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Zusammenfassung

Die stédndig zunehmende Menge an Medienobjekten im World Wide
Web, in Unternehmen und auf privaten Endgerdten, verbunden mit
einer immer grofer werdenden Vielfalt an Datentypen, erfordert ef-
fektive und effiziente Suchdienste. Hierbei stellt die Bildsuche eine
wichtige Aufgabe dar. In bestimmten Szenarien liegen die Medienob-
jekte dabei verteilt vor und Suchdienste miissen an diese veréinderte An-
forderung gegeniiber einer zentralisierten Speicherung angepasst wer-
den.

Die vorliegende Arbeit befasst sich mit der Ressourcenbeschreibung
und -auswahl fiir die Ahnlichkeitssuche in metrischen Réumen. Zugriffs-
strukturen fiir beliebige metrische Réume stellen flexibel einsetzbare
Hilfsmittel fiir die Suche dar, da sie lediglich fordern, dass die Dis-
tanzfunktion zur Bestimmung der Nihe bzw. Ahnlichkeit zweier Me-
dienobjekte eine Metrik ist. Als Szenario der Arbeit dient die Res-
sourcenbeschreibung und -auswahl bei der inhaltsbasierten Bildsuche
in verteilten Information-Retrieval-Systemen am Beispiel des Peer-to-
Peer Information Retrievals. Bei der Ressourcenauswahl gilt es, an-
hand von geeigneten Ressourcenbeschreibungen die vielversprechend-
sten Ressourcen zu bestimmen, die fiir das Informationsbediirfnis des
Benutzers relevante Medienobjekte verwalten.

In dieser Arbeit werden Zugriffsstrukturen entwickelt, die in beliebi-
gen metrischen Rdumen arbeiten. Die ersten drei Kapitel der Arbeit
fiihren in die Thematik ein, beleuchten die Grundlagen und betrachten
existierende Ansitze auf dem Gebiet. In den Kapiteln Bl Bl und [ wer-
den die Ziele adressiert, auf die die Arbeit ausgerichtet ist und die im
Folgenden kurz beschrieben sind.

Den Ausgangspunkt der Arbeit bildet ein Verfahren zur Ressour-
cenbeschreibung und -auswahl aus Eisenhardt et al. [2006] auf Basis
sogenannter Cluster-Histogramme. Es erweitert einen Ansatz, der in
Miiller et al. [2005a] beschrieben ist. FEin wesentliches Ziel der vor-
liegenden Arbeit ist es, Ressourcenbeschreibungen und Auswahltechni-
ken zu entwickeln, die den Ansatz auf Basis der Cluster-Histogramme
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hinsichtlich Speicherplatzbedarf der Ressourcenbeschreibungen sowie
Leistungsfihigkeit bei der Ressourcenauswahl verbessern. Die Arbeit
stellt hierzu hochfeine, komprimierte Cluster-Histogramme vor. Durch
die Verwendung einer Vielzahl an Referenzobjekten entstehen diinn be-
setzte Histogramme, die sich durch den Einsatz von Kompressionsver-
fahren auf kompakte Weise représentieren lassen. Die damit verbun-
dene feingranulare Partitionierung des Feature-Raums erlaubt eine ef-
fiziente Ressourcenauswahl unter Verwendung kompakter Ressourcen-
beschreibungen.

Der Ansatz auf Basis der Cluster-Histogramme und die in der vor-
liegenden Arbeit vorgestellten Erweiterungen adressieren die approxi-
mative Suche, ohne dabei prizise Ergebnisse zu garantieren. Daher
ist es ein zweites wesentliches Ziel der Arbeit, Algorithmen fiir die Res-
sourcenbeschreibung und -auswahl in beliebigen metrischen Rdumen zu
entwickeln, die eine priizise Ahnlichkeitssuche erméglichen. Dies fiihrt
zu RS4MI — ein Ansatz zur Ressourcenbeschreibung und -auswahl in
metrischen Rdumen, der sowohl die prézise als auch die approximative
Suche unterstiitzt und die gegenldufige Abh#ngigkeit zwischen Spei-
cherplatzeffizienz der Ressourcenbeschreibungen und deren Selektivitét
bei der Ressourcenauswahl steuern kann.

Ferner beleuchtet die Arbeit die breite Anwendbarkeit der Mecha-
nismen zur Ressourcenbeschreibung und -auswahl. Diese ist fiir ver-
schiedene Anwendungsfelder auch abseits des Peer-to-Peer Informa-
tion Retrievals und des traditionellen verteilten Information Retrievals
gegeben. Als ein Beispiel wird in dieser Arbeit IF4AMI vorgestellt — eine
zentralisierte Zugriffsstruktur fiir beliebige metrische Rdume, die auf
dem Konzept der invertierten Liste basiert. IF4MI verbindet Anséitze
von hierarchischen und mehrstufigen metrischen Zugriffsstrukturen fiir
die prizise Suche mit approximativen Ansitzen auf Basis invertierter
Listen. Ein zweites Anwendungsbeispiel zeigt, wie die Techniken zur
Ressourcenbeschreibung und -auswahl auf dem Gebiet der visuellen
Analyse zur ErschlieBung grofier Mengen von Bildkollektionen einge-
setzt werden konnen. Dabei ist die Anwendbarkeit keinesfalls auf den
Medientyp Bild beschréinkt.
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Chapter 1.

Introduction

The task of resource description and selection reaches back to the ori-
gins of both writing and “information retrieval”. Economic transactions,
texts of hymns, prayers, and incantations were written on clay tablets
by the Sumerians around 3000 B.C. Multiple tablets were grouped into
boxes, baskets, and receptacles. They were archived in storerooms. In
order to determine which boxes to open, small tablets per box described
its content in an adequate way. In most cases, incipits (the first few
words of the texts) together with date information were used instead
of titles and keyworddD [Lerner, 2009, ch. 1].

The Sumerians chose lists of incipits as adequate resource descrip-
tions summarizing the content of the tablets in the boxes. Early “li-
brarians” with a given information need had to read the incipits and
perform resource selection, that is, select promising boxes to be opened.
Riiger [2010} ch. 1, p. 2] notes: “... little has changed except technology.
Today, rather than climbing down into storerooms and matching our
information need with the incipits of the documents in boxes, we deploy
computers to match our information need with the text of the documents
itself.”

With the use of automated information processing technology, it is
nowadays possible to analyze and index huge amounts of individual
documents instead of relying on summarized information aggregated
over multiple documents. Nevertheless, there are many scenarios where
resource description and selection techniques are still beneficial and
inevitable, such as in distributed retrieval scenarios.

The focus of this thesis lies in the design and analysis of resource de-
scription and selection techniques for similarity search in general metric
spaces. Similarity search is an important search paradigm where similar
objects with respect to a given query object are to be retrieved. Here,

L Lerner [2009, p.3] notes that keywords chosen from the first two lines of the

texts were also used in one of the Sumerian catalogues, but this approach was
not adopted by later catalogers.
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it is common to model the dissimilarity between objects as a distance
between them assuming that the smaller the distance, the higher the
similarity. The similarity search paradigm is frequently applied in dif-
ferent application fields. Many similarity search problems are modeled
in metric spaces where the distance measure is a metric. Thus, metric
space indexing techniques (see chapter B]) which do not rely on any as-
sumptions about the object representations can be used. Examples for
the application of metric space indexing techniques are text retrieval,
multimedia retrieval, 3D object retrieval, similarity search on business
process models, data compression, pattern recognition, machine learn-
ing, biomedical databases, statistical data analysis, malware detection,
and data mining [Bustos et al., [2007; Chévez et al., |2001b) ch.2; Hu
et al., [2009; Kunze and Weske, 2011; Zezula et al., 2006} p. 3f.].

In this thesis, content-based image retrieval (CBIR) in a particular
peer-to-peer (P2P) information retrieval (IR) system provides the ex-
ample scenario for the design and evaluation of resource description
and selection techniques for similarity search in general metric spaces?.
This scenario is introduced and motivated in section [l The research
problem is formulated in section Major thesis objectives are de-
scribed in section whilst the structure of the thesis is outlined in
section [[L4]

1.1. Motivation

The ever increasing amount of media items in the World Wide Web
(WWW), within companies, and on private devices as well as the grow-
ing diversity in data types [Novék, 2008, p.5] requires effective and
efficient retrieval techniques. Besides text, audio, and video retrieval,
searching for images has become an important retrieval task.

In the early days of web image retrieval, search engines started using
textual information on web pages in the vicinity of the images and text
retrieval techniques to allow for image retrieval. Later, photo sharing
communities such as Flicki® began to use user-provided tags, that is,

2 Most of the research assuming the general metric space model for distributed

similarity search is presented in the field of P2P IR. Resource description and
selection techniques can of course also be applied in other infrastructures with
physically distributed nodes such as in cloud infrastructures, grid infrastruc-
tures, or sensor networks, to name only a few.

3 see http: // www.flickr.com), last visit: 7.10.2014
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1.1.1 — Excerpt of an initial search result. 1.1.2 — Excerpt of the refined
search result after a similarity
search for the “University of Bam-
berg” logo was performed.
Figure 1.1. — Using the image similarity search of Googlelﬂ on 16.5.2013

(http://images.google.com/). Images in an initial search result can be used
as query images for the search of visually similar images.

textual annotations describing the image content. Moreover, geogra-
phic and temporal metadata have been applied as important filter and
search criteria. More recently, commercial search engines such as Bing®
and Googld® (see figure [[T]) have adopted CBIR techniques together
with the similarity search paradigm to search for visually similar images
according to a given query image.

CBIR uses automatically extracted image features which describe
for example color, texture, or shape properties of an image. The appli-
cation of CBIR techniques is especially beneficial when tags or other
forms of metadata are ambiguous or not available. In an analysis of
more than 100 million Flickr images, approximately 30% of the im-
ages have no tags or comments at all [Bolettieri et al., p. 11£].
Bolettieri et al. p.11] also reveals that the average number of
comments per image is 0.52 and on average an image offers 5.02 tags
with the distributions of both the number of tags and the number of

4 seelhttp: // www.bing.com), last visit: 7.10.2014

5 see |hitp://www.google.com), last visit: 7.10.2014

6 Google and the Google logo are registered trademarks of Google Inc., used with
permission.
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comments per image being highly skewed. Additional problems arise
for example from tag spamming (see e.g. Heymann et al. [2007]), lexi-
cal relations such as tag homonymy and synonymy (see e.g. Begelman
et al. [2006]), and insufficient tag quality (see e.g. Miiller et al. [2006]
and Sen et al. [2007]). When trying to overcome these problems, CBIR
offers beneficial techniques. It is shown that combining text IR and
CBIR improves image retrieval quality [Paramita et al., [2009; Popescu
et al., [2010; Tsikrika et al., [2011].

However, retrieval by visual content information is a challenging task.
Besides the difficulty of building effective CBIR systems (see e.g. Datta
et al. [2008]), it is also challenging to design scalable and efficient solu-
tions. Here, P2P IR systems are a potential alternative to client/server-
based techniques currently offered by media sharing communities, web
search engines, and social network sites.

Adapting the peer-to-peer definition in Milojicic et al. [2002) p. 1],
P2P IR systems can be described as systems employing distributed re-
sources (i.e. computing devices) to perform content-based search tasks
in a decentralized manner. The devices can act as both clients and
servers. By applying a scalable P2P IR protocol, a decentralized ser-
vice for the administration of media items can be established in contrast
to existing client/server-based solutions. There is no need for an expen-
sive infrastructure [Han et al., 12004} p. 209] and idle computing power in
times of inactivity can be used to perform CPU-intensive tasks [Clark,
2001, p.19] such as analyzing and enriching media items. P2P IR sys-
tems offer the benefit that media items can remain on individual de-
vices since there is no need for storing them on remote servers which
are hosted by third-party service providers. Crawling, which consumes
large amounts of web traffic, can thus be avoided [Bockting and Hiem-
stra, 2009, p.1]. In addition, dependency from service providers which
act as “informational gatekeepers” [Tene, 2008, p. 1490] can be reduced
because they no longer determine which information can be retrieved
or accessed and which cannot. So, in times of a strong market concen-
tration in web search and social network applications as well as public
debates addressing the privacy of data, P2P IR can offer benefits. In
addition, it remains unclear if and how long existing client/server-based
solutions can cope with the dramatic increase in data volumes.

Some P2P IR systems follow the idea of classic distributed IR sys-
tems, where resource selection techniques are applied to determine a
ranking of promising resources based on descriptions of their content.
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The resources are queried in ranked order to retrieve appropriate media
items according to a user’s information need®.

In general, different criteria can be employed for the retrieval of media
items such as text, timestamps, geographic footprints, and (low-level)
audio or visual content information. Resource description and selec-
tion techniques for text data which are applicable in P2P IR settings
are for example proposed in Cuenca-Acuna et al. [2003]. They are not
addressed in this thesis, nor do we focus on techniques for time and
date information. The focus of this thesis is the design and analysis of
resource description and selection techniques for content information.
These techniques are however also applicable for resource selection us-
ing geographic information as will be discussed in section

As a proof-of-concept, our resource description and selection tech-
niques are evaluated based on a certain type of P2P CBIR system (for
an outline see section B34 on pages [2HT). Nevertheless, the tech-
niques are by no means limited to this particular P2P IR setting. They
can also be applied in the context of other variants of distributed IR sys-
tems (see section B3). Furthermore, there is a range of possible appli-
cation fields apart from distributed IR (see chapter [dl). The techniques

The information need concept is central to many definitions of an IR system.
According to Frakes [1992) p.1]: “An IR system matches user queries—jformal
statements of information needs—to documents stored in a database.” Trans-
lating an information need into a representation an IR system can deal with
is difficult. Queries can be vague, imprecise, and incomplete [Henrich, 12008}
p.24]. In the following, it is assumed that there is an adequate “formal state-
ment” of an information need. Hence, the process of obtaining this represen-
tation is not part of the subject matter. The same applies for the process of
obtaining document representations which are usually stored in the database
instead of the documents themselves. In the example scenario of the thesis,
images are used as documents. Document representations are in the following
also called feature objects or database objects.

Resource selection based on a single criterion, for example image content, is
only a first step on the way to an effective CBIR system. When querying for
multiple criteria, for example for an image with a particular content which
was taken in a certain geographic region, criterion-specific resource rankings
can be combined by applying a merging algorithm for ranked lists (see e.g.
Belkin et al. [1995] and Ilyas et al. [2008]). Moreover, resource description and
selection schemes can be designed which support content-based search and in
addition preserve the geographic distribution of the images by integrating both
content-based and geographic search criteria (see e.g. Hariharan et al. [2008]
which combines text and geographic information). However, such aspects are
out of the scope of this thesis.
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are also not limited to CBIR and the algorithms for precise search3 pre-
sented in chapter Ml and sections and can be applied whenever
the retrieval task can be modeled as a metric space search problem.
In addition, as usual, the resource selection schemes for approximate
search from section B.Ilcan be adapted and used for similarity search in
non-metric spaces (for a definition see section [Z]]) where the amount of
triangle inequality violations affects the search effectiveness of metric
access methods when applied to non-metric similarity search tasks (see
e.g. Skopal [2007]).

1.2. Problem Description

This section introduces the two concepts which form the main thesis
title—mamely resource description and selection (see section [[2]) and
similarity search in metric spaces (see section[[LZ2)—in order to further
clarify the thematic focus of this thesis.

1.2.1. Resource Description and Selection

The resource description and selection techniques presented in this the-
sis can be used in traditional distributed IR scenarios. Callan [2000]
defines distributed IR based on three basic problems and tasks:

Resource description. To identify resources which most likely contain
documents that satisfy a given information need, resources have
to be described in an adequate way™. Callan [2000, p. 128] talks
of “brief” resource descriptions which are in the following also

The term precise (similarity) search is used to denote that all database objects
which fulfill the similarity search criterion must be present in the result set.
This corresponds to the use in for example Zezula et al. [1998]. From an
IR perspective, this means that 100 per cent recall are required. The term
exact search is not used in this context since it also refers to search tasks
where only the exact query object is to be retrieved. On the other hand,
approzimate (similarity) search refers to search scenarios where—usually for
runtime performance reasons—not necessarily all of the database objects which
fulfill the search criterion are retrieved (see e.g. Patella and Ciaccia [2009]).
On the one hand, cooperative resources compute the resource descriptions
themselves. In case of uncooperative resources, the resource descriptions might
be obtained through query-based sampling, that is, computing the resource de-
scriptions from past query results (for the general idea in case of text retrieval
see Callan and Connell [2001]; see e.g. Berretti et al. [2004] for query-based
sampling in case of CBIR).

10
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called summaries. Most of distributed IR research is concerned
with text documents. Here, resources are for example described
by the set of terms, or a representative subset of them, which
are contained in the documents of a resource, and some kind of
frequency information per term plus sometimes additional statis-
tics. However, for some scenarios these brief descriptions are still
not space efficient enough. Hence, the use of Bloom filter{M is
for example proposed for text retrieval in Cuenca-Acuna et al.
[2003].

Resource selection. Based on a known set of resource descriptions, the

entity that performs resource selection decides which resources
to query during search. It is a goal of resource selection to contact
only those resources which contain relevant documents according
to a user’s information need. Routing the query to resources
without any relevant documents should thus be avoided.

