapter 5, a Bayesian nonparametric model to adaptively determine the AR order value

for the dereverberation was developed. This model is motivated by the fact that the AR order

value should be set depending on the amount of the reverberation in the environment. Our

experiments confirmed that the AR order values were automatically adjusted in accordance

with the reverberation time of the observation.

In Chapter 6, the Bayesian nonparametric sound source separation and localization method

presented in Chapter 3 was applied to the sound source separation in a dynamic environment.

In our setup, multiple sound sources are observed by a moving microphone array embedded

on a mobile robot. The separation was carried out where the sound sources were assumed

to be located in disjoint direction ranges. The results confirm the separation capability in an

outdoor environment with low reverberation. On the other hand, the experimental result in an

indoor environment showed that the separation quality was degraded compared to the outdoor

results. This is considered because the reverberation in the indoor environment affected the

separation performance.

Chapter 7 also tackled the issue of dynamic environment by developing a robust sound

source localization method. A Bayesian HMM model was used to automatically choose a

threshold of the existence of sound sources on MUSIC spectra. In the experiment, we con-

firmed the efficacy of this Bayesian method in that our method bypasses an elaborate tuning

of the threshold of MUSIC spectra in a reverberant environment.
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8.2 Contribution

This dissertation presented multichannel methods to realize fundamental auditory processing

functions for CASA and machine listening. Bayesian nonparametric modeling played the key

role in the development of these methods to overcome the auditory uncertainties. The con-

tributions of this work are twofold: (1) the theoretical aspect and (2) practical aspect. The

theoretical contribution is the development of a generic computational model for microphone

array processing. The model is designed based on a Bayesian nonparametric perspective. The

practical contribution of this work is the wide applicability of the model for an arbitrary num-

ber of sound sources or in dynamic environments.

The theoretical side can be regarded as a contribution for the signal processing community

in that this work develops a model for microphone array processing in general situations. Our

model provides the fundamental three functions implemented by microphone array process-

ing: 1) sound source separation, 2) sound source localization, and 3) dereverberation. These

three functions are unified into a single generative process and the corresponding inference

procedure. The model is consistently applicable without any modification depending on the

number of sound sources in the environment.

As the practical side of the contribution, the generic models with robustness against the

auditory uncertainties in real environments are the contribution for CASA or robot audition

systems. For example, the audio intelligibility of the operator of telepresence robot (Mizumoto

et al. 2011) by presenting the location and separated signals of surrounding sound sources.

This technology may also constitute the auditory functions for probing robots (Sasaki et al.

2009a). Our models are robustly usable in uncertain or dynamic situations without a elaborate

tuning of the model depending on specific acoustic environments.

8.3 Open Problems

This section remarks several open problems regarding the methods developed in this disserta-

tion as future research directions. These open problems include

1. fast and online computation for real time processing,

2. an automatic acquisition of microphone positions,
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3. improvement in intelligibility of separated audio signals,

4. more general movements of sound sources in dynamic environments, and

5. high-level auditory processing after separating multisource observations.

While some applications such as spoken dialogue systems (McTear 2004) in a noisy envi-

ronment may require a fast computation for achieving quick responses, our method currently

has difficulty to output the result in real time. One of the reasons for the considerable com-

putation time is the use of MCMC method, or Gibbs sampling, for the parameter inference

because the parallelization of the computation is difficult for Gibbs sampling. One way to

accelerate the parameter inference is to use variational inference methods (Attias 2000) since

variational methods in practice require less iterations before the convergence of the parameters

and are readily parallelized. Another advantage of the variational inference is online inference

frameworks (Hoffman et al. 2010b, Wang et al. 2011). These inference schemes may realize

a fast and online processing of our multichannel methods.

The only prior knowledge that our method requires is the positions of microphones in the

microphone array. While our methods use steering vectors obtained through the calibration of

the microphone array in use, this information may be automatically acquired by blind align-

ment approaches (Raykar et al. 2005, Ono et al. 2009, Miura et al. 2011, Miyabe et al. 2013).

These methods may facilitate the calibration process of the microphone array.

The TF masking-based separation often produces musical noise in the resultant audio sig-

nals, especially when the observation contains a large number of sound sources or intensive

reverberation. This musical noise impairs the intelligibility of the separated signals. The use

of musical noise reduction as a post-processing can improve the degradation of the intelligi-

bility (Araki et al. 2005, Esch and Vary 2009). The imperfect separation partly results from

the assumption that at most one sound source is dominant at each time-frequency point. While

this assumption justifies the TF masking approach to separate the sound sources, this assump-

tion may be violated when a large number of sound sources are simultaneously active. To

address this problem, the use of factorial models such as (Hoffman et al. 2010a, Nagira et al.

