19,314 research outputs found

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization – A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. © 2009 ACADEMY PUBLISHER

    Division with speculation of quotient digits

    Get PDF
    The speed of SRT-type dividers is mainly determined by the complexity of the quotient-digit selection, so that implementations are limited to low-radix stages. A scheme is presented in which the quotient-digit is speculated and, when this speculation is incorrect, a rollback or a partial advance is performed. This results in a division operation with a shorter cycle time and a variable number of cycles. Several designs have been realized, and a radix-64 implementation that is 30% faster than the fastest conventional implementation (radix-8) at an increase of about 45% in area per quotient bit has been obtained. A radix-16 implementation that is about 10% faster than the radix-8 conventional one, with the additional advantage of requiring about 25% less area per quotient bit, is also shownPeer ReviewedPostprint (published version

    Timing Measurement Platform for Arbitrary Black-Box Circuits Based on Transition Probability

    No full text
    corecore