Since it is difficult to analyze resource selection independent from
resource description techniques and vice versa, resource selection
often refers to both aspects—resource description and selection.
This corresponds to the understanding in this thesis where both
resource description and selection techniques are analyzed.

Result merging. If a resource is contacted, it queries its local document

collection and possibly returns a ranking of documents to the in-
quiring entity. After having received ranked lists from different
resources, the inquiring entity has to merge these lists. This
might be a challenging task because the relevance scores rep-
resenting query-document similarities computed locally by dif-
ferent resources might be based on local (i.e. resource-specific)
statistics and not be comparable. Since throughout the thesis
cooperating resources are assumed all using the same similarity

11

12

A Bloom filter [Bloom, [1970] is a bit vector indicating if a certain item (for
example a term) is present or not. Multiple hash functions are applied for
mapping an item to a set of bit positions. False positives may arise when
multiple items are mapped to the same bit positions.

In literature, this task is sometimes for example also called “source selec-
tion” [Paltoglou et al., [2008|, “server selection” [Thomas and Hawking, [2009),
“database selection” [Bender et al., [2005b)|, “collection selection” [Bockting and
Hiemstra, 2009], “peer-selection” [Mass et al., [2011], or “query routing” [Not-
telmann and Fuhr, [2006].
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measure which is independent from local statistics, result merg-
ing becomes trivial in this case. Such a scenario is for example
also assumed in Eisenhardt et al. [2006] and Miiller et al. [2005a].

1.2.2. Similarity Search in Metric Spaces

The notion of similarity between a query and a document is central to
IR. A similarity space is a pair (U, sim) where the universe U corre-
sponds to the domain of feature objects and sim represents a similarity
measure [Skopal and Bustos, 2011, p. 34:4]. It is common in many ap-
plication domains such as CBIR to model the dissimilarity between two
feature objects as a distance dist : U x U — R between them. Thus,
(U, dist) is a dissimilarity space with a distance function dist. In gen-
eral, it is assumed that the smaller the distance between two objects,
the higher the similarity™. Retrieving the most similar items (for ex-
ample images) according to a given query from the database O C U
hence results in finding the closest (in terms of the distance function
dist) database objects to the query object ¢ € U. Thus, similarity
queries are also referred to as proximity queries [Chévez et al., [2001b)].
Range and k-nearest neighbors queries (k-NN queries) are among the
most popular types of similarity queries [Kriegel et al., 2007, p.75].
Hence, these types of queries are addressed in the following. Other
types of similarity queries are for example described in Zezula et al.
[2006} p.15ff.]. Both, range and k-NN queries are based on the “query
by image exzample” paradigmd [Smeulders et al., 12000, p. 1367] in case
of CBIR.

13 1In this thesis, it is assumed that the similarity between feature objects can be

adequately modeled with the help of an appropriate distance or dissimilarity
measure. This modeling process together with its various psychological aspects
(references are for example mentioned in Skopal and Bustos [2011]) is however
out of the scope of the thesis.

The “query by image example” paradigm [Smeulders et al., 2000, p.1367] has
found its way to web search. Query images can for example be selected from
an existing result set which is the outcome of an initial text query and visually

similar images are then retrieved (see e.g. figure [T on page J).

14
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DEFINITION 1 (range query, query ball):

A range query range(q,r) with the query object ¢ € U and the search
radius r € R retrieves all database objects from O which are within
distance r from g, that is, {o € O| dist(q,0) < r}. The subspace Q C U
for which Yo € Q : dist(q,0) < r and Vo' € U\Q : dist(q,0') > r is
called the query ball [Skopal and Bustos, 2011, p. 34:4]. O

In some scenarios, it is difficult to explicitly specify the search ra-
dius r. Instead, a user might be interested in the k closest database
objects to q.

DEFINITION 2 (k-nearest neighbors query):

A k-nearest neighbors query knn(q, k) retrieves the k closest database
objects to ¢, that is, a set K C O with Vo € K, 0 € O\K : dist(q,0) <
dist(q,0') and |K| = k [Skopal and Bustos, 2011, p.34:4]. Hereby,
|O] > k is assumed. O

It is hard to design efficient indexing techniques for general dissim-
ilarity spaces [Skopal and Bustos, 2011]. However, many similarity
search problems can be modeled in metric spaces. Here, the underlying
dissimilarity space is a metric space where the distance measure dist
satisfies the metric postulates (see section ).

In literature, there is a distinction between metric access methods
(MAMs) and (multidimensional) spatial access methods (SAMs) [Sko-
pal, 2004]. Skopal |2010, p. 13] defines a MAM as a “set of algorithms
and data structure(s) providing efficient (fast) similarity search under
the metric space model”. The metric space model is introduced in sec-
tion 2] Whereas MAMSs can be applied for similarity search in general
metric spaces where no assumption is made about the representation
of the database objects, SAMs are designed for vector spaced™. Com-
prehensive surveys on SAMs are for example presented in Gaede and
Giinther [1998] and Samet [2006]. MAMs are introduced and described
in chapter

15 Note that any norm ||-|| defined over a vector space V and thus any normed

vector space (V, ||-]|) induces a metric space by defining VZ,§ € V : dist(z,y) =
||§ — || (see e.g. Hansen [1999] p.57L.]).
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1.3. Thesis Objectives

In this thesis, resource description techniques allowing for efficientT®
resource selection for similarity search in general metric spaces are pre-
sented. The main objectives of the thesis are as follows:

§ The starting point of the research is an approach on resource se-
lection from Eisenhardt et al. [2006] outlined in section B3] on
pages [[2H73 It enhances earlier work from Miiller et al. [2005al.
A major objective of this thesis is to devise resource description
and selection techniques which_improve the earlier approach pre-
sented in Fisenhardt et al. [2000] both in terms of space efficiency
of the resource descriptions as well as in terms of resource selec-
tion performance. The latter is measured by the fraction of re-
sources which have to be queried—the less the better—to retrieve
a certain fraction of the precise search result. This cost measure
is frequently applied in the literature on distributed query pro-
cessing such as in Bender et al. [2005b], Eisenhardt et al. [2006],
Miiller et al. [2005b], and Vlachou et al. [2012Db].

The contribution of this thesis in this regard is presented in sec-

tion .11

o The approach in Eisenhardt et al. [2006] as well as the exten-
sions to it presented in section Bl are approximate techniques
which cannot guarantee precise results. Thus, as a second ma-
jor objective, the thesis will provide resource selection algorithms
for precise similarity search in general metric spaces. This leads
to Resource description and Selection for Metric Indexing and
search (RS4MI)—a framework for resource selection in metric
spaces where different pruning rules become applicable depend-
ing on the trade-off between space efficiency of the resource de-
scriptions and resource selection performance.

Using the techniques for approximate similarity search presented
in section [B.J] RS4MI should allow for both precise and approx-
imate search. Extending RS4MI with capabilities for precise
search is addressed in sections and

16 Of course, efficiency of an IR system is not the only important aspect. Ensuring

search effectiveness is essential, too. Nevertheless, this thesis focuses only on
efficiency issues.
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o) —
/ RS4MI

Figure 1.2. — Our scenario of a distributed RS4MI system also using IF4AMI for
the local query processing (resources shaded gray).

O As a third major objective, the thesis should reveal the broad ap-
plicability of the resource description and selection techniques in
different application fields apart from the P2P and distributed IR
domain.

As one example, Inverted File for Metric Indexing and search
(IF4MI) is proposed in chapter @l—a centralized MAM based on
the inverted file concept. IF4MI bridges the gap between existing
hierarchical and multi-step MAMSs for precise search on the one
hand and approximate techniques based on inverted files on the
other. In addition, the use of IF4MI complements RS4MI when
designing a practical distributed metric space search system. Re-
sources can use [F4MI for local query processing and to support
distributed query processing based on RS4MI (for an overview
see figure [[2 explained in more detail throughout this thesis).

As a second application example, in chapter [ the resource de-
scription and selection techniques are applied in the field of visual
analytics for the analysis of large sets of image collections. Here,
the applicability is by no means restricted to the image media

type.
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1.4. Thesis Structure

The remainder of this thesis is structured as follows:

Chapter [2] outlines in more detail important concepts of metric space
indexing since they provide the theoretical background of this
thesis and the basis for the design and analysis of MAMs—both
the already existing approaches discussed in chapter Bl as well
as the newly proposed IF4MI and RS4MI in chapters @ and Bl
respectively. First, section Bl states the metric postulates. Af-
terwards, section presents various distance measures with a
focus on distance metrics. Different space partitioning schemes
and pruning rules which are seminal for the design of MAMs are
presented in section B3l and section [Z4] respectively. Section 23]
introduces the analysis of distance distributions and the concept
of the intrinsic dimensionality which is helpful to quantify the
difficulty of a metric space indexing task. Selecting reference ob-
jectéIZI is an inevitable step in the construction of MAMs. This
task is discussed in section

Chapter 3] gives an overview on existing MAMs and thus recapitu-
lates already existing approaches related to IF4MI and RS4MI.
Clustering in arbitrary metric spaces is briefly introduced in sec-
tion BT since it is closely related to the design of MAMs. Af-
terwards, centralized MAMs are addressed in section Mul-
tiple centralized MAMs such as M-tree [Ciaccia et al., [1997] and
PM-tree [Skopal et al., 2005 implementations as well as a_vari-
ant of the M-Index [Novék and Batko, [2009; Novdk et al., [2011]
serve as comparison baselines when evaluating the performance
of IF4AMT in chapter @ Distributed MAMs are finally outlined in
section

Chapter [ presents IFAMI. It takes precise search to the MAMSs based
on inverted files. Since IF4MI is built on top of an inverted
file, it inherently provides a multi-feature MAM with additional
text retrieval capabilities. The main characteristics of IF4MI are
outlined in section Il Afterwards, its applicability is evaluated
in section

17 In the literature, reference objects are for example also called “anchors” [Novdk

and Zezula, 2013], “foci” [Traina Jr. et al.,[2007], “pivots” [Chévez et al.,2001b)|,
“sites” [Skala, 12009], or “vantage objects” [Vleugels and Veltkamp, 1999].
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Chapter [B outlines RS4MI, a resource selection framework for similar-
ity search in general metric spaces. The chapter consists of three
major sections. Section 5.1l focuses on approximate search tech-
niques which extend the approach from Eisenhardt et al. [2006]
(outlined in section B3] on pages [[PHT3). Afterwards, algo-
rithms for precise search are addressed. Section focuses on
range query processing whereas section 5.3 discusses the process-
ing of k-NN queries.

Chapter [6] highlights some research fields where resource description
and selection techniques for arbitrary metric spaces can provide
a valuable contribution. Application domains are listed where
the resource description and selection techniques developed in
this thesis can be used. In general, two modes of application are
distinguished—searching for similar feature objects according to
a given query object and searching for similar resources given a
particular resource description. Chapter[@lalso shows how RS4MI
can be used in the field of visual analytics for the analysis of for
example large sets of image collections.

Chapter [1] concludes this thesis. The final chapter gives a brief sum-
marization and points out how the thesis objectives have been
addressed. Finally, the chapter outlines important aspects of fu-
ture work.

Figure summarizes the structure of this thesis and shows where
the main thesis objectives are particularly addressed.
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1. Introduction
foundations and B
existing solutions 2. Foundations of 3. Metric Access
Metric Indexing Methods
4. IF4MI 5. RS4MI
approaches developed 5.1 o
in this thesis (3) 52 (2]
and their applicability, = 53 2}
addressing thesis
objectives @, 8, and ©
6. Applicability of the Approaches ©

7. Conclusion and Outlook

Figure 1.3. — Visualization of the thesis structure additionally indicating where
the main thesis objectives are particularly addressed.



Chapter 2.

Foundations of Metric Space
Indexing

This chapter outlines in more detail important concepts in the field
of metric space indexing and search and thus provides the theoretical
background of the thesis in this regard. The concepts which are in-
troduced here have successfully been applied for the design and the
analysis of MAMs—both for the design and the analysis of the already
existing approaches discussed in chapter[Blas well as the newly proposed
IF4MI and RS4MI in chapter @ and chapter Bl respectively

MAMs (for an overview see chapter [ require the distance measure
to be a metric. Thus, section [ZI] states the assumptions of the metric
space approach by introducing the metric postulates.

There is a wide applicability of MAMs in different application do-
mains, as already mentioned in chapter [[l This is partially due to the
fact that there is a huge amount of available distance metrics designed
for the most diverse purposes. Section introduces some distance
measures with a focus on distance metrics. By introducing them, we
also provide examples of their application in the field of CBIR and
other domains. Some of the distance metrics are used by the MAMs
presented in chapter [] and thus important for the understanding of
their application purpose. Furthermore, we use different metrics when
evaluating our approaches IF4MI and RS4MI in chapters [ and

Space partitioning schemes and pruning rules which allow for the
pruning of certain feature space regions or individual database objects
from search provide the basis for the design of efficient MAMs. Various
metric space partitioning schemes are presented in section 23l Corre-
sponding pruning rules are outlined in section [Z4]

An important aspect when designing and applying MAMs is the
analysis of distance distributions and the concept of the intrinsic di-
mensionality outlined in section It is helpful for quantifying the
difficulty of a metric space indexing task. A high intrinsic dimension-
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ality can be perceived as an indicator for the presence of the curse of
dimensionality known from vector space indexing [Pestov, 2007].

Selecting pivots which act as anchors in metric space indexing is an
inevitable step in the construction of MAMs. Anchors are necessary for
the space partitioning because coordinate information such as in case
of SAMs cannot be exploited by MAMs. We focus on the task of pivot
selection in section

For more comprehensive introductions on metric space indexing see
for example Chavez et al. [2001b], Clarkson [2006]. Hetland |2009b],
Hjaltason and Samet [2003a], and Zezula et al. [2006].

2.1. The Metric Postulates

The concept of a dissimilarity space (U, dist) is introduced in sec-
tion In a metric space M = (U, dist), dist is a metric. Thus,
dist is a real-valued distance (function) defined on U x U which satis-
fies the metric postulates [Z1] to 24 for all z, y.z € U [Deza and Deza,
2009, p.4; Hattori, 12003 Skopal and Bustos, 2011, pp. 34:6-34:7; Zezula
et al., 2006, p. 8f.J1=:

dist(z,y) >0 < x#y non-negativity (2.1)
dist(x,y) =0 < x =y identity of indiscernibles (2.2)
dist(x,y) = dist(y, z) symmetry (2.3)
dist(x,y) + dist(y, z) > dist(x, z) triangle inequality (2.4)

Distance functions which do not satisfy all of the abovementioned pos-
tulates are in the following referred to as non-metric distance functions.
A dissimilarity space (U, dist) where dist is non-metric is thus called a
non-metric space.

If postulates 2] to are satisfied and the triangle inequality does
not hold, the distance is called a semi-metric. The distance dist is called
a quasi-metric if postulate 23] and thus symmetry is the only postulate
which is not satisfied; dist is a pseudo-metric if instead of postulate 22

18 Note that non-negativity and thus postulate Z]in fact follows from postulates

22 and 2] [Bryant, [1985| p. 13].
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dist(x,z) = 0 for each x € U holds _together with the other postulates
[Hattori, 2003; Skopal and Bustos, 2011}, p. 34:6].

2.2. Distance Measures and their Application

In this section, some basic distance measures are introduced. Some of
the presented distance formulas rely on multidimensional vector data
with both input vectors having the same number of components 9.

In the context of CBIR, these distance measures can be used for com-
paring (feature) histograms (see Rubner et al. [2000]) which are used in
the experimental evaluations in chapter @ and chapter Bl In contrast to
histograms, (feature) signatures (see Rubner et al. [2000]), that is, lists
of cluster center and corresponding weight pairs, are also frequently
used in CBIR. The interested reader is referred to Beecks [2013] and
Beecks et al. [2013] and earlier work from those authors. Beecks et al.
[2013] also contains an empirical analysis of search effectiveness com-
paring signatures and bag of visual words (BoVW) approaches (for the
concept of visual words see Sivic and Zisserman [2003] and its origin in
Julesz [1981]).

Some of the distance measures outlined in the following are men-
tioned or used in the remainder of this thesis. The purpose of this
section is to give a brief overview on the variety of distance measures
and metrics. If not stated otherwise, our introduction of distance mea-
sures with a focus on distance metrics is based on the works of Skopal
and Bustos [2011) ch. 3.1] and Zezula et al. [2006) p. 9ff.].

There are many domain-specific solutions as well as a sheer mass of
general metrics for different feature representations. A comprehensive
overview on distance measures in different domains can for example be
found in Deza and Deza |2009).

19 Recently, Ptolemaic indexing [Hetland, 2009a] and Ptolemaic access meth-

ods (PtoAMs) [Hetland et al., |2013] were introduced. PtoAMs can be ap-
plied in case of Ptolemaic distances where postulates 2] to hold and
postulate 24 is substituted by Ptolemy’s inequality: dist(w,2) - dist(z,y) <
dist(w, x) - dist(y, z) + dist(w,y) - dist(z, z) for all w,z,y,z € U. If the trian-
gle inequality additionally holds, the Ptolemaic distance is called a Ptolemaic
metric. The validity of Ptolemy’s inequality which is for example the case for
the family of quadratic form distances and thus also for the well known Eu-
clidean distance (see section[Z2]) allows the application of certain pruning rules.
If Ptolemy’s inequality holds in addition to the metric postulates, additional
pruning rules can be applied, possibly leading to increased search efficiency.
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Among others, the following two properties are interesting when com-
bining and modifying distance metrics. Multiple metrics can be com-
bined by a weighted sum still preserving metric properties [Novék, 2008,
p.19]. Pele and Werman 2009, sect. 4] proves that any thresholded dis-
tance, dist” (g, 0) = min(dist(q,0),v) with ¥ > 0 is a metric if dist itself
is a metric.

2.2.1. Minkowski Distances

The Minkowski metrics dist;,, (o > 1) are applicable in §-dimensional
vector spaces:

5 1/«
disty.,, (7, 0) = (ZM’TZ’] - ﬂﬂl") (2.5)

Especially the metrics dist;,, (Manhattan distance) and disty,, (Eu-
clidean distance) are frequently used in CBIR (see e.g. Hu et al. [2008])
and various other domains; disty, _(q, 5) = max?_, |qli] — dli]| is referred
to as the Maximum distance [Skopal and Bustos, 12011}, p. 34:10].

2.2.2. Quadratic Form Distances

When Minkowski distances are applied, it is assumed that there is
no correlation between the feature vector dimensions. In opposition,
quadratic form distances model the dependencies of different feature
vector components:

disteg(7,5) = \/ (@~ )T -5 (- 0) (2.6)

Thus, the § x 6 matrix S captures the pairwise similarities s; ; of
feature vector dimensions 7 and j (1 < 4,5 < §). In CBIR for example,
it can be modeled that the similarity between dark green and light green
is higher than the similarity between dark green and red. If S is positive
semi-definite, distys is a semi-metric; if the matrix is positive-definite,
the quadratic form distance is a true metricZ [Pele and Werman, 2010,
p.749f]. When S corresponds to the identity matrix, the quadratic
form distance distys is equal to the Euclidean distance disty,,. If S

20 Note also that the signature quadratic form distance, a quadratic form distance

defined on feature signatures, is a (Ptolemaic) metric [Loko¢ et al., [2011].
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corresponds to the inverse of the covariance matrix, the distance is
called Mahalanobis distance.

2.2.3. Earth Mover’s Distances

The earth mover’s distance (EMD) [Rubner et al., [2000], an extension
of the Mahalanobis distance [Deza and Deza, 12009, p. 350], is frequently
applied in CBIR and many other domains. For computing the EMD,
a transportation problem is solved. If the sums of signature weights
are equal and the ground distance (i.e. the distance implied by the cost
matrix) fulfills the metric postulates, the EMD itself is a distance metric
[Rubner et al., 2000, p.119f]. Pele and Werman [2009] proposes the
use of thresholded ground distances together with a fast algorithm for
the computation of an EMD variant. In their study, both, the efficiency
and the effectiveness of a CBIR task based on local image features is
increased compared to other local feature matching techniques based
on alternative EMD variants.

2.2.4. Edit Distances

Distance metrics are also applied to determine the similarity between
sequences of symbols. The edit distance counts the minimum number
of necessary edit operations to transform one sequence of symbols into
another. If insert, delete, and replacement operations on strings are
considered, this distance is called Levenshtein distance [Levenshtein,
1966]. There are many variants of the edit distance (see e.g. Zezula et
al. [2006) p.12f.]). In case of weighted edit distances, the non-negative
weights of the insert and delete operation must be equal to preserve the
symmetry property of the distance metric [Zezula et al., 2006, p.13].
Popular applications of edit distances are for example spell checking
[Croft et al., 2010, sect.6.2.2] and the matching of amino-acid sequences
in bioinformatics. For the latter, a distance metric based on the mPAM
substitution matrix modeling substitution costs between proteins can
be used [Xu and Miranker, 2004].

Edit distances can also be defined on tree structures (see Bille [2005]).
Connor et al. |2011a] proposes a distance metric to measure the struc-
tural difference between trees which is based on information theory and
in particular Shannon’s entropy [Shannon, 1948|. In Chandrasekaran et
al. [2008], for example user profiles are modeled as concept trees which
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are matched against document profiles in order to recommend relevant
research papers to interested authors. Tree edit distances are also ap-
plied to measure the structural difference between XML documents (for
references see Zezula et al. [2006, p. 13]).

There are also metric variants of the edit distance for graph structures
supporting for example search for similar images [Berretti et al., [2007],
videos [Lee, [2006], business process models [Kunze and Weske, 2011,
or function-call graphs to detect malware programs [Hu et al., [2009].

2.2.5. Hamming Distance

The Hamming distance [Hamming, [1950] is a distance metric frequently
applied on bit strings. It measures the number of bit positions in which
the bits of two bit strings differ from each other. This is equivalent to
computing a bitwise XOR of both bit strings and then counting the
number of bits which are set in the result [Muja and Lowe, 2013} p. 404].
It also corresponds to the Manhattan distance (see section ZZ21]) ap-
plied on bit strings [Deza and Deza, 2009, p. 45].

The Hamming distance can also be computed on text strings. Here,
it counts the number of positions in which the characters of both strings
differ. Thus, the Hamming distance can be perceived as a particular
edit distance (see section 2224 where only replacement operations are
permitted.

2.2.6. Squared Chord, Hellinger, and Matusita Distance

Experimental results in Hu et al. [2008] and Liu et al. [2008] sug-
gest, among others, the squared chord distance dist;. for improving
the search effectiveness in CBIR. The squared chord distance is only
applicable in case of non-negative feature vector components and the
formula for computing dists. is given as follows (see Hu et al. [2008§]
and Liu et al. [2008]):

b9 = 3 (V- V) 20

While dists. is a non-metric distance function, there are distance met-
rics which are conceptually similar to the squared chord distance. Ac-
cording to Deza and Deza [2009, p. 249], the square root of the squared
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chord distance dist\i(q, 0) = +/dists.(q, ) sometimes denotes the Ma-
tusita distance while disti(q,0) = /2 - distsc(q,0) is called Hellinger
distancd@. If applied for the distance calculation between two proba-
bility distributions, the Hellinger distance disty is a metric [Deza and
Deza, 2009}, p. 249].

2.2.7. Distance Functions based on Cosine Similarity

The cosine similarity simcos is a popular measure in text retrieval ap-
plications to quantify the similarity between a document and a query
when applying the vector-space model [Manning et al., 2008, sect.6.3].
A distance measure dist.os based on the cosine similarity simeqs is some-
times used in CBIR (see e.g. Hu et al. [2008] and Liu et al. [2008]):

) . .
21 qli] - li]
s . s }
\/Zi=1 qlil? - 35—y olil?
A distance metric based on cosine similarity which is called the an-

gle distance can be defined by applying arccos on simeos [Skopal and
Bustos, 2011} p. 34:10]:

disteos(q,0) = 1 — simeos(q,0) =1 —

(2.8)

distangle(7, 0) = arccos(simeos(q, 0)) (2.9)

Since the arc cosine function arccos is strictly decreasing in the in-
terval [—1, 1], distangle preserves the ranking of distcos. Thus, MAMs
can be applied in the context of popular text retrieval models. Skopal
and Moravec [2005] for example shows that MAMs can be beneficial
for latent semantic indexing (LST) where query vectors are no longer
sparse and thus the use of inverted files during query processing be-
comes inefficient.

2.2.8. Jaccard Distance

The Jaccard coefficient which determines the similarity of two sets A

and B by simj(A, B) = }’:BE} is frequently used in IR such as for du-

21 Note that the technique of applying a concave function to the distance val-

ues preserves the ranking but usually increases the intrinsic dimensionality of
the dataset and thus makes the indexing task harder [Skopal, [2007]. For an
explanation of the concept of the intrinsic dimensionality, see section
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plicate detection (see Naumann and Herschel [2010, sect. 3.1.1]). Since
simy(A, B) € [0,1], dist;(A, B) = 1 — sim;(A, B) provides a distance
measure with distj(A, B) € [0,1]. It can be proven that disty is a metric
(see e.g. Xu and Agrafiotis [2003, appendix A]).

2.2.9. Canberra Distance

The Canberra distance distcanb is a true distance metric [Barioni et al.,
20111 p.330]. It is defined in Kokare et al. [2003] as:

|ati] - atil
dlstcanb Z |(f[l |—|—|5[Z (2'10)

Kokare et al. [2003] points out that distcans can especially be useful
in CBIR based on texture analysis where the Canberra distance can
outperform the Euclidean and Mahalanobis distances.

2.2.10. Kullback-Leibler Divergence and its Variants

The Kullback-Leibler divergence [Kullback and Leibler, [1951] mea-
sures the difference between two probability distributions [Manning and
Schiitze, 11999, p.72]. In case of two histograms, the distance can be
calculated as follows (see e.g. Hu et al. [2008]):

5

distkL (7, 0) = Z qli] log ‘{[I } (2.11)

The Kullback-Leibler divergence is for example applied in text re-
trieval for the comparison of language models (LMs) (see e.g. Zhai
[2008] sect.5.2] and Shokouhi and Si [2011l p.30]) as well as in vari-
ous CBIR applications (see e.g. Do and Vetterli |2002] and Liu et al.
[2008]). A symmetric variant of the Kullback-Leibler divergence called
Jenson-Shannon divergence or Jeffrey divergence is obtained through
the following formula [Deselaers et al., 2008, p. 84]:

5

q'T] 2 - o]
distys(q, 0 ; (ﬂz 08 = 37l + oli]lo _,[ T+ cj’[z]) (2.12)
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To obtain a true distance metric fulfilling also the triangle inequality,
the square root of distys must be taken (for a proof see Endres and
Schindelin [2003]). This property is for example exploited in Wu et
al. [2012] to measure the distance between two concepts by comparing
their latent topic visual LMs.

2.2.11. Semantic and Other Distance Metrics

Section ZZ4] already mentions some distance measures for determining
the similarity of tree or graph structures. Edit distances measure the
work needed to transform one feature object into another.

Semantic distances usually also exploit concept hierarchies and rela-
tionships defined in trees and graphs. Two distance metrics employing
concept hierarchies and thus information obtained from tree structures
are for example used in Lodi et al. [2008]. WordNet [Miller, [1995], a
lexical database for the English language, is applied as a knowledge
base. The distance between two concepts is influenced by for example
the height of the hierarchy, the depth of the least common ancestor of
two concepts, and their individual depths within the concept hierarchy.

A conceptually similar approach based on the comparison of tree
branch lengths is applied in bioinformatic applications where dissimi-
larities are for example measured by the UniFrac [Lozupone and Knight,
2005] distance metric.

As a very general approach, Connor et al. [2011b] proposes the ensem-
ble distance, a distance metric applicable to ensembles. These can be
interpreted as sets of event-probability pairs and are widely applicable.
For example unordered data trees, texts, or images can be compared
by the ensemble distance.

2.3. Metric Space Partitioning

After having presented various distance metrics—necessary for the ap-
plicability of MAMs—this section will focus on how to index a database
under the metric space assumption.

Various space partitioning schemes can be applied and combined for
the design of MAMs. In metric space indexing, feature objects and
distance information are used for partitioning the feature space since
it cannot be assumed that coordinate information is available which is
particularly helpful when designing SAMs.
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Metric space partitioning schemes are not only used for the design
of centralized MAMs. In the context of distributed indexing, the par-
titioning provides the basis for the assignment of certain regions of the
feature space to resources in order to determine their region(s) of re-
sponsibility. Resource description and selection schemes for arbitrary
metric spaces are also based on these space partitioning techniques (see

section B3).

Uhlmann [1991] introduces two basic decompositioning schemes which
are denoted in Zezula et al. [2006, p.20f.] as generalized hyperplane
partitioning (see section Z37]) and ball partitioning (see section 223.2).
They are introduced in the following together with several extensions
which have been proposed.

2.3.1. Generalized Hyperplane Partitioning

In order to partition a subset S of the feature space U with S C U
into two subsets S; and So by generalized hyperplane partitioning (see
Uhlmann [1991] and Zezula et al. [2006, p.21] and figure ZTT)), two
corresponding reference objects ¢; and ¢z (c1,¢2 € U and ¢1 # ¢3) are
applied:

S1 {0 € S| dist(c1,0) < dist(cz,0)}

2.13
Sg < {0 € S| dist(c1,0) > dist(cz,0)} (2.13)

Database objects with the same distance to both ¢; and c¢s can be
assigned to either S; or So. Since generalized hyperplane partitioning
does not guarantee a balanced split, the adequate selection of reference
objects (here: ¢; and ¢3) becomes important (see section 2.6]).

Related to the generalized hyperplane partitioning is lemma [[] which
lower-bounds a distance dist(g, 0). It is stated and proven in Hjaltason
and Samet |2003al p.539f.]. This lemma is used in section B3] when
analyzing the resource ranking of the RS4MI approach. Therefore, it
is briefly introduced here.
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2.1.1 — (Two-way) generalized hy- 2.1.2 — Voronoi-like or multiway
perplane partitioning generalized hyperplane partitioning
Figure 2.1. — Hyperplane partitioning schemes. For visualization purposes—

here and in the remainder of this thesis—a two-dimensional Euclidean space is
assumed and the cluster borders are drawn as solid black lines. Subspaces S;
(i € INT) are in some cases of generalized hyperplane partitioning denoted [c;]
emphasizing the use of reference objects ¢; as cluster centers.

LEMMA 1:

Let ¢ € U be a query object and let o € U be an object that is closer
to reference object ¢; than to reference object co, or equidistant from
both (i.e. dist(c1,0) < dist(cq,0)). Given dist(q,c1) and dist(q, c2), we
can establish a lower bound on dist(q, 0):

max ( dist (g, c1) ; dist (q, c2)

,0) < dist(q,0) (2.14)

In figure 22 the lower bound distance is visualized as a colored line
assuming g on a line between c¢; and ¢y in a two-dimensional Euclidean
space. The lower bound distance holds for all query objects ¢ € U with
dist(q, c2) < dist(q, c1). It can be shown that the lower bound decreases
as ¢ is moved on the dotted line in figure [Z2] (see e.g. ¢’), that is, with
constant distance between ¢ and the partitioning line [Hjaltason and
Samet, 2003al, p. 539f.].

Voronoi-like partitioning

Voronoi-like partitioning (see figure[ZT.2) is an extension of generalized
hyperplane partitioning [Novak, 2008, p. 21f.]. Hetland [2009b, p.212]
denotes it as “multiway generalized hyperplane partitioning” in contrast
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[ci]

Figure 2.2. —  Visualization  of the lower-bound  distance
(dist (q,c1) — dist(q,c2)) /2 on dist(q,0) in case of generalized hyperplane
partitioning (adapted from Hjaltason and Samet [2003al p. 540]).

to the “two-way generalized hyperplane partitioning” visualized in fig-
ure 2T Tland outlined above. For a Voronoi-like partitioning, a set with
more than two reference objects C' = {¢; | ¢; € UAN1 < i < m} and
|C| > 2 is applied and every database object is assigned to its closest
reference object:

Vie{l,...,m}: (2.15)

Si «—{oeS|Vje{l,...,m}: dist(o,¢;) < dist(o,c;)} '
Brin [1995] denotes the cells of the Voronoi-like partitioning as Dirichlet
domains.

Chévez et al. [2001b} p. 296] notes that the task of indexing in general
metric spaces can be envisaged as the task of building an equivalence
relation which allows to prune certain equivalence classes during search
while those which cannot be pruned have to be searched. The parti-
tioning schemes presented in this section directly relate to this problem
because a partition of S induces an equivalence relation “~” on S and
vice versa (see e.g. Green [1988] p. 20f., fundamental theorem on equiv-
alence relations]).

The compact equivalence relation inducing generalized hyperplane
partitioning (see Chévez et al. [2001bl, p. 301]) is outlined in the follow-
ing since it defines the notation which is used throughout this thesis and
because it provides the starting point for the formulation of resource
selection algorithms for precise search which extend the approximate
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techniques presented in Eisenhardt et al. [2006] (see thesis objective o
in section [[3] which is addressed in section 2] and section B3):

DEFINITION 3 (compact equivalence relation based on C):
The compact equivalence relation is defined based on a non-empty set
of reference objects C ={c¢; | ¢; e UN1 <i<m} by

x ~oy <= closest(z,C) = closest(y, C)

where closest(z,C) = {c; € C | Ve¢; € C : dist(cj, z) < dist(c;, 2)}. O

The partitioning arises by assigning every database object to the
closest reference object. In this thesis, ties (i.e. closest returning a
set with more than one pivot) are broken consistently and a database
object in case of ties is always assigned to the reference object ¢; with
the smallest ID ¢ (1 < ¢ < m). An equivalence class [¢;] resulting from
the space partitioning is in the following denoted as a cluster and [g]
for example refers to the cluster where the query lies in (i.e. the query
cluster). Reference objects ¢; are also called cluster centers.

Permutation-based partitioning

According to Esuli [2009, p. 146], permutation-based indexes (PBI) are
independently introduced in Chévez et al. [2008] and Amato and Savino
[2008]. PBI rely on a permutation-based partitioning of the feature
space, that is, a hierarchical form of hyperplane partitioning. Novak
and Zezula [2013] p. 1] denotes permutation-based partitioning as “re-
cursive Voronoi-like partitioning”. Based on the non-empty set of ref-
erence objects C, a list L, of cluster IDs can be computed for every
feature object x € U containing the IDs i of all ¢; € C sorted by in-
creasing dist(c;,x). L, is used for determining the cluster to which a
feature object x belongs and it is more formally defined by definition [4]
according to Chévez et al. [2008] p. 1650]22“23].

22 Note that one-based array and list data types are assumed throughout this the-

sis. Thus, the indices start with 1 and the last index is equal to the length/size
of the data structure.

Note that in the remainder of this thesis L, and Ly are used to denote that
the list is determined for a database object o € O or a query object ¢ € U,
respectively.

23
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les)l @ ¢y

[61,3]

Figure 2.3. — Outline of the permutation-based space partitioning with m = 4
and [ = 2 (adapted from Novak and Batko [2009]). Cluster [c1,4] and cluster
[c4,1] do not exist.

DEFINITION 4 (list L,):

Let C ={c;i|¢; € UN1 <i<m} and x € U. Then, L, is defined as
a permutation of {i | i € NT A 1 <i < m} so that, for all 1 <i < m,
it holds that either dist(cr,[;), ) < dist(cr,[i41], ) or dist(c, [y, T) =
dist(cr,, [i+1], %) A Lz [i] < Le[i 4 1]. O

The list L, is sometimes denoted as “distance permutation” [Skala,
2009, p. 49] or “pivot permutation (PP)” [Novék and Zezula, 2013} p. 1].
When m centers are used, theoretically m! clusters can arise from the
corresponding permutation-based partitioning. In order to restrict this
maximum number of clusters to at most mt = m-(m—1)-...-(m—1+1)
clusters, [-permutations corresponding to the first [ elements out of L,
can be applied. Thus, L., in the following denotes the list L, truncated
at position [ with 1 <1 < m.

To give a visual example, figure outlines the space partitioning
resulting from [ = 2 with m = 4 reference objects being used. Cluster
[c3,1] for example denotes that database objects in this cluster are clos-
est to cluster center c3 and second closest to center ¢;. Theoretically,
at most 42 = 12 clusters are thus possible in this example. However,
not all of them exist. Cluster [¢1 4] and [c4,1] are missing in figure 223
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Figure 2.4. — Parameterized generalized hyperplane partitioning with £ =
—dist(c1, c2)/3; adapted from Loko¢ and Skopal [2010, p. 131].

Generalized hyperplane partitioning based on the equivalence rela-
tion ~¢ can be perceived as a special case of permutation-based parti-
tioning where L. [1] returns the cluster ID of the cluster center which
results from closest(x, C) if ties are broken consistently (i.e. in the same
way as in case of definition [).

Parameterized generalized hyperplane partitioning

Loko¢ and Skopal |2010] introduces parameterized generalized hyper-
plane partitioning as a means for obtaining more flexible partitions
compared to the general hyperplane partitioning presented above. This
is achieved by introducing the parameter £ as a distance threshold (see

figure 2.4]).

S1 + {0 € S| dist(c1,0) < dist(ce,0) + £}

2.16

Sg + {0 € S| dist(c1,0) > dist(ce,0) + &} (2.16)
However, at the time of writing, Loko¢ and Skopal [2010] is not cited
by any approach proposing a MAM and it thus seems that no MAM
uses the parameterized generalized hyperplane partitioning so far. It is
mentioned here for reasons of completeness.

2.3.2. Ball Partitioning

Two basic concepts are related to the partitioning presented in this
section: (metric) balls and (metric) (ball) shells. Both are defined in the
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following, adapting the definitions of Hetland [2009b) p. 208 and p. 210,
resp.]. Later in this section, ball partitioning and—as an extension
of it—excluded-middle partitioning are introduced for partitioning a
subset S of the feature space U with S C U.

DEFINITION 5 (ball):

A ball (region) [c|pout is defined by its center ¢ € U and a corre-
sponding covering radius r°%*, that is, an upper bound of the distance
dist(c, x) from the center ¢ to any object x € U in the ball region, i.e.
Va € [c]pous : dist(c,x) < rout. O

Applying this definition, a query ball Q (see definition

in case of a range query range(q,r) can also be denoted as [g];.

DEFINITION 6 (shell, synonym: hyper-ring):

A shell (region) is the set difference [c]out\[c],im with 08¢ > 7% of two
metric balls. A shell can be represented with a single center ¢ and
two radii: the inner radius '™ and the outer radius r°%; r® and rout
are the lower and upper bounds respectively on the distance dist(c, x)
for any object € U in the shell, i.e. V& € [¢|pout\[c]pin : dist(c,x) >
A dist(c, z) < rout. O

Within ball partitioning [Uhlmann, [1991, p. 20] (see figure Z5.T)
S C U is partitioned by a ball S§; with radius A around feature object
¢ € U (see also Zezula et al. 2006} p. 20]). The database objects located
outside the ball S; are assigned to So. Ties, that is, objects on the
border of S; and Sy with dist(c,0) = A, are arbitrarily but consistently
assigned to either S; or Sg. Thus, the redundant conditions (i.e. < and
>) are included in the following formalization:

S1 + {o € S| dist(c,0) < A} (2.17)

Se {0 € S| dist(c,0) > A} '
In tree-based MAMs where a node entry is split when its capacity
is exceeded, A\ can for example be set to the median distance of the
dist(c, 0) values of all o € S to achieve a balanced split. If the median
value is not unique, a balanced split can be achieved by arbitrarily
assigning database objects with dist(c,0) = A to one of the two subsets
S1 or Sy in a balanced fashion [Zezula et al., 2006, p. 20].
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4. S,
¢ S
2.5.1 — Ball partitioning. 2.5.2 — Excluded-middle par-
titioning.
Figure 2.5. — Ball partitioning schemes; figures adapted from Zezula et al.

[2006| p. 20]

Excluded-middle partitioning

Excluded-middle partitioning [Yianilos, |[1998; Zezula et al., 2006, p. 21]
can be envisaged as an extension of ball partitioning [Zezula et al.,
2006, p.21]. An additional distance threshold ¢ is applied to obtain a
partition with three elements Sy, Sz, and S3 (see also figure Z5.2)):

S1 «+ {o € S| dist(c,0) < A—&}
Sg « {0 € S| dist(c,0) > X+ &} (2.18)
Ss < otherwise

This partitioning is motivated by the fact that in case of general ball
partitioning and range queries range(q,r) with a search radius r where
q lies near the border of S; and So, often both regions S; and S, must
be accessed. In contrast, the existence of S3 (with a thickness of 2¢)
can potentially lead to a pruning of S; or So or even both. When the
search radius r is smaller than 2£, at least one region can be pruned
from search.
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[el] [e]

Figure 2.6. — Applying the pruning rule based on the double-pivot distance con-
straint in case of a range query range(q,r) where cluster [c1] can be successfully
pruned.

2.4. Pruning Rules

The pruning rules outlined in this section are applied by MAMs for
cluster pruning and object pruning. In case of cluster pruning (see
sections 24T and ZZ2), certain regions of the feature space and thus
all the objects within can be pruned from search. On the other hand,
object pruning (see section Z43) excludes individual database objects
from search.

The pruning rules presented in the following are derived from dif-
ferent constraints and corresponding lemmas and proofs which are not
in detail outlined here. They can be found in Samet [2006], Hetland
[2009b)], and Zezula et al. [2006, p.26ff.]. The rules are directly de-
scribed as applied by IF4AMI and RS4MI—assuming a Voronoi-like gen-
eralized hyperplane partitioning with the presence of additional ball
and/or sphere information. Pruning examples are provided to allow for
an intuitive introduction.

2.4.1. Using the Double-Pivot Distance Constraint

If a query lies in the cell of center c¢*, that is, reference object ¢* is
the closest center out of the set C' of all available reference objects
to a given query object g, any cluster [¢;] # [¢*] and hence all ob-
jects within the very cluster can potentially be pruned by exploit-
ing the triangle inequality. A cluster [¢;] # [c¢*] can be pruned if
(dist(q, c;) — dist(g,c*)) /2 > r, with r denoting the search radius.
Figure visualizes two clusters and a range query range(q,r) with
q € [c2]. Cluster [¢1] can be pruned since (dist(q,c1) — dist(q,cz)) /2
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Figure 2.7. — Successful application of the pruning rule based on the range-pivot
distance constraint in case of a range query range(q,r). Cluster [c1] can be
pruned because dist(q,c1) —r > r{"* and thus the query ball does not intersect

the ball with radius % around ¢;.

is bigger than the search radius r and thus the query ball Q does not
intersect [e1].

2.4.2. Using the Range-Pivot Distance Constraint

If a covering radius 79" of a cluster [¢;] is given, that is, the maximum

distance of any object in the cluster from its center ¢;, the very cluster
can be pruned if dist(q, ¢;)—r > r"* (see figure7T). A similar condition
can be applied according to ri", that is, the minimum distance of any
object within the cluster from its center ¢;. We can prune cluster [¢;]
if dist(q,c;) +r < ri® (see figure 2ZF)).

The pruning rule based on the range-pivot distance constraint can
be used in an inter-cluster way. Two matrices R°" and R™ are applied
to store outer and inner cluster shell radii rf‘j‘t and ri® ij respectively
fori,j € {1,...,m} where 79} represents the maximum distance from
any object out of cluster [¢;] to cluster center ¢; and 7" ; represents the
minimum distance from any object out of cluster [¢;] to cluster center

. Elements r"“t and 7% on the diagonal of the matrices R°" and R"
thus capture the outer cluster shell radius r{"* and inner cluster shell
radius 7" of cluster [¢;] respectively as already introduced. Cluster [¢;]
can be pruned if there exists a cluster [¢;] for which dist(q, ¢;) +r < 7}
or dz'st(q,c]) r > P4t [Wojna, 2002, p. 301].

Figure 2.9 Vlsuahzes a search situation performing a range query
range(q, r) where cluster [c1] can be successfully pruned. By solely using
the pruning rule based on the double-pivot distance constraint, cluster
[c1] cannot be pruned since the query ball Q intersects cluster [¢q]. If
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Figure 2.8. — Successful application of the pruning rule based on the range-pivot
distance constraint in case of a range query range(q,r). Cluster [c1] can be
pruned because dist(q,c1) + r < ri® and thus the query ball lies fully inside the
ball with radius r* around c¢; where—in cluster [¢;]—no database objects are
lying.
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Figure 2.9. — A pruning example showing the usefulness of information stored

in the matrices R™ and R°“Y; 12 and rﬁ’f’; are used for restricting the region of

possible database objects in cluster [c1] to the two dark gray shaded intersection
areas of Hy 1 and Hj 2. Since the query ball Q does not intersect any of these
regions, cluster [c1] does not contain any database objects relevant to the query.
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for every cluster we administer only the inner and outer shell radius
of objects in the cluster (shown by the hyper-ring H; ; around cluster
center ¢; in figure 20), cluster [¢1] can still not be pruned. Information
from the matrices R™ and R°" is thus needed for successfully pruning
cluster [¢1]. If we also apply the radii riij and r‘f,“;, that is, the minimum
and maximum distance of database objects in cluster [¢1] from ca, it
can be determined that there are in fact no relevantZ® database objects
in the intersection area of the query ball Q and the hyper-ring H; ;.
The region of possible database objects is limited to the two dark gray
shaded intersection areas of H; ; and H, » and since the query ball Q
does not intersect any of these regions, cluster [c;] does not contain any
database objects relevant to the query.

2.4.3. Using the Object-Pivot Distance Constraint

A further pruning rule can be applied on an object level rather than
a cluster level. If |dist(q,c;) — dist(ci,0)| > r, object 0 € O can be
pruned without computing dist(q,0). Potentially expensive distance
computations between the query object ¢ and a database object o can be
avoided at the price of storing distance values dist(c;, 0) which are often
anyway computed during the insertion of o into the index structure.
The application of this pruning rule is visualized in figure 2210

Usually, dist(c;,0) values are stored for multiple cluster centers c;.
Hence, the computation of dist(q, 0) can be skipped if the condition in
formula 29 is fulfilled. This so called pivot filtering is a direct appli-
cation of the pruning rule based on the object-pivot distance constraint
to multiple pivots.

ma§|dist(q, ¢i) — dist(ci,0)| > r pivot filtering (2.19)
ci€

24 Note that we may use the term (non-)relevant in a different sense than it is

used in IR where it is strongly related with the information need concept.
We speak of (non-)relevant database objects to indicate that they are (not)
part of the final query result. In a similar way, (non-)relevant feature space
regions or resources do (not) contain database objects from the final result.
This interpretation corresponds with for example Skopal et al. [2012].
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dist(g,c) tr.

Figure 2.10. — Applying the object-pivot distance constraint (visualization
adapted from Hetland [2009b) p.207]): On the one hand, dist(q, ¢) —dist(c,0) >
r holds for database objects inside the inner white ball around center ¢ which
has radius dist(q,c) — r. On the other hand, dist(c, 0) - dist(q,c) > r holds for
database objects outside the outer ball around ¢ with radius dist(q,c) +r. Thus,
|dist(q, c) — dist(c,0)] < r holds for database objects which lie inside the gray
shaded shell (including the borders) containing the query ball Q. These objects
cannot be pruned from search based on c. By using additional reference objects,
the region of possible database objects within the search radius can be further
restricted through intersections of multiple shells.

2.5. Distance Distributions and the Intrinsic
Dimensionality

An important concept for the design and analysis of MAMs is the con-
cept of the intrinsic dimension/dimensionality. In opposition to the
representational dimension § of a J-dimensional vector space, the in-
trinsic dimensionality is however an “elusive concept” [Chévez et al.,
2001bl p. 273] and multiple definitions can be found in literature (see
e.g. Chavez et al. [2001b, sect.7.1] and Pestov [2007]). Chévez et al.
[2001bl p. 281] describes it as “the real number of dimensions in which
the points can be embedded while keeping the distances among them”.
The intrinsic dimensionality of a dataset can be a helpful concept when
quantifying the difficulty of a metric space indexing task. In addition,
the concept of the intrinsic dimensionality is also applied for determin-
ing the number of pivots to use within a MAM (see section B.6]), for
selectivity and performance estimation of MAMs (see Traina Jr. et al.
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[2000a]), for the selection of the most important feature dimensions in
vector datasets (see Traina Jr. et al. [2000b]), and for estimating the
search radius of k-NN queries (see Arantes et al. [2003]).

A widely used definition of the intrinsic dimensionality which can be
efficiently computed is given in the following formula Z20] according to
Chévez et al. [2001b) p. 303]:

12

p
The computation of p relies on statistics obtained from a distance distri-
bution; p increases if the mean p of the distance distribution increases
and/or the variance o2 shrinks. Figure BT visualizes the rationale
behind this definition. According to p, the histogram on the right re-
flects a higher intrinsic dimensionality than the histogram on the left.
When performing a range query range(q,r) and applying pivot filter-
ing, database objects o € O with dist(c, 0) € [dist(q, c) —r, dist(q, c) + 7]
cannot be discarded. The amount of database objects which must be
exhaustively searched is proportional to the colored area in figure 2-11]
which is in fact bigger in case of pivot co than pivot ¢;. Thus, if these
histograms capture the distance distributions of two pivots ¢; and co,
selecting ¢; might be the better choice. More objects can be discarded
(being proportional to the white area under the curve) because of a
larger variance with the histogram being less concentrated around its
mean. In addition, there are search scenarios where an increase of the
mean distance p requires a larger search radius r, for example when
retrieving a fixed number of database objects. With other things be-
ing equal, an increase of r leads to fewer potential for object pruning
since the colored area in figure Z11] increases. This supports the ratio-
nale why u is contained in the numerator of formula 220 [Chédvez and
Navarro, 2005bl, p. 370].

More thorough introductions of the concept and references to al-
ternative definitions of the intrinsic dimensionality can for example be
found in Chévez et al. [2001b} sect. 7.1], Hetland [2009bl p. 2161.], Pestov
[2007], and Mao et al. [2010, pp. 26 and 30].
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Figure 2.11. — Two exemplary distance histograms (figure adapted from Chavez

et al. [2001b, p.302]). According to the definition given in formula[2.20 on the
the histogram on the right reflects a higher intrinsic dimensionality

than the histogram on the left.

2.6. Pivot Selection Techniques

An adequate selection of reference objects can boost the pruning power
of MAMs and thus improve their efficiency. Both approaches IF4MI
and RS4MI rely on the use of pivots. Thus, available pivot selection
schemes can be applied. The application of specialized pivot selection
strategies to IF4AMI and RS4MI is however not addressed in this thesis
and an interesting field for future work. IF4AMI and RS4MI are not
optimized in this regard. In the experiments in chaptersd and [l if not
mentioned otherwise, pivots are chosen at random.

In the remainder of this section, a brief overview on different pivot se-
lection techniques is given and references are provided for the interested
reader. Of course, the fundamental works on metric space indexing ad-
dress the task of pivot selection (see e.g. Chavez et al. [2001bl sect. 7.4]
and Zezula et al. [2006} p. 63ff.]). There is more recent work on choos-
ing the pivots based on the distance relationships among them [Celik,
2008, p. 113]. A brief overview of some techniques in this regard can for
example be found in Pedreira and Brisaboa [2007, sect.2] and Socorro
et al. [2011) sect. 3.