2013) may be helpful because these models assumes several source signals can coexist in a

time-frequency point. The trade-off should be kept in mind between the complexity of the

observation process and simplicity of the parameter inference.
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The separation of the moving sources in a dynamic environment has been halfway devel-

oped. In this dissertation, each moving source are assumed to fall in a disjoint direction range

so that the separated segments can easily be merged to reconstruct the sound source. To cope

with general movements of sound sources, we need to manage the tracking of sound sources

and identification of separated segments. For a robust tracking, a multimodal approach may

be helpful (Naqvi et al. 2010, Nickel et al. 2005).

In order to enable computers and robots to manage complex tasks on the basis of auditory

information acquired in real environments, high-level auditory processing, such as speech

recognition, prosody or emotion recognition, sound source identification and so on, is essen-

tial after the separation of multisource observations. These auditory pattern recognition tasks

often use Mel-frequency cepstrum coefficients (MFCC) as a feature representation. Though

MFCCs are widely used and proved effective for many pattern recognition problems in the

literature (Li et al. 2001, Aucouturier et al. 2007), the weakness of MFCC feature is its vul-

nerability to the distortion and interference of other audio signals; namely, an MFCC-based

decoding, such as classification, is severely affected when the source separation result is im-

perfect. Since a perfect source separation is difficult in the face of various auditory uncertain-

ties, these techniques should be considered to manage the high-level auditory processing and

complex tasks. To alleviate this problem, some speech recognition and audio patter recogni-

tion techniques models the uncertainty resulting from the speech enhancement in the extracted

MFCC vectors (Cooke et al. 2001, Deng et al. 2005, Vincent 2012).

An alternative way for handling the uncertainty in MFCC vectors to achieve a robust

auditory patter recognition is to use deep neural networks. Deep neural networks have recently

gained much interest of researchers due to their high performance in various patter recognition

tasks (Bengio 2009, Hinton et al. 2012, Dahl et al. 2012). Deep neural networks automatically

construct feature representations suitable for the given task through the training of the deep

architecture. When separated audio signals are provided as a training dataset, these approaches

may be able to manage the distortions and remaining interferences in the separated signals for

the high-level audio processing.
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Chapter 9

Conclusion

This dissertation presented multichannel methods so as to achieve the decomposition func-

tion essential to deal with multisource environments. These methods provided all or a part

of these three functions: sound source separation, localization and dereverberation. Through

this dissertation, three auditory uncertainties were addressed, which are commonly observed

in actual environments: the uncertainty in the number of sound sources, reverberation, and

dynamic environments.

These auditory uncertainties were overcome by using Bayesian nonprametric models. In

particular, the selection of model complexity caused by the source number uncertainty is by-

passed by the infinite flexibility of the Bayesian nonparametric model. The contributions of

this work have two aspects. For the theoretical side, the three functions of microphone array

processing is unified in to a single model on the basis of a Bayesian nonparametric perspec-

tive. For the practical side, the developed method is widely usable in the three auditory uncer-

tainties without environment-specific tunings. The Bayesian nonparametrics-based framework

constitutes a fundamental building block of CASA systems and robot audition architectures

that work in our daily environments.

The decomposition of sound sources with microphone arrays is carried out on the basis of

direction of arrivals of sound sources. This is because multichannel methods are formulated to

handle the subspace structures in the time-frequency domain, as depicted in Figure 3.2. These

subspaces corresponds to distinct directions of respective sound sources. This granularity of

decomposition may be insufficient for some applications. For example, a robot wants to listen

to a narrative coming from a TV set, though the sound contains a background music as well.
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In this case, a straightforward application of multichannel methods is difficult to separate the

human voice and music audio signal since the targeted voice signal and music signal arrive

from the same direction. A possible approach to mitigate this limitation is to use a hybrid

method of multichannel and single channel frameworks (Ozerov and Fevotte 2010, Sawada

et al. 2013). For achieving hybrid approaches, a trade-off may occur between the granularity

of decomposition function and scalability of the type of sound sources. A key question is what

is an elemental representation of sounds–a TF mask on the spectrogram, a harmonic structure

with a fundamental frequency, or base segment waveforms such as mother wavelets? How to

implement an elemental representation of sounds can arise as a research question.

Another interesting future direction for CASA systems is an incorporation of human in-

telligence for auditory information processing (Quinn and Bederson 2011, Bryan and Mysore

2013). Two major ways are considered to incorporate human intelligence into computational

algorithms. The first way is to build computational models that reflects the knowledge as to

how auditory processing is carried out in a human brain (Bregman 1994, Blauert 1997). Un-

derstanding how humans analyzes auditory events may contribute to the realization of richer

auditory information processing by computers. The second approach is to treat humans as a

system component where the way how humans internally perceive audio information is re-

garded as a black box (Pareek and Ravikumar 2013). A successful example is an interactive

sound source separation system (Bryan and Mysore 2013) where the sound separation algo-

rithm is aided by human annotations. Here, the annotations are used as a regularization term

in the evaluation function of the separation method. Development of interfaces that encourage

humans to precisely respond to the CASA system, and algorithms that incorporate the re-

sponse of humans in a natural way into a mathematical form is future work for this direction.
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