22 research outputs found

    An Upper Bound on the Capacity of non-Binary Deletion Channels

    Get PDF
    We derive an upper bound on the capacity of non-binary deletion channels. Although binary deletion channels have received significant attention over the years, and many upper and lower bounds on their capacity have been derived, such studies for the non-binary case are largely missing. The state of the art is the following: as a trivial upper bound, capacity of an erasure channel with the same input alphabet as the deletion channel can be used, and as a lower bound the results by Diggavi and Grossglauser are available. In this paper, we derive the first non-trivial non-binary deletion channel capacity upper bound and reduce the gap with the existing achievable rates. To derive the results we first prove an inequality between the capacity of a 2K-ary deletion channel with deletion probability dd, denoted by C2K(d)C_{2K}(d), and the capacity of the binary deletion channel with the same deletion probability, C2(d)C_2(d), that is, C2K(d)C2(d)+(1d)log(K)C_{2K}(d)\leq C_2(d)+(1-d)\log(K). Then by employing some existing upper bounds on the capacity of the binary deletion channel, we obtain upper bounds on the capacity of the 2K-ary deletion channel. We illustrate via examples the use of the new bounds and discuss their asymptotic behavior as d0d \rightarrow 0.Comment: accepted for presentation in ISIT 201

    Deletion codes in the high-noise and high-rate regimes

    Get PDF
    The noise model of deletions poses significant challenges in coding theory, with basic questions like the capacity of the binary deletion channel still being open. In this paper, we study the harder model of worst-case deletions, with a focus on constructing efficiently decodable codes for the two extreme regimes of high-noise and high-rate. Specifically, we construct polynomial-time decodable codes with the following trade-offs (for any eps > 0): (1) Codes that can correct a fraction 1-eps of deletions with rate poly(eps) over an alphabet of size poly(1/eps); (2) Binary codes of rate 1-O~(sqrt(eps)) that can correct a fraction eps of deletions; and (3) Binary codes that can be list decoded from a fraction (1/2-eps) of deletions with rate poly(eps) Our work is the first to achieve the qualitative goals of correcting a deletion fraction approaching 1 over bounded alphabets, and correcting a constant fraction of bit deletions with rate aproaching 1. The above results bring our understanding of deletion code constructions in these regimes to a similar level as worst-case errors

    Write Channel Model for Bit-Patterned Media Recording

    Full text link
    We propose a new write channel model for bit-patterned media recording that reflects the data dependence of write synchronization errors. It is shown that this model accommodates both substitution-like errors and insertion-deletion errors whose statistics are determined by an underlying channel state process. We study information theoretic properties of the write channel model, including the capacity, symmetric information rate, Markov-1 rate and the zero-error capacity.Comment: 11 pages, 12 figures, journa

    A New Bound on the Capacity of the Binary Deletion Channel with High Deletion Probabilities

    Get PDF
    Let C(d)C(d) be the capacity of the binary deletion channel with deletion probability dd. It was proved by Drinea and Mitzenmacher that, for all dd, C(d)/(1d)0.1185C(d)/(1-d)\geq 0.1185 . Fertonani and Duman recently showed that lim supd1C(d)/(1d)0.49\limsup_{d\to 1}C(d)/(1-d)\leq 0.49. In this paper, it is proved that limd1C(d)/(1d)\lim_{d\to 1}C(d)/(1-d) exists and is equal to infdC(d)/(1d)\inf_{d}C(d)/(1-d). This result suggests the conjecture that the curve C(d)C(d) my be convex in the interval d[0,1]d\in [0,1]. Furthermore, using currently known bounds for C(d)C(d), it leads to the upper bound limd1C(d)/(1d)0.4143\lim_{d\to 1}C(d)/(1-d)\leq 0.4143
    corecore