One of those techniques is the Sparse Spatial Selection (SSS) [Pe-
dreira and Brisaboa, [2007]. Since SSS lies at the heart of the SSSTree,
both concepts are introduced together in section B2l on page [ of
this thesis at hand. Mao et al. [2010] presents another conceptually in-
teresting approach based on principal component analysis (PCA). Due
to runtime performance reasons, PCA cannot be executed on the full
matrix of object-to-object distances. Hence, a predetermined set of
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outliers is used as candidate pivots and PCA is applied to the matrix
of object-to-pivot distances in order to determine the final set of pivots.
A further technique analyzing the distance relationship among pivots
and choosing pivots far apart from each other and with similar dis-
tances to each other is proposed in the context of the Omni-familyZ3
of MAMs [Traina Jr. et al., 2007, sect.4.1 and sect. 4.2]. An approach
for finding good pivots in the field of PBI is for example presented in
Figueroa Mora and Paredes [2010].

So far in this section, we have mostly addressed the question which
objects to choose as reference objects. Another important question is
how many pivots should be selected in order to trade-off storage space
and runtime performance of a particular MAM. It might be argued
that more pivots lead to more efficient search space pruning. However,
the use of more pivots means on the one hand an increase in storage
space and on the other more distance computations from the query to
the database objects which are necessary upfront, that is, before being
able to prune the search space.

The general question how many pivots should be used, which de-
pends on the type of MAM and the applied space partitioning tech-
nique, is for example addressed in Amato and Savino [2008, sect.4.1]
where the rough heuristic formula is given that the number of refer-
ence objects should not be below 2\/@ in the context of PBI. Ruiz
et al. [2013 p.115] mentions the rule of thumb which “is to use as
many pivots as the available memory allows” for MAMs solely apply-
ing pivot filtering. In contrast, Novdk and Zezula [2013] shows that for
a permutation-based space partitioning too many pivots can have neg-
ative influence on search efficiency. In Traina Jr. et al. [2007, sect.4.1],
the number of pivots depends on the intrinsic dimensionality of the
dataset.

The task of pivot selection is not only important at index time but
also at query time. Pivot selection in Bratsberg and Hetland [2012] de-
termines for each query at runtime which and how many pivots should
be applied based on the overlap between the query ball and particular
data regions maintained by the utilized access method. Celik |2006,
ch. 4] empirically shows that good pivots lie either close to or far from
the query object. A more detailed description of this approach is part

25 These kinds of MAMs are outlined in more detail in the Linear Approximating

and Eliminating Search Algorithm (LAESA) section B2] on pages HGHAT] of
this thesis.



40 2.6. Pivot Selection Techniques

of section .21l on pages EGHAT where the Linear Approximating and
Eliminating Search Algorithm (LAESA) is introduced. Celik [2008,
p. 114] argues that the technique proposed in Celik [2006, ch. 4] is tai-
lored for symmetrical distance distributions. Thus, Celik [2008] p. 114]
gives a formula for estimating the quality of a potential pivot based on
the cumulative distance distribution. The outcome of this formula then
guides pivot selection and it is shown that this approach is especially
beneficial in case of clustered distance distributions.



Chapter 3.

Metric Access Methods

After having introduced the foundations of metric space indexing, this
chapter presents various MAMs. Before doing so, however, the first sec-
tion B.1] of this chapter introduces clustering in arbitrary metric spaces
since the field of clustering and the design of access methods are closely
interrelated. Clustering techniques can be used for building centralized
access methods. Data items which are accessed together, for example
because they are similar to each other and thus collectively contribute
to the search result, can be stored physically close together to reduce
the number of disk accesses [Salzberg and Tsotras, 1999, p. 167f.]. In
addition, partitioning approaches to clustering can be beneficial for
search space pruning to reduce the number of distance computations.
However, as Chdvez et al. [2001b, p.318] notes: “... it is not clear
that good clustering algorithms directly translate into good algorithms
for proximity searching.”

There are centralized access methods where clustering algorithms are
directly used. Nistér and Stewénius [2006] presents the vocabulary tree,
an access method arising from recursive k-means clustering. Muja and
Lowe [2013] uses multiple hierarchical clustering trees with a decom-
position inspired by k-medoids clustering. For further references and a
description of k-means and k-medoids clustering see section B.11

Not only clustering algorithms affect the design of MAMs, also the
opposite is the case. This can be observed by the following two exam-
ples. MAMs—in its entirety—are used as building blocks of clustering
algorithms to increase the efficiency of for example k-medoids clustering
(see e.g. Barioni et al. |2008]). In addition, aggregations of data regions
(i.e. summaries) which are integral parts of many MAMs are applied
by clustering algorithms instead of clustering the feature objects them-
selves to speed-up the clustering process. The clustering result is then
extrapolated from the clustering of the summaries (see e.g. Ganti et al.
[1999] and Zhou and Sander [2003]).
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From a conceptual point of view, summaries such as cluster balls in
the inner nodes of an M-tree [Ciaccia et al., [1997] (see section B2
on pages HITHAR) or computed by the List of Clusters (LC) [Chévez
and Navarro, [2005a] (see section B2 on pages [MIHEQ) can be used as
resource descriptions in the field of distributed IR to allow for similarity
search in arbitrary metric spaces. An approach from Berretti et al.
[2002albl, 2004] in this regard—based on the M-tree—is for example
described in section on pages G7THGS

Besides introducing clustering in arbitrary metric spaces, this chap-
ter gives an overview on related work in the field of centralized MAMs
in section B2}both precise and approximate techniques. IF4AMI which
is presented in chapter @ is a centralized MAM bridging the gap be-
tween precise MAMs on the one hand and approximate MAMSs based
on inverted files on the other.

MANMs for efficient similarity search in distributed scenarios, in the
following denoted as distributed MAMs, are outlined in section
There, distributed MAMs are described which are related to RS4MI—
the resource description and selection scheme for metric space indexing
and search which is introduced in chapter

3.1. Clustering in Arbitrary Metric Spaces

Resource descriptions in distributed IR may arise from the application
of clustering algorithms. Doulkeridis et al. [2007] and El Allali et al.
[2008] for example use k-means clustering.

Conceptually, k-means clustering can be considered as a partitioning
approach to clustering [Han and Kamber, 2006} ch. 7]. A cluster center
in case of k-means is defined as the cluster mean, that is, the mean
value of all database objects in the cluster. It is often referred to as
the cluster centroid. The general k-means procedure is summarized in
figure B (see Han and Kamber [2006, p. 403]).

As many other clustering algorithms, k-means clustering cannot be
applied in arbitrary metric spaces. In case of k-means, the calculation of
the cluster centers (i.e. the calculation of the cluster mean, see step 3 in
the algorithm sketched in figure B.I) may not be defined. On the other
hand, k-medoids clustering which is a variant of k-means [Manning et
al., 2008l ch.16.4] can be applied in arbitrary metric spaces. Instead
of computing the centroid, the medoid is determined. The medoid of
a cluster can for example be defined as the feature object with the
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1. Select an initial set C' = {¢;|1 < i < k} of k cluster centers
(e.g. randomly).

2. (Re-)Assign each remaining database object o € O\C' to the
cluster with center ¢* = arg min,cc dist(c;, 0).

3. Recalculate the cluster centers.

4. If the cluster assignments have changed, continue with step 2.

Figure 3.1. — Sketch of a basic k-means clustering algorithm adapted from Han
and Kamber [2006, p.403].

minimum sum of squared object-to-medoid distances (see e.g. Qiu et
al. [2010} p.208]).

There is no unique k-medoids clustering algorithm; k-medoids clus-
tering refers to multiple algorithms. Prominent examples are Partition-
ing Around Medoids (PAM) [Kaufman and Rousseeuw, [1990, p. 68ff.],
Clustering LARge Applications (CLARA) [Kaufman and Rousseeuw,
1990, p. 126ff.], and Clustering Large Applications based upon RAN-
domized Search (CLARANS) [Ng and Han, [1994] (see Han and Kamber
[2006, ch.7.4.2] for an overview).

The FAst MEdoid Selection (FAMES) extension to k-medoids clus-
tering [Paterlini et al., [2011] is applicable to different k-medoids al-
gorithms. FAMES assures an efficient determination of the cluster
medoids (see step 3 in figure BJ)) by applying a pivot-based algorithm
which avoids the calculation of all pair-wise distances in each cluster. It
is shown in Paterlini et al. [2011] that FAMES can also increase the ef-
fectiveness of the clustering compared to previously proposed k-medoids
algorithms, since the efficiency gain is not due to the consideration of
a random sample of database objects as medoid candidates—which is
the approach of some other k-medoids algorithms.

An important issue in k-medoids clustering is how to best determine
the number of desirable clusters k£ which result from the clustering
process. There are several ways to do this. A brief overview of different
approaches is given in section (23] of this thesis.

Another configuration option is the selection of the initial medoids
(see step 1 in figure BI]). Celebi et al. |2013] and De Amorim [2013]
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analyze different techniques for the initialization of k-means clustering,
some of which are also applicable in case of k-medoids clustering.

In the remainder of this section, only clustering algorithms which
can be used in arbitrary metric spaces are addressed. Han and Kam-
ber [2006, ch.7.3] distinguishes several types of clustering algorithms,
among them: partitioning, hierarchical, and density-based methods. The
k-medoids algorithms are partitioning approaches (see Han and Kam-
ber [2006), ch.7.3]). As already mentioned, improving the efficiency
of k-medoids clustering is for example addressed by the FAMES al-
gorithm (see Paterlini et al. [2011]). A prominent hierarchical clus-
tering algorithm applicable for clustering in arbitrary metric spaces is
for example single-link clustering (see Sibson [1973]). Speeding-up the
clustering process in case of hierarchical clustering in arbitrary metric
spaces is addressed in Zhou and Sander [2003]. Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) [Ester et al.,|1996] is
a density-based clustering algorithm for clustering in arbitrary metric
spaces [Ester et al.,[1998]. An efficient incremental version of DBSCAN
is presented in Ester et al. [1998§].

With respect to the work presented in this thesis, clustering algo-
rithms for arbitrary metric spaces are used for computing resource
descriptions. The approach in Berretti et al. [2002albl [2004] (for a
description see section on pages [6THEY)) for example uses a clus-
tering algorithm based on the M-tree (for a description of the M-tree
see section B2 on pages H7HAR]). Alternatively, k-medoids clustering
which is used as an additional comparison baseline in section and
many other applicable algorithms are also possible such as for example
the LC clustering presented in section [3.2.1] on pages EIHAO

3.2. Centralized Metric Access Methods

Hjaltason and Samet |2003a) p. 519f.] distinguishes two types of MAMs:
distance-based indexing and embedding methods. MAMSs for precise
search which rely on distance-based indexing are presented in sec-
tion B.Z.T] whilst embedding methods are outlined in section

For example in CBIR, there are search situations where it is suf-
ficient to retrieve only some and not necessarily all of the database
objects within a given search radius or just a fraction of the k-NNs.
Therefore, MAMs allowing for approximate search have been designed
which trade-off result quality and runtime performance (for an overview
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see e.g. Patella and Ciaccia [2009]). Some approaches for approximate
search related to IF4MI and RS4MI are outlined in section

3.2.1. Distance-based Metric Access Methods for
Precise Search

This section gives a brief overview on distance-based indexing and thus
MAMSs for precise similarity search which directly use distance informa-
tion between feature objects for building an index structure. We intro-
duce MAMs which represent important concepts for the remainder of
this thesis, either because they are related to IFAMI which also belongs
to the group of MAMs relying on distance-based indexing, or because
the approaches are used as building blocks of distributed MAMs pre-
sented in section For more comprehensive surveys, the interested
reader is referred to Chdvez et al. |2001b], Hetland [2009b], Samet
[2006], and Zezula et al. [2006, p. 671L.].

In this section on pages @5HZT] MAMs based only on pivoting [Het-
land, [2009b, sect.9.4], that is, storing distances from database ob-
jects to reference objects and pruning database objects during search
through pivot filtering based on the precomputed object-to-pivot dis-
tances, are introduced. Afterwards on pages ETHEO] MAMSs are pre-
sented which use aggregation [Hetland, [2009b, p. 203f.], occasionally in
addition to pivoting, to structure the feature space into multiple regions
in order to prune non-relevant regions during search.

MAMs based only on pivoting

Pivoting is beneficial to reduce the number of distance computations
during search. The basic ideas of approaches solely based on pivoting
such as for example the Approximating and Eliminating Search Algo-
rithm (AESA) and the LAESA are presented in the following.

MAMs based only on pivoting—if not used as a standalone MAM—
also provide important building blocks for MAMs which additionally
apply aggregation techniques [Hetland, 2009b} p.208]. Our approaches
IF4MI and RS4MI for example use aggregation techniques and can also
apply pivoting.

AESA. The AESA [Vidal, 1994; Vidal-Ruiz, [1986] is an indexing
technique storing all O(|O|?) object-to-object distances. These pre-
computed distances are used for the pruning of non-relevant database
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objects by applying pivot filtering (see formula [ZT19 on page [B8). Dur-
ing query processing, database objects which have not been pruned so
far are iteratively selected as pivots—one pivot per round. A newly
selected pivot should lie as close to the query as possible to improve
the filtering power. For those database objects o € O which cannot be
pruned, the distance dist(q, o) has to be computed.

Besides its O(|O|?) space complexity, the construction time complex-
ity of AESA is also O(|O|?) [Chévez et al.,[2001b, p.284]. Thus, AESA
is applicable when indexing rather small datasets. It can for example
also be applied by tree-based MAMs at the leaf level to further reduce
the number of necessary distance computations (see e.g. Fredriksson
[2007, sect.3.3]). For a long time, AESA had been considered to require
the least number of distance computations among all MAMs [Figueroa
et al., 2009, p. 3.6:3; Socorro et al., 2011} p. 1511]. Thus, it is perceived
as a best case comparison baseline for various MAMs. Recently, two
approaches emerged which claim to be able to outperform AESA in
this regard (see Figueroa et al. [2009] and Socorro et al. [2011]).

LAESA. The LAESA [Micé et al., [1994] is proposed to overcome
the quadratic space complexity of the AESA. In contrast to the AESA,
the LAESA applies a set of m pivots with m < |O|. Only object-to-
pivot distances are stored and used for pruning database objects from
search. It is thus important to choose good pivots. Whereas pivots in
the LAESA at index time are chosen randomly, multiple alternatives
are possible in this regard and the Omni-family of MAMs [Traina Jr.
et al., [2007] for example offers one solution suitable for the LAESA
(see section Z0)). Another seminal contribution which comes with the
Omni-family of MAMs is the extension of the LAESA and its general
concept to become applicable together with B-tree variants [Bayer and
McCreight, [1972; Comer, 1979] and R-tree variants [Guttman, [1984;
Beckmann et al., [1990]—access methods present in many database
management systems which can thus make use of metric space indexes.

There are multiple improvements to the LAESA. On the one hand,
there are explicit extensions to it. On the other hand, although not
explicitly designed for improving the LAESA, techniques proposed in
the context of alternative MAMs based on pivoting can be applied (for
references and an overview see e.g. Chavez et al. [2001b), esp. sect. 5.1.3.2
and sect.8.1] and Hetland [2009b] sect.9.4]).

Memory usage can be reduced by storing the m - |O| object-to-pivot
distances with less precision (see e.g. Chévez et al. [2001a] and Figueroa
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and Fredriksson [2007]). Alternatively, or in addition, storing only some
and not necessarily all of the m object-to-pivot distances per database
object can be considered. For references according to these and other
coarsening techniques in the context of metric space indexing see for
example Figueroa and Fredriksson [2007].

Celik [2006, ch.4.1 and ch. 4.2] shows empirically that it is benefi-
cial to prioritize the pivots at query time and to use those pivots first
which are “either close to or far from the query object” [Celik, [2006,
p.29]. As argued in Blank and Henrich [2013a, p. 25|, this observation
analytically follows from the pivot filtering formula on page
max.,ec|dist(q, ¢;) — dist(c;,0)] > r. An analysis of the lower bound
d; = |dist(q, ¢;) — dist(c;, 0)| shows that the resulting absolute value can
be high either because dist(q, ¢;) is high and dist(c;, 0) is low or because
dist(q,c;) is low and dist(c;,0) is high. As a consequence, especially
medium values for dist(q,c;) are candidates with a limited potential
for selective lower bounds. Thus, it might be sufficient to store only
those object-to-pivot distances which lead to selective lower bounds
or to consider those precomputed distances first to improve runtime
performance.

Note that the query processing of the LAESA is similar to object
pruning in the posting lists of the IF4MI approach outlined in chapter[]
of this thesis.

MAMs using aggregation

MAMs using aggregation apply the space partitioning techniques out-
lined in section to structure the feature space. During query pro-
cessing, pruning rules are applied to exclude clusters from search—and
thus all the database objects within (see section 24]).

