22,177 research outputs found

    Convexity-Increasing Morphs of Planar Graphs

    Full text link
    We study the problem of convexifying drawings of planar graphs. Given any planar straight-line drawing of an internally 3-connected graph, we show how to morph the drawing to one with strictly convex faces while maintaining planarity at all times. Our morph is convexity-increasing, meaning that once an angle is convex, it remains convex. We give an efficient algorithm that constructs such a morph as a composition of a linear number of steps where each step either moves vertices along horizontal lines or moves vertices along vertical lines. Moreover, we show that a linear number of steps is worst-case optimal. To obtain our result, we use a well-known technique by Hong and Nagamochi for finding redrawings with convex faces while preserving y-coordinates. Using a variant of Tutte's graph drawing algorithm, we obtain a new proof of Hong and Nagamochi's result which comes with a better running time. This is of independent interest, as Hong and Nagamochi's technique serves as a building block in existing morphing algorithms.Comment: Preliminary version in Proc. WG 201

    Byzantine Approximate Agreement on Graphs

    Get PDF
    Consider a distributed system with n processors out of which f can be Byzantine faulty. In the approximate agreement task, each processor i receives an input value x_i and has to decide on an output value y_i such that 1) the output values are in the convex hull of the non-faulty processors\u27 input values, 2) the output values are within distance d of each other. Classically, the values are assumed to be from an m-dimensional Euclidean space, where m >= 1. In this work, we study the task in a discrete setting, where input values with some structure expressible as a graph. Namely, the input values are vertices of a finite graph G and the goal is to output vertices that are within distance d of each other in G, but still remain in the graph-induced convex hull of the input values. For d=0, the task reduces to consensus and cannot be solved with a deterministic algorithm in an asynchronous system even with a single crash fault. For any d >= 1, we show that the task is solvable in asynchronous systems when G is chordal and n > (omega+1)f, where omega is the clique number of G. In addition, we give the first Byzantine-tolerant algorithm for a variant of lattice agreement. For synchronous systems, we show tight resilience bounds for the exact variants of these and related tasks over a large class of combinatorial structures

    A combinatorial non-positive curvature I: weak systolicity

    Full text link
    We introduce the notion of weakly systolic complexes and groups, and initiate regular studies of them. Those are simplicial complexes with nonpositive-curvature-like properties and groups acting on them geometrically. We characterize weakly systolic complexes as simply connected simplicial complexes satisfying some local combinatorial conditions. We provide several classes of examples --- in particular systolic groups and CAT(-1) cubical groups are weakly systolic. We present applications of the theory, concerning Gromov hyperbolic groups, Coxeter groups and systolic groups.Comment: 35 pages, 1 figur

    A note on the convexity number for complementary prisms

    Full text link
    In the geodetic convexity, a set of vertices SS of a graph GG is convex\textit{convex} if all vertices belonging to any shortest path between two vertices of SS lie in SS. The cardinality con(G)con(G) of a maximum proper convex set SS of GG is the convexity number\textit{convexity number} of GG. The complementary prism\textit{complementary prism} GGG\overline{G} of a graph GG arises from the disjoint union of the graph GG and G\overline{G} by adding the edges of a perfect matching between the corresponding vertices of GG and G\overline{G}. In this work, we we prove that the decision problem related to the convexity number is NP-complete even restricted to complementary prisms, we determine con(GG)con(G\overline{G}) when GG is disconnected or GG is a cograph, and we present a lower bound when diam(G)3diam(G) \neq 3.Comment: 10 pages, 2 figure

    Discrete Convex Functions on Graphs and Their Algorithmic Applications

    Full text link
    The present article is an exposition of a theory of discrete convex functions on certain graph structures, developed by the author in recent years. This theory is a spin-off of discrete convex analysis by Murota, and is motivated by combinatorial dualities in multiflow problems and the complexity classification of facility location problems on graphs. We outline the theory and algorithmic applications in combinatorial optimization problems

    Local polynomial convexity of the union of two totally real surfaces at their intersection

    Full text link
    We consider the following question: Let S1S_1 and S2S_2 be two smooth, totally-real surfaces in C2\mathbb{C}^2 that contain the origin. If the union of their tangent planes is locally polynomially convex at the origin, then is S1S2S_1 \cup S_2 locally polynomially convex at the origin? If T0S1T0S2={0}T_0S_1 \cap T_0S_2=\{0\}, then it is a folk result that the answer is yes. We discuss an obstruction to the presumed proof, and provide a different approach. When dimension of T0S1T0S2T_0S_1 \cap T_0S_2 over the field of real numbers is 1, we present a geometric condition under which no consistent answer to the above question exists. We then discuss conditions under which we can expect local polynomial convexity.Comment: 18 page
    corecore