8,286 research outputs found

    Indexing Metric Spaces for Exact Similarity Search

    Full text link
    With the continued digitalization of societal processes, we are seeing an explosion in available data. This is referred to as big data. In a research setting, three aspects of the data are often viewed as the main sources of challenges when attempting to enable value creation from big data: volume, velocity and variety. Many studies address volume or velocity, while much fewer studies concern the variety. Metric space is ideal for addressing variety because it can accommodate any type of data as long as its associated distance notion satisfies the triangle inequality. To accelerate search in metric space, a collection of indexing techniques for metric data have been proposed. However, existing surveys each offers only a narrow coverage, and no comprehensive empirical study of those techniques exists. We offer a survey of all the existing metric indexes that can support exact similarity search, by i) summarizing all the existing partitioning, pruning and validation techniques used for metric indexes, ii) providing the time and storage complexity analysis on the index construction, and iii) report on a comprehensive empirical comparison of their similarity query processing performance. Here, empirical comparisons are used to evaluate the index performance during search as it is hard to see the complexity analysis differences on the similarity query processing and the query performance depends on the pruning and validation abilities related to the data distribution. This article aims at revealing different strengths and weaknesses of different indexing techniques in order to offer guidance on selecting an appropriate indexing technique for a given setting, and directing the future research for metric indexes

    Moduli space actions on the Hochschild Co-Chains of a Frobenius algebra I: Cell Operads

    Full text link
    This is the first of two papers in which we prove that a cell model of the moduli space of curves with marked points and tangent vectors at the marked points acts on the Hochschild co--chains of a Frobenius algebra. We also prove that a there is dg--PROP action of a version of Sullivan Chord diagrams which acts on the normalized Hochschild co-chains of a Frobenius algebra. These actions lift to operadic correlation functions on the co--cycles. In particular, the PROP action gives an action on the homology of a loop space of a compact simply--connected manifold. In this first part, we set up the topological operads/PROPs and their cell models. The main theorems of this part are that there is a cell model operad for the moduli space of genus gg curves with nn punctures and a tangent vector at each of these punctures and that there exists a CW complex whose chains are isomorphic to a certain type of Sullivan Chord diagrams and that they form a PROP. Furthermore there exist weak versions of these structures on the topological level which all lie inside an all encompassing cyclic (rational) operad.Comment: 50 pages, 7 figures. Newer version has minor changes. Some material shifted. Typos and small things correcte

    Large-scale rank and rigidity of the Weil-Petersson metric

    Get PDF
    We study the large-scale geometry of Weil–Petersson space, that is, Teichmüller space equipped with theWeil–Petersson metric. We show that this admits a natural coarse median structure of a specific rank. Given that this is equal to the maximal dimension of a quasi-isometrically embedded euclidean space,we recover a result of Eskin,Masur and Rafi which gives the coarse rank of the space. We go on to show that, apart from finitely many cases, the Weil–Petersson spaces are quasi-isometrically distinct, and quasi-isometrically rigid. In particular, any quasi-isometry between such spaces is a bounded distance from an isometry. By a theorem of Brock,Weil–Petersson space is equivariantly quasi-isometric to the pants graph, so our results apply equally well to that space
    • …
    corecore