MADMs based on the M-tree. The M-tree [Ciaccia et al., [1997] is
introduced here because of several reasons. It is conceptually similar
to the B-tree [Bayer and McCreight, [1972] and the R-tree [Guttman,
1984] and thus represents a basic MAM sharing many properties with
familiar tree-based access methods. In addition, plenty of MAMs have
been proposed which are conceptually similar to the M-tree. Hetland
[2009b}, appendix B] includes those approaches in his analysis such as for
example the unbalanced DBM-tree [Vieira et al., 2010]. Furthermore,
the M-tree is frequently applied in various domains (see e.g. Berretti
et al. [2002albl [2004] and Kunze and Weske [2011]).
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The M-tree is a balanced tree structure which is built in a bottom-up
fashion [Ciaccia et al., [1997, p.430]. Nodes are split if they overflow.
Feature objects are administered at the leaf nodes. Inner node entries
consist of a routing object, a pointer to a subtree, a maximum distance
of objects in the subtree from the routing object, and a distance from
the routing object to the routing object of the parent node entry. While
traversing the balanced tree structure during query processing, subtrees
are pruned if the space they cover does not intersect with the query ball.
Also, algorithms for multi-way insertion (see e.g. Skopal et al. [2003])
and bulk loading (see e.g. Ciaccia and Patella |[1998]) exist.

The Slim-tree [Traina Jr. et al., 2000] is an extension of the M-tree
with modifications to the insertion and node splitting algorithms so
that the overlap of the regions covered by node entries is reduced and
thus query efficiency can be improved.

The PM-tree [Skopal et al., 2005 can be envisaged as another ex-
tension of the M-tree. Additional pivots are applied to support more
restrictive pruning. Therefore, subregions of the feature space are rep-
resented more precisely by intersections of a ball and multiple shells in
contrast to the M-tree where they are represented by only a ball. Pivot
filtering is additionally applied at the leaf level where the database
objects reside.

Both, the PM-tree and the M-tree with the splitting algorithm of
the Slim-tree are evaluated against IFAMI in chapter @l Furthermore,
M-tree-based clustering lies at the heart of the resource selection ap-
proach of Berretti et al. [2002allb, 2004] which provides a comparison
baseline for the RS4MI approach in chapter Bl

GNAT. The Geometric Near-neighbor Access Tree (GNAT) [Brin,
1995| applies the Voronoi-like partitioning (outlined in section 2230] on
pages BBH20) in every tree node to recursively partition the feature
space. Thus, the number of used pivots determines the degree of a
node. The hyperplane information of the Voronoi-like space partition-
ing is however only used for building the structure and not for search
space pruning. Here, the pruning rule based on the range-pivot dis-
tance constraint is applied. The information for search space pruning
maintained for a GNAT node consists of minimum and maximum dis-
tances from database objects of a certain Dirichlet domain (i.e. cluster)
to the pivots used in the current node. Conceptually, the information
maintained for every node can be perceived as information from the
R™ and R°"* matrices discussed in section Similar statistics for
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search space pruning as in case of the GNAT can be applied in case of
TF4MI (providing the basis for the pruning of posting lists) and RS4MI
(applied as resource descriptions and thus allowing for the pruning of
resources).

SSSTree. The SSSTree [Brisaboa et al.,[2008] uses the SSS dynamic
pivot selection technique already mentioned in section [Z.6] which adap-
tively selects inserted database objects as new pivots. The first object
is selected by default. Afterwards, a newly inserted database object is
chosen as pivot if its distance to any earlier selected pivot lies beyond
a certain threshold. This threshold relies on the maximum distance of
any two objects in a cluster which is approximated in Brisaboa et al.
[2008] as twice the covering radius of the particular cluster.

The GNAT and the SSSTree share some properties. Cluster assign-
ments are in both cases based on a Voronoi-like space partitioning and
both MAMs do not apply pivot filtering [Hetland, [2009bl appendix B].
In opposition to GNAT, the SSSTree is however no longer balanced as
a consequence of the adaptive pivot selection technique. Furthermore,
only the covering radius of the clusters is used by the SSSTree for search
space pruning.

In experiments in Brisaboa et al. [2008|, the SSSTree outperforms
other related techniques such as different variants of the GNAT ac-
cording to the number of necessary distance computations.

LC. Also the LC [Chévez and Navarro, 2005a] contrasts many bal-
anced tree-based approaches for metric space indexing. The LC can be
perceived as a degenerated tree [Tepper et al., 2011, p.9] and it is ar-
gued in Chévez and Navarro [2005a] that such an unbalanced approach
can be promising for dealing with high-dimensional spaces.

Besides its task as a MAM, the LC provides a ready-to-use cluster-
ing technique for arbitrary metric spaces. As its name suggests, the
outcome of the LC approach can conceptually be considered as a list
of cluster balls ([ci],one | 1 <@ < |C[) with ¢; € C. Every cluster in

case of the LC is defined by a metric ball [¢;],our, that is, a center ¢;

and a corresponding covering radius r{"*. There are two general alter-

natives for building the clusters. They may be of fixed size in terms of
the number of database objects contained or of fixed radius where r{"
remains constant for all clusters. During insertion, the list is analyzed
from the beginning (¢ = 1) to the end (i = |C|). Database objects with

dist(c;,0) < 9" are inserted into the cluster [¢;],ou. Objects for which
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dist(c;, 0) > r?"* remain outside and the next cluster from the list is
analyzed. In case of fixed size clusters, overflows must be handled. The
resulting list of obtained cluster balls can directly be used as a resource
description (see Marin et al. [2009] briefly outlined in section on

pages [[4HTH]).

Initially, the first center is chosen at random. Succeeding centers are
chosen during the insertion process maximizing the sum of distances
to all previously selected centers [Chdvez and Navarro, [2005a]. Tt is
proposed in Téllez and Chédvez [2012] to randomly select the centers
¢; € C upfront and assign every database object to the cluster of the
closest center to speed-up the construction process of the LC.

During search, the intersection of the query ball and the cluster balls
is determined in the order of the clusters contained in the list. When
there is no overlap between the current cluster and the query ball, the
search continues with the next cluster from the list. If there is partial
overlap, the current cluster has additionally to be examined and the
search of course also continues with the next cluster. For the original
LC, the search can stop as soon as the query ball is fully contained in
the current cluster ball.

3.2.2. Embedding Methods for Precise Search

Embedding methods apply a function map(z) which maps the feature
object = to a d-dimensional vector space. Distance computations of
dist' (Z,7) in the resulting vector space are usually less expensive than
distance computations of dist(x,y) in the original feature space. If
the mapping is non-expansive, the inequality dist (map(z), map(y)) <
dist(x,y) holds for all z,y € U. Filter-and-refine techniques can then
be applied for example in the case of range queries range(q, r) ensuring
that all database objects o € O with dist(q,0) < r are found. In the
filter step, traditional SAMs can be used and all database objects o with
dist' (map(q), map(0)) > r can be safely pruned. The filtered result set
may however contain false positives. These can be eliminated in the
refine step by checking the actual distances dist(q, o) [Hetland, 2009b;
Hjaltason and Samet, 2000, [2003D).
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Figure 3.2. — Mapping technique of the Metric iDistance with m = 4, under
the assumption of a normalized metric space and thus + = 1; adapted from
Novék |2008, p. 60].

In the following, the Metric iDistance [Novak, |2008, p. 59f.] is pre-
sented as one example of a basic embedding techniqud®. The Metric
iDistance is an extension of the basic iDistance [Jagadish et al., 2005].
Such extensions lie at the heart of many MAMs. The Metric iDistance
is for example used by the M-Index [Novdk and Batko, [2009; Novak
et al., [2011] which is also presented in this section.

For a more comprehensive overview of embedding methods, the in-
terested reader is referred to Athitsos et al. [2008], Hjaltason and Samet
[2003b], and Zezula et al. [2006, p. 35f.].

Metric iDistance. The Metric iDistance [Novék et al., 2011} sect. 3.1;
Novak, [2008] p. 59f.] is a generalization of the iDistance [Jagadish et al.,
2005| to arbitrary metric spaces. Figure[32 visualizes the general map-
ping technique of the Metric iDistance. First,aset C = {¢; | 1 <i <m}
of m reference objects is selected. Every database object is then as-
signed to its closest reference object ¢} thus obtaining a Voronoi-like
space partitioning. A database object o € O is mapped to a one-
dimensional key based on the distance dist(c}, o) from o to its closest ref-
erence object ¢f. The key is obtained by the formula dist(c}, 0)+(i—1)-c.

26 Approaches using pivot filtering and thus for example the LAESA presented

earlier on pages can also be perceived as an embedding method. If the
mapping is defined as map(o) = (dist(ci,0)|1 < i < |C|), the lower bound
representing the left side of inequality on page can be obtained by
disty, . (map(q), map(o)) [Zezula et al., 2006, p. 34f.].
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In case of a normalized metric space with dist : Ux U — [0, 1), the sep-
aration constant ¢ is set to 1 and thus the database objects are mapped
to one-dimensional keys in the interval [0,m). In other cases, a large
enough value of ¢ ensures that the clusters are well separated. Based on
the one-dimensional keys obtained through the mapping technique of
the Metric iDistance, insertion and search algorithms of familiar access
methods such as the BT-tree [Comer, 1979] can be used for the design
of MAMs.

M-Index. Similar to IFAMI and also RS4MI, the M-Index [Novak
and Batko, 2009; Novéak et al., [2011] combines ball partitioning and
generalized hyperplane partitioning and all of the pruning rules out-
lined in section [Z4] are applicable. The M-Index adopts the idea of
permutation-based partitioning (see section 23 Tlon pages2TH2T) where
permutations of cluster IDs provide the basis for representing the clus-
ters. A small number of m’ reference objects together with an addi-
tional parameter [ (1 <! < m’) denoting that the [ closest centers are
used for computing the PP-based representations is sufficient to achieve
a very fine-grained cluster structure with a high number of cluster cells.
Based on the PP representations L) and thus assignments to clusters,
database objects 0o € O are mapped to one-dimensional keys which are
then indexed in a BT-tree. Here, the Metric iDistance is applied. Thus,
the M-Index represents an embedding methodZ2.

If a cluster cannot be pruned during query processing, the underlying
BT-tree is queried with the query ball being mapped to a key interval
of the BT-tree. Experiments in Novék and Batko [2009] and Novak
et al. [2011] show better performance of the M-Index compared to the
PM-tree according to the number of necessary distance computations.

Compared to IF4MI in its basic form which uses a Voronoi-like par-
titioning with m reference objects, the M-Index applies a permutation-
based partitioning with a smaller number of m’ reference objects (m’ <
m). Thus, the cluster to which a database object belongs can be de-
termined with only m’ distance computations in case of the M-Index

27 Novék et al. [2010] outlines that the M-Index can also be considered as a

locality-sensitive hashing (LSH) approach for general metric spaces where
database objects close to each other are likely to be assigned to the same
bucket. Two other examples of hash-based MAMs for precise search are for
example Similarity Hashing [Gennaro et al., [2001| and the D-Index [Dohnal
et al., [2003].
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whereas IF4MI requires without further optimization m distance com-
putations.

The permutation-based cluster structure of the M-Index is applied
on top of the inverted file-based IF4MI approach in section It
appears from the evaluation that IF4MI without the permutation-based
partitioning is competitive with the M-Index and that in addition the
permutation-based partitioning can also be used with IF4MI.

3.2.3. Metric Access Methods for Approximate Search

There is a wide variety of MAMs for approximate search. Patella and
Ciaccia [2009] for example provides a comprehensive survey and many
of the techniques already outlined in section B2 and section
offer approximate extensions which relax search accuracy for an im-
provement in runtime performance.

Many MAMs for approximate search follow the idea of PBI assum-
ing that a database object o € O and a query object ¢ € U are simi-
lar, if their permutations of cluster IDs ordered according to ascending
dist(o, ¢;) and dist(q, ¢;) and possibly truncated at position [ are sim-
ilar, that is, the lists L! and Lfl (see section 23] on pages 2ZTH2J]).
In this context, (dis)similarity can be measured by Kendall’s tau, the
Spearman Footrule Distance, the Spearman Rho Distance, or any other
measure for the comparison of two ordered lists (see e.g. Fagin et al.
[2003]).

In Esuli [2009], pivot permutation prefixes are indexed in a prefix
tree. Query processing based on this so called Permutation Prefix Index
relies on matching the pivot permutation prefix of the query to subtrees.

Téllez et al. [2009] transforms the pivot permutations into more space
efficient bit vector representations and compares them with the Ham-
ming distance (see section 2220 to speed-up query processing without
noticeably losing recall, measured as the fraction of k-NNs found. This
technique is used in Téllez and Chévez [2010] where locality-sensitive
hashing (LSH) for metric space indexing is proposed.

Other approaches for approximate search—some of them also ap-
plying permutation-based partitioning—are based on inverted files. In
the following, such approaches will be briefly outlined. TF4MI can be
perceived as an approach trying to bridge the gap between the approx-
imate approaches based on inverted files on the one hand and MAMs
allowing for precise search on the other.
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Amato and Savino [2008]. Amato and Savino |2008| proposes an
approach which maintains |C| posting lists in total—one list per ref-
erence object ¢; € C. For a database object o € O to be inserted,
the ligx closest cluster centers are computed, that is, the list Llax is
determined (see section Z3T]on pages Z7TH2ZT). A posting for the very
database object is added to all those l;gx posting lists. The posting
stores the object ID and a weight t = L'%(¢;) corresponding to the
position/rank ¢ of the cluster index i in the list Ll¢x, which indicates
that pivot ¢; is the ¢-th closest pivot to the very database object. If
a reference object does not belong to the ligx closest reference objects
of a database object to be inserted, no posting is generated. In total,
liax - |O| postings are stored. An example is given in figures B3] to
5.0.9)

Query processing relies on the computation of szq and the matching
of this query representation against the document representations Llidx.
The posting lists of clusters with cluster IDs contained in Lf{* are iter-
atively scanned in a term-at-a-time fashion (for term-at-a-time query
processing in general see e.g. Croft et al. [2010, sect.5.7.2]). Initially,
as soon as a document ID occurs for the first time when processing
the posting lists, an accumulator associated with each document (i.e.
database object) is initialized with (ligx + 1) - [q. For the matching, a
variant of Spearman’s Footrule Distance is applied and for each posting
(ligx + 1) — |Léq (¢;) — Lhax(c;)| is substracted from the accumulator of
the very object o.

In total, |C| reference objects are used—the ljqx closest to a database
object are applied during indexing for determining the document repre-
sentations Ll¢= and the [, closest reference objects to the query object
are used for determining the query representation szq with 1 <[ <
liax < |C|. As a further modification, the authors in Amato and Savino
[2008] propose to only partially scan the posting lists. These are then
sorted by the weights and only a range of postings is scanned where
the weights differ by at most some constant value.

To extend the approach from Amato and Savino [2008] for paral-
lel query processing, Mohamed and Marchand-Maillet [2012] analyzes
different index partitioning techniques on how to best partition the in-
verted file. Concepts from text IR such as term and document partition-
ing are applied where images act as documents and reference objects—
or more particular corresponding clusters—act as terms.
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c4

3.3.1 — Search example based on a Voronoi-like space partitioning with |C| = 4.

Lo, = (3, 1,2,4} Lo, = <3,4,27 1) Loy = (47 2,3, 1} Lg = (3, 1,2,4}
L3, =(3,1,2) L3 =(342) L3 =423  LZ=(31)

3.3.2 — Construction of the document representations and the query representation
assuming ligx = 3 and lq = 2.

1= (01,2) dist(g,01) =8 - (4-[1-1]) - (4-]2-2) = 0
Cy — (017 )7 (0273) (037 ) diSt(anQ) =8- (4 - |1 . 1|) - 0 =4
e3 = (01,1), (02,1), (03,3) dist(q,03) =8 - (4~ 1 -3]) - 0 =6
cs— (02,2), (03,1) (laxt1) 1, [cs] [c1]
3.3.3 — Inverted file (left) and query processing (right) in case of Amato and Savino
[2008].
¢ — (01,2) sim(g,01) =23 +12=8
Cy— (01 )7 (027 )7 (0352) Sim(q702) =23+10=6
cs— (01,3), (02,3), (031) | sim(q05) =21 + 10 = 2
e (02.2), (033) [el el
3.3.4 — Inverted file (left) and query processing (right) in case of Gennaro et al.
|2010].

Figure 3.3. — Search example for Amato and Savino [2008| and Gennaro et al.
[2010]. Note that database objects are included in the postings instead of object
IDs for visualization purposes.
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Gennaro et al. [2010]. Gennaro et al. [2010] relies on the ideas pre-
sented in Amato and Savino [2008] and thus the parameters discussed
above. A posting now stores a virtual term frequency as its weight—
similar to the term frequency in traditional text retrieval—instead of
a position weight as proposed in Amato and Savino [2008|. Text re-
trieval programming libraries directly become applicable. The virtual
term frequency ligx is assigned to the posting of o € O in the posting
list of the closest center, a value of l;qx — 1 is assigned to the posting of
o in the posting list of the second closest center, and so on.

Query processing is similar to text retrieval purely based on term
frequency and the dot product. The query is transformed so that the
closest center gets a weight [, the second closest a weight I, — 1, etc.
A search scenario in case of Gennaro et al. [2010] is visualized in fig-

ure B34

Sznajder et al. [2008]. Sznajder et al. [2008] presents the Metric
Inverted Index where multiple features are indexed for the description of
a database object. Clustering is used to determine a set of centers which
represent the terms of a feature-specific vocabulary. Every database
object is considered as a virtual document. For every feature, object
references are added to the posting lists of the e closest centers which
are perceived as terms which make up the document.

During query processing, the e closest centers per feature are also de-
termined for the query (i.e. the e query terms). Query modes based on
Boolean retrieval are applied. In a strict mode, for all indexed features,
one or more query terms must occur in a result document. As a second
alternative, in a less strict mode, for at least two features, any of the
query terms must occur in a result document. Feature-specific scores
(e.g. based on distance information) are combined with an aggregate
function (e.g. the sum).

The same authors also propose the Pivots Crossing Approximation
[Mamou et al., |2009] which is conceptually similar to the approach in
Sznajder et al. |2008] and provides an alternative query mode and in
particular the ability to use text as an additional filter criterion.

Note that the use of inverted files for content-based media retrieval
was introduced many years ago (see e.g. Miiller et al. [1999]). As a
main characteristic, the approaches presented in this section do not
guarantee precise results. They try to find a balance between adequate
retrieval quality and acceptable computational complexity. In this re-
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gard, IF4MI (see chapter H) is considered as a step toward a scalable
and efficient retrieval framework which allows both precise and approx-
imate query processing based on inverted files.

3.3. Distributed Metric Access Methods

There is_a _huge variety of distributed MAMs. According to Mancini
et al. [2012] sect.I1I], Papadopoulos and Manolopoulos [2001] is the
first approach which studies distributed metric space search. Four dif-
ferent query routing schemes are discussed for answering k-NN queries.
Besides sending the query to all resources or accessing them sequen-
tially, multi-step query routing schemes are analyzed where in the first
round either the best & documents are obtained from a fraction of the
resources or partial results are obtained from all resources.

The following section B3] provides an overview and discusses the
diversity of distributed MAMs. It uses different classification schemes
proposed in literature to structure related work in the field and to
classify our RS4MI approach. A first classification scheme is based
on Gil-Costa et al. [2009, sect.4.2]. It distinguishes global and local
indering and it is primarily used to demarcate our work. In addi-
tion, section B3] also presents a classification scheme adopted from
Lu [2007] for the analysis of different P2P IR systems distinguishing
brokered, structured, completely decentralized, and hierarchical architec-
tures. We use this second classification scheme and_a characterization
of different summary types also adopted from Lu [2007] to point out
the applicability of resource descriptions in the context of distributed
MAMs. Concrete approaches falling into the different groups are then
outlined in the subsequent sections to B.3.0) respectively.

3.3.1. The Diversity of Distributed Metric Access
Methods

In general, search techniques can be distinguished as being informed
or uninformed [Russell and Norvig, 2010, ch. 3]. This thesis addresses
informed distributed search techniques. Suitable information which can
be successfully employed for efficient query routing may be obtained
from the content of the resources, from past queries and how they
were routed, from relevance feedback, and other sources. In this thesis,
we focus on resource descriptions obtained from the content of the
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Distributed MAMs

Global index Local index

\
Global clusters (GG) /\

Global clusters (LG)  Local clusters (LL)

Figure 3.4. — Different types of distributed MAMs; classes GG, LG, and LL
adopted from Gil-Costa et al. [2009, sect. 4.2].

resources®. Uninformed (i.e. blind) search such as for example in case
of query flooding (i.e. forwarding the query to all available resources
in every routing step; see e.g. Kirk [2003]) or random walk techniques
(i.e. forwarding the query to a random subset of available resources in
every routing step; see e.g. Lv et al. [2002]) are not addressed in this
thesis. The interested reader is for example referred to Sedmidubsky
[2010} sect. 3.1].

Global and local indexing

Distributed MAMs can be built using global or local (document) in-
dexing. Also hybrid combinations are possible. In case of global (doc-
ument) indexing, that is, a global index with global clusters (GG) (see
figure B4), the database objects of all resources are covered by a single
index which is distributed. Every resource administers parts of the in-
dex and is thus responsible for a certain region of the feature space or
possibly multiple of them. The index distribution is usually based on
the space partitioning schemes outlined in section In case of pre-
cise search, the query is routed to the resources administering regions
of the feature space which cannot be pruned from search. Figure[3.5.1

on page 60|displays such a scenario where clusters are assigned to peers

28

Other approaches, such as Picard et al. |[2012] which applies relevance feed-
back and learns paths to resources with relevant images from past queries, are
not considered. Such approaches are only discussed in this thesis if they are
interesting from a metric space indexing and search perspective.
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in a round robin fashion. The cluster structure is visualized in the first
row of figure B5.Jl] From a pruning perspective, it can of course be
desirable to assign clusters lying close together to the same peer(s).

Global indexing is frequently applied in case of P2P IR systemsZ.
A prominent example allowing for metric space indexing is M-Chord
[Novdk and Zezula, [2006] using the mapping technique of the Metric
iDistance presented in section B.2.2 on pages BIHE2l to enable the appli-
cation of Chord [Stoica et al., [2001]. Another approach is the Metric
Content-Addressable Network (MCAN) [Falchi et al., 2007] as an ex-
tension of the Content-Addressable Network (CAN) [Ratnasamy et al.,
2001] for general metric space indexing. There is for example also a dis-
tributed extension of the M-Index [Novék et al.,[2012] (for the M-Index
see section B:2.2] on pages B2HB3)) which relies on Skip Graphs [Aspnes
and Shah, 2007].

Apart from these already mentioned P2P IR systems relying on dis-
tributed hashtables (DHTs) such as M-Chord, MCAN, and the dis-
tributed M-Index, distributed MAMs using global indexing can be built
on top of various suitable index structures. Some distributed search ap-
proaches for example assume a global tree structure with the leaf nodes
being distributed to network nodes (see e.g. Liu et al. [2007]). Which
nodes are involved in query processing is in such cases determined by
the search algorithms of the underlying index structure.

However, this thesis does not address global (document) indexing.
Instead, we focus on distributed IR systems relying on local (docu-
ment) indexing. Two types of local indexing can be distinguished as
shown in figure B4l A local index with local clusters (LL) offers more
autonomy for the resources when indexing their documents. Different
resources might determine different clusters suitable for representing
their data. There is no common agreement on the cluster structure
(see figure BE3). In case of a local index with global clusters (LG) all
resources use the same cluster structure for indexing (see figure B5.2).
The global cluster structure can be obtained in different ways. Re-
sources can for example negotiate a suitable structure or it can be
imposed from external sources.

29 In another application context, Barrientos et al. [2012] for example analyzes

range query processing in multi-GPU environments. One of the analyzed
strategies uses cluster balls of the LC approach representing a global index.
All GPUs know the entirety of cluster balls and which GPU is responsible for
them since in a batch processing scenario any GPU should be able to determine
which cluster balls and thus parts of the global index overlap with a query ball.
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@° | G0 | (8| e Q- | G0 | (8| e
01,1 01,1
p1 — P1 — P2 — P3 — P1 p1 — P1 — P1 — P1 — P1
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3.5.1 — Global index with global clusters (GG). 3.5.2 — Local index with global clusters (LG).
o | @0 | Te o 0® | «O
01,1 01,2 01,3
P1 — P1 — P1 — P1 P2 =z P3 — P3 — p3
%101 1,1 010212 %|031,3
3.5.3 — Local index with local clusters (LL).
Figure 3.5. — Visualization of distributed metric space indexing schemes. Peers p, (1 < a < |P|) maintain documents

0j,a (1 < j <|O4]). Clusters are visualized as circles indicating metric balls, filled black circles denote the particular data

region. The notation — p, in combination with the same background color denotes the “responsibility” of a peer p,.
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Similar to PlanetP [Cuenca-Acuna et al., 2003], we assume a sce-
nario with every resource knowing the summaries of all other resources.
These distributed sets of resource descriptions can conceptually be per-
ceived as a “replicated global index” [Tigelaar et al., 2012} p. 9:7]. Aberer
et al. [2005] denotes such approaches more precisely as “federated local
[document] indezxes with a global peer index”—global because the global
index is at least conceptually the same for all peers and peer index be-
cause peer descriptions are indexed instead of document descriptions.

In our scenario of a distributed metric space search system (see fig-
ure [[:2 on page T1)), every resource maintains two types of indexes (see
the cylinders in figure [[2)—a document index mainly for local query
processing using IF4AMI and a peer index23 (visualized by an RS4MI
cylinder in figure [[2)) to speed-up the resource selection process. The
construction of resource descriptions can be based on the local docu-
ment indexes. During search, promising resources are determined with
the help of the peer index where the resource descriptions are indexed
and the resource selection techniques presented in chapter [ are ap-
plied. When receiving a query, resources locally process the queries
based on their document indexes. Afterwards, search results are sent
to the enquirer which then merges them into a ranked list.

This thesis focuses on resource description and selection for metric
space indexing and search. Thus, on the one hand, indexing tech-
niques which rely on the metric space approach but send the query
to all available resources are out of the scope of this thesis. Such ap-
proaches are for example still prominent in the field of metric space
indexing and search on modern hardware architectures. Gil-Costa et
al. [2009] discusses some indexing schemes for parallel query processing
in this regard. It is argued in Gil-Costa et al. 2009, p. 9] that sending
the query to all processors is feasible because the communication cost
in such infrastructures is negligible compared to the cost for the dis-
tance computations. Mancini et al. [2012] analyzes indexing and search
in an architecture where distributed processors provide the first level
of parallelization and threads speed-up query processing at individual
multi-core processors. Also here, no resource selection is performed.

30 Note that the index layout of the peer index is not explicitly addressed in

this thesis. The peer index can for example be designed similar to IF4AMI (see
chapter H]) with a posting list per cluster, but individual postings containing
peer information instead of document information and organized in an adequate
way (e.g. ordering postings by increasing covering radii of peer-specific cluster
balls).
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On the other hand, resource description and selection schemes which
do not rely on the metric space paradigm are out of the scope of this
thesis. In the domain of CBIR, there are for example probabilistic re-
source selection schemes (see e.g. El Allali et al. [2008] and Nottelmann
and Fuhr |2004]) and resource selection schemes for vector spaces (see
e.g. Chang et al. [1997]. Chang and Zhang [1997], Kim et al. [2002],
and Kim and Chung [2003]). Furthermore, distributed query process-
ing in database systems assuming horizontally or vertically partitioned
relational data (for references see e.g. Vlachou et al. [2012b]) is out of
the scope of our work, if the metric space approach is not particularly
addressed and supported.

Network architectures and levels of resource description

Resource description and selection schemes can be applied in different
types of network architectures. Four types of general P2P architectures
are identified by Lu [2007]. In the following, we adopt the classification
from Lu [2007) ch.2.1.1] to show the wide applicability of resource de-
scription and selection techniques. The distinction between a) brokered,
b) structured, ¢) completely decentralized, and d) hierarchical network
architectures is then also used to classify related work in the field of
resource description and selection for similarity search in general met-
ric spaces. Merits and drawbacks of the different network architectures
are only briefly discussed here. The interested reader is referred to for
example Lu [2007) ch. 2].

Brokered architectures (see section[3.3.2)). Not only P2P IR systems,
but also traditional distributed IR systems for federated text
search rely on broker-based architectures (for broker-based ar-
chitectures in the field of traditional distributed IR see Shokouhi
and Si [2011]). The descriptions of participating resources are
administered by an information broker (see figure B.G.T)). When
a resource issues a query, it is first sent to the broker. The bro-
ker then decides—based on the resource descriptions—which of
the resources to contact. Usually, the broker sends addresses of
promising peers to the enquirer which then issues the query to the
selected peers and waits for their results. Without replication,
problems arise when the broker fails [Lu, 2007, p.15].

Aberer et al. [2005) p. 4] uses the concept of a “global peer index”
to denote the administration of the set of resource descriptions of
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3.6.1 — Brokered. 3.6.2 — Structured.

2 o

OO

5 S

[
o

3.6.3 — Completely decentralized. 3.6.4 — Hierarchical.

Figure 3.6. — Different P2P network architectures according to Lu [2007];
visualization inspired by Lu [2007, figure 2.1 on p.7]. Squares OJ denote peers;
those with large black borders O are super-peers. Circles O visualize resource
descriptions. The same fill colors indicate a similar “thematic” focus of peers
and/or resource descriptions.

participating peers in a P2P IR system. Since this set of resource
descriptions is present in a centralized entity in a brokered P2P
architecture, the notion of a centralized global peer index also
reflects the brokered network architecture.

Structured architectures (see section[3.3.3)). Network dynamics with
resources frequently entering the system and/or updating their
content can lead to network load a P2P IR system relying on
global document indexing can hardly cope with [Lupu et al.,
2007; Papapetrou et al., 2007; Vu et al., [2009]. Instead of dis-
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tributing a global document index, several authors thus propose
the indexing of resource descriptions in a distributed index struc-
ture such as a DHT. These types of systems are thus character-
ized by a distributed global peer index. Figure shows an
example scenario where similar summaries are administered by
the same peer. In this small visual example, replication is not
considered and we assume coinciding thematic foci of a peer’s
summary and the summaries the peer indexes.

Completely decentralized architectures (see section [3.3.4). Com-

pletely decentralized P2P IR systems are pure P2P IR systems.
They lack the presence of a central authority or super-peers (for
a description of super-peer architectures see section on hi-
erarchical architectures).

Semantic Overlay Networks (SONs) fall into this group of sys-
tems. They are introduced in Crespo and Garcia-Molina [2005].
Every peer maintains two types of links to other peers. Peers
with similar content are connected by short links and form com-
munities (see figure B.6.3]). Descriptions of peer content can be
used in combination with a similarity measure to derive a peer’s
place within the network topology. In order to do so, clustering,
classification, and gossiping techniques are applied [Doulkeridis
et al., [2010b]. Long links are established between different com-
munities to ensure the connectivity of the peers. During query
execution, the query is forwarded to the most promising commu-
nities by multi-hop query routing. A comprehensive overview on
different SON approaches is given in Doulkeridis et al. [201()me.
Approaches which are applicable for metric space indexing are

discussed in section B.3.4] on pages GIHT2A

A second subtype of completely decentralized P2P IR systems as-
sumes that every peer knows the resource descriptions of all other
peers in the same (sub)net (see for example the four blue shaded
peers in figure which form such a subnet). Approaches
belonging to this group such as PlanetP [Cuenca-Acuna et al.,
2003] and its extension Rumorama [Miiller et al., [2005b] are in
the following denoted as PlanetP-like systems. PlanetP can be

31

Note that SON may refer to both, the general P2P IR system where peers with
for example similar content or query profiles are grouped together as well as
the individual groups/communities which form the overlay network.
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considered as a fully replicated global peer index. Resource de-
scription and selection mechanisms in PlanetP-like systems are
briefly outlined in section B34 on pages[[2H3l They are concep-
tually similar to the resource description and selection techniques
in a brokered P2P IR architecture.

PlanetP assumes that a peer knows the resource descriptions of
all other peers in the system. Rumorama [Miiller et al., 2005b)
tries to assure scalability by building hierarchies of PlanetP net-
works. In Rumorama, every peer sees a portion of the network
as a single, small PlanetP network and furthermore maintains
connections to other peers that see other small PlanetP net-
works. To this end, the peer stores a small set of links point-
ing to neighboring peers in other subnets in order to be able to
forward queries beyond the boundaries of its own subnet. Each
peer can choose the size of its PlanetP network according to local
processing power and bandwidth capacity. Within its small sub-
net, a peer knows resource descriptions of all other peers’ data
in the same subnet. These descriptions are disseminated by ran-
domized rumor spreading and provide the basis for query routing
decisions in the local subnet.

Hierarchical architectures (see section [3.3.0]). Hierarchical P2P IR
architectures (see Yang and Garcia-Molina [2003] and the visu-
alization in figure [3.6.4 on page 63J]) are designed to overcome
some limitations of other types of P2P IR systems. Super-peers,
as opposed to (normal) peers, make use of increased capabilities
such as storage capacity, processing power, network bandwidth,
or availability. Often, concepts known from other types of P2P
IR systems are extended and adapted by hierarchical P2P IR ar-
chitectures such as for example resource description and selection
techniques.

Techniques from the first three types of network architectures
outlined in this section can be applied and combined in hierar-
chical architectures. There are for example hierarchies of brokers
(see e.g. Gravano and Garcia-Molina [1995]), super-peer networks
based on structured P2P IR architectures (see e.g. Garcés-Erice
et al. [2003]), and semantic overlay networks where peers with
similar content are assigned to the same super-peer(s) (see e.g.
Doulkeridis et al. [2009D]).
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In the abovementioned scenarios, from a conceptual point-of-view,
resource descriptions can be identified at different levels. The following
three-level scheme is also adapted from Lu [2007, pp. 39-42].

Resource descriptions of peers. In the most basic form, only the con-
tent of an individual peer affects its resource description. An
enquiring entity which knows the summary can then decide if it
is promising to query the very peer. The query can directly be
sent to the peer via single-hop query routing. PlanetP [Cuenca-
Acuna et al., |2003] is designed with this goal in mind and sum-
maries for text collections are proposed. Rumorama [Miiller et
al., 2005b] with its single-hop query routing in the PlanetP leaf
nets provides a scalable extension of PlanetP.

Resource descriptions of super-peers. In super-peer networks, those
peers which are assigned to a particular super-peer send their
resource descriptions to the corresponding super-peer. Multiple
resource descriptions can then further be summarize in a single
super-peer description. This can then be employed to enable
query routing among super-peers.

Resource descriptions of (super-)peer neighborhoods. A neighbor-
hood description of a resource usually provides information in
which direction a query should be routed in a multi-hop query
routing scenario. Thus, indexing data is summarized along mul-
tiple hops which means that the resource descriptions of mul-
tiple (super-)peers affect the neighborhood summary. Routing
indexes (RIs) [Crespo and Garcia-Molina, 2002] usually fall into
this group. Metric space Rls are for example proposed in Doulk-
eridis et al. [2007] for query-routing among super-peers and in
Gennaro et al. [2008] in the context of a completely decentral-
ized system. Both approaches allowing for similarity search in
general metric spaces are outlined in the remainder of this the-
sis.

This thesis focuses on individual peer descriptions. In the following,
existing approaches for general distributed metric space indexing and
search are recapitulated in this regard. Whenever it is appropriate and
additional insights can be gained from the analysis of super-peer or
neighborhood descriptions, these are also included in the analysis. The
focus is on resource descriptions. Resource selection mechanisms are
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only briefly discussed since, at least for precise search, they logically
arise from the applicable pruning rules which depend on the type of
used resource descriptions. The interested reader is referred to the
cited publications.

3.3.2. Resource Selection in Brokered Architectures

There are early resource description and selection schemes for CBIR in
brokered network architectures—although not applicable in arbitrary
metric spaces—which use clustering algorithms for computing the re-
source descriptions (see e.g. Chang et al. [1997]). Similarly, clustering
algorithms as presented in section 3.1l can be used in combination with
the pruning rules outlined in section 4] for the design of resource de-
scription and selection techniques to allow for precise search in arbi-
trary metric spaces. In the following, such an approach is outlined as
described in Berretti et al. [2002allbl 2004].

Berretti et al. [2002ajbl, 2004]. Berretti et al. [2002a/bl 12004] ap-
ply a special form of hierarchical clustering based on the M-tree (see
section BZT]on pages ITHAR]) to the set of database objects of a resource
in order to generate a resource description. A cluster radius threshold 6
is used for determining the cluster centers which are included in the re-
source description. Every path in the clustering tree built for the local
collection is descended as long as the cluster radius of a node is bigger
than the predefined threshold 8. The centers of the nodes where the
search stops are included in the resource description. In addition, per
cluster, the covering radius and the number of objects within the clus-
ter are stored in the resource description (the latter may be beneficial
for ranking peers when performing k-NN queries). By varying 6, the
granularity and size of the resource descriptions can be adjusted. It is
suggested in Berretti et al. [2004] to use different granularities 6 and
thus to rely—per resource—on multiple resource descriptions at differ-
ent granularities. Besides 6, the block size of the M-tree nodes 5}1;/1 is
the second tuning parameter of this approach, although not explicitly
mentioned in Berretti et al. [2002albl [2004].

Range queries can be answered by applying the pruning rule based
on the range-pivot distance constraint in order to check the overlap of
the query ball with the cluster balls of a resource. If the query ball
does not overlap any cluster ball, the very resource can be pruned from
search. In case of k-NN queries, on a conceptual level, peers are ranked
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by the sum of intersection volumes of the query ball and the cluster
balls weighted by the number of database objects lying in a cluster.

3.3.3. Resource Selection in Structured Architectures

The idea of indexing local index statistics and thus resource descrip-
tions instead of full index data in a DHT is already pursued by the
Minerva system [Bender et al.,[2005alb] for federated text search. Lupu
et al. [2007] proposes Hyper-M which is capable of indexing resource de-
scriptions for CBIR in a distributed index structure. Hyper-M targets
information sharing in mobile ad hoc networks. It is however not appli-
cable for search in arbitrary metric spaces. SIMPSON [Vu et al., [2009)
also indexes summary information in a distributed index structure and
additionally allows for search in arbitrary metric spaces, although it
is not explicitly designed for this purpose. The SIMPSON system is
briefly outlined in the following.

SiMPSON [Vu et al., [2009]. The rationale behind SiMPSON is
that every peer locally clusters its data. Although k-means cluster-
ing is used in Vu et al. [2009], SIMPSON can be extended for search
in arbitrary metric spaces by replacing the k-means algorithm with
an algorithm applicable in arbitrary metric spaces. The outcome of
the clustering is a set of metric balls per peer. These cluster balls are
mapped to one-dimensional key ranges by an extension of the iDistance
[Jagadish et al.,[2005], conceptually similar to the Metric iDistance out-
lined in section on pages BIHE2l Every cluster ball is represented
by two one-dimensional index keys (i.e. a mapped inner and outer ra-
dius of a sphere with a particular reference object as its center and the
sphere tightly enclosing the cluster ball). Both index keys are admin-
istered as cluster descriptions in the structured P2P overlay instead of
full document index data. Note that both index keys may be stored on
different peers which indicates that more than one peer is responsible
for the very cluster. In addition to the cluster center and the cluster
radius, also a peer identifier is associated with a cluster description to
indicate the peer to which a cluster belongs. Storing the number of
database objects of a cluster can furthermore be beneficial for k-NN
query processing.

Every peer is responsible for a certain region of the feature space
and has to maintain a so-called “covering cluster counter” [Vu et al.,
2009, definition 2] which is used during query processing to check if the
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search for cluster descriptions matching the query has to be extended
to neighboring peers. This counter is increased whenever a cluster—
mapped to a key range—fully overlaps the key range for which the peer
is responsible.

During search, SIMPSON makes use of the pruning rule based on the
range-pivot distance constraint (see section Z42) for determining from
the cluster descriptions—obtained from the DHT overlay—those peers
where the query has to be sent to. Besides range query processing,
algorithms for k-NN queries based on different methods for the estima-
tion of the initial query radius are also described in Vu et al. [2009].

3.3.4. Resource Selection in Completely Decentralized
Architectures

This section outlines approaches which make use of resource descrip-
tion and selection techniques within completely decentralized network
architectures. The first part addresses SONs which are characterized by
a grouping of peers sharing certain characteristics. In the second part
of this section, the focus lies on PlanetP-like systems with every peer
knowing the resource descriptions of all other resources in a (sub)net
used for query routing but not for finding the place of a peer within
the network topology.

Resource selection in SONs

MON [Linari and Patella, 2007]. The Metric Overlay Network
(MON) extends the idea of SONs toward metric space indexing. Peers
with similar content are grouped together and the similarity is deter-
mined by a distance metric. Every peer is represented by a metric ball,
that is, a reference object and a corresponding covering radius. The
experimental study in Linari and Patella [2007] does however not focus
on the generation of the MON. It analyzes query routing in a setting
with only few clusters/peers. Linari and Patella [2007] notes that every
peer can also be represented by a set of balls instead of only a single
ball. Query processing is performed by multi-hop query routing and
several strategies are evaluated in Linari and Patella [2007]. A promis-
ing strategy for example forwards the query in every routing step to the
peer in the direct neighborhood with the minimum distance between
its cluster ball and the query ball.
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Linari and Patella [2007] is related to an approach presented in Linari
and Weikum [2006] for distributed text retrieval where a SON is gen-
erated by assigning peers to their nearest neighbors (NNs) according
to a given distance metric. In Linari and Weikum [2006], peer content
is summarized by approximations of peer-specific LMs. The LMs are
approximated by Bloom filters and the dissimilarity of different LMs is
determined by the square root of the Jenson-Shannon divergence (see
section ZZ2I0). Although query routing is not analyzed in Linari and
Weikum [2006], it is mentioned that the use of a distance metric and
thus the application of the triangle inequality allows for the pruning of
those peers with no relevant results.

PREGO [Baraglia et al., 2010] and GROUP [Baraglia et al.,
2011]. The P2P REcommender system based on Gossip Overlays
(PREGO) applies resource descriptions to cluster peers/users with sim-
ilar interests in a SON. The similarity of user profiles is measured by
the Jaccard coefficient (see section[ZZE]). Resource descriptions can for
example be derived from the set of visited URLs or the set of movies a
user has watched. The process of community building is more explicitly
addressed in Baraglia et al. [2011] where the Gossip-based peer-to-peeR
cOmmUnity building Protocol (GROUP) is proposed. There, the most
frequent terms of a peer’s document collection make up the peer profile
and again the Jaccard similarity is applied to compare different peer
profiles. Both approaches do however not focus on resource selection
aspects.

MRoute [Gennaro et al., 2008]. The Multimedia Routing In-
dex (MRoute# is a completely decentralized RI primarily addressing
approximate similarity search in general metric spaces. A resource
description in case of the MRoute consists at the peer level of |C|
histograms—a single histogram per reference object ¢; € C'. To com-
pute such a histogram, the distance dist(c;,0) from a particular refer-
ence object ¢; to a database object o € O, is computed for all database
objects of a resource p, € P. The resulting distribution of object-to-
pivot distances according to a certain pivot c¢; is then quantized into
a predefined number of bins. This defines multiple shell regions and

32 Note that the MRoute is briefly described in this section although initially it
is not proposed in the context of a SON. Pre-clustered images are assigned to
nodes in a randomly generated tree structure. However, the MRoute is applied
for query routing in a SON as described in this section.
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a histogram then counts how many database object lie in_a particu-
lar shell region around reference object ¢;. Gennaro et al. |2008] notes
that both, the number of histogram bins and the quantization inter-
vals do not necessarily have to be the same for all reference objects.
Peer-specific resource descriptions of the MRoute provide the basis for
the computation of neighborhood descriptions which are in fact Rls.
Query routing is based on the RlIs from which the number of potential
matches is estimated.

Semantic Peer [Lodi et al.,[2008| and its extensions. Lodi et al.
[2008] addresses the grouping of peers with similar schemata (i.e. con-
cept hierarchies) in a peer data management system (PDMS)BB]. Strate-
gies where peers can either connect to the most similar peers or all peers
in a certain similarity range are proposed. To measure the difference
between two concepts, the WordNet-based distance metrics mentioned
in section Z2Z.IT]are used. Every peer can administer multiple semantic
concepts. A peer is represented by a so called clustroid which represents
the semantic concept minimizing the squared distance from itself to all
other concepts the peer administers. The work in Lodi et al. [2008]
focuses on efficient overlay construction and addresses maintenance is-
sues. Query routing aspects are addressed in Mandreoli et al. [2006]
where the Semantic Routing Index (SRI) is proposed. It indicates for
every peer in the neighborhood if promising peers according to a given
concept can be reached when following a particular link. Query routing
in case of SRIs is based on concept scores maintained for neighboring
peers and does not make use of the principles for metric space pruning
or pivot filtering outlined in section 24 However, Semantic Peer could
be extended in this regard and for example the resource description and
selection mechanisms proposed in this thesis could be applied.
Gennaro et al. [2011] extends the approach presented in Lodi et al.
[2008] by addressing multiple data types. In addition to the concept
similarities arising from a schema definition, content-based similarities
for example beneficial in the context of multimedia data types are ad-
ditionally addressed. In the multimedia context, multimedia Rls are
proposed which are adopted from the MRoute [Gennaro et al., [2008].

33 In contrast to P2P IR systems, PDMS [Halevy et al.,[2003| assume the existence
of possibly heterogeneous peer schemata which every peer may independently
define. Local schema mappings enable the reformulation of queries and thus
query processing without centralized control [Tatarinov and Halevy, 2004].
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MSN [Sedmidubsky, [2010]. The Metric Social Network (MSN) is
a self-organizing system for approximate similarity search in general
metric spaces. Connections between resources are established based
on past queries. Attached to a past query are among other things
two types of relations—friends relations and an acquaintance relation.
While friends are those resources which provided high-quality results
(e.g. a non-empty set of result images), the acquaintance is the resource
with the best answer for the very query (e.g. the resource providing the
most number of result images). In addition, every resource maintains
connections which ensure practicable query routing in case of an empty
query history or no matching resources.

In order to determine which links to follow, the similarities between
the actual query and all the queries from the query history are deter-
mined with the help of an appropriate confusability function. Different
confusability functions are for example analyzed in Dohnal and Sed-
midubsky [2009]. The confusability between an actual and a past range
query can for example be influenced by the distance between both query
objects, both search radii, or the overlap of both query balls.

Resource Selection in PlanetP-like systems

Eisenhardt et al. [2006]. Cluster histograms as resource descrip-
tions are initially proposed in Miiller and Henrich [2003] and Miiller
et al. [2005a]. To compute a cluster histogram, a set with a moderate
number of reference objects is applied (e.g. |C| = 256). Every feature
object of a resource’s collection is assigned to the closest reference ob-
ject and a histogram captures how many objects have been assigned to
a certain reference object. Eisenhardt et al. |2006] shows that a random
selection of reference objects may replace distributed clustering. Re-
source selection performance slightly decreases, but network load can
be reduced because distributed clustering becomes obsolete.

An improved resource selection_technique compared to Miiller and
Henrich [2003] and Miiller et al. [2005a] is proposed in Eisenhardt et
al. [2006]. The list L, of reference object IDs ¢ (1 < i < |C) sorted
in ascending order according to dist(q,c;) is determined during peer
ranking. As a result, the first element of L, corresponds to the ID
of the cluster center being closest to q. A peer with more documents
in the corresponding cluster—indicated by the summary—is ranked
higher than a peer with fewer documents in the very cluster. If two
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peers p, and pp with 1 <a,b <|P| and a # b administer the same
amount of documents in the analyzed cluster, the next element out of
L, is chosen and—based on the indicated number of documents within
the very cluster—it is tried to rank peer p, before peer p, or vice versa.
When the end of the list L, is reached, a random decision is made.

The resource descriptions of this approach are improved in this thesis
(see e.g. Blank et al. [2007] and Blank and Henrich [2010a] and sect.[2.T]).
They are binarized and the number of reference objects is increased to
for example |C| = 8192 or even more. Compression techniques are ap-
plied to prevent a huge increase in average summary size. Furthermore,
we extend the approach from Eisenhardt et al. [2006] to precise query
processing (see e.g. Blank and Henrich [2013b] and sects.[2] and B3).

In general, there is a convergence of structured and unstructured
(i.e. completely decentralized) P2P IR, systems with many hybrid ap-
proaches. Eisenhardt et al. [2006] proposes an approach where index
data is stepwisely transferred among peers to make peers more focused
and—as a consequence—summaries more selective. More selective sum-
maries with peers having specialized on a certain region of the feature
space lead to more efficient resource selection. Multiple strategies for
this cluster specialization are for example evaluated in Eisenhardt et al.
[2008].

3.3.5. Resource Selection in Hierarchical Architectures

This section outlines approaches which apply resource description and
selection techniques in hierarchical network architectures. Two types
of peers coexist in such systems. In addition to normal peers, there are
super-peers with increased capabilities.

SIMPEER [Doulkeridis et al., 2007] and its extensions. In
SIMPEER, every (normal) peer applies a clustering algorithm on its
local data collection and indexes it based on the iDistance [Jagadish
et al.,[2005]. In the original paper, k-means clustering is applied. How-
ever, SIMPEER can easily be extended for metric space indexing by
replacing the k-means clustering with an algorithm applicable in arbi-
trary metric spaces. As its resource description, every peer transfers a
list of cluster balls to its super-peer, that is, cluster centers and corre-
sponding covering radii.
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When processing a range query range(q, ), it is initially sent to the
responsible super-peer (if not the super-peer itself issues the query).
Whenever a super-peer receives a query—besides forwarding it to rel-
evant super-peer neighbord®—the query is sent to the peers assigned
to the very super-peer which maintain feature objects within distance
r from ¢. This is checked by applying the pruning rule based on the
range-pivot distance constraint. To speed-up query processing, the clus-
ter descriptions which are sent to a super-peer by its assigned peers are
indexed by the very super-peer in an index structure based on the iDis-
tance. Again, this can easily be generalized to arbitrary metric spaces
by applying for example the Metric iDistance (see sectionB2Z 2 on pages
BETHE2). Besides the processing of range queries, Doulkeridis et al. [2007]
also presents techniques for the processing of k-NN queries. In order to
do so, two heuristics for estimating the distance from the query object
to the k-th NN are presented.

SIMPEER is extended in several directions. Doulkeridis et al. [2009a]
addresses scenarios where in case of range queries the user is satis-
fied by obtaining a certain fraction of the precise search result. This
might be tolerated by the user especially in cases when the result set
is huge. In such situations, query routing among super-peers can be
stopped early based on an analysis of statistics obtained from neighbor-
ing super-peers. Query processing costs can thus be reduced without
displeasing the user. Doulkeridis et al. [2010a] extends the basic SIM-
PEER approach with ideas adopted from SONs. Peers with similar
content are assigned to the same super-peer. Thus, the number of
super-peers involved in query processing can be reduced.

Marin et al. [2009]. Marin et al. [2009] enhances the basic SIM-
PEER approach presented in Doulkeridis et al. [2007] by introducing
an algorithm for the selection of the reference objects. Whereas the ref-
erence objects in case of SIMPEER, arise from a clustering at the peer
level (i.e. every normal peer clusters its data), Marin et al. [2009] uses a
predefined set of reference objects which is the same for—at least—all
peers assigned to a particular super-peer. The algorithm for determin-
ing the set of reference objects iteratively adds a new reference object to
the candidate set so that the newly added center maximizes the sum of
the distances to previously chosen reference objects. Afterwards, every
peer sends its reference objects to the corresponding super-peer. Ap-

34 Metric RlIs are applied for the description of super-peer neighborhoods to allow

for multi-hop query routing among super-peers.
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plying the same selection mechanism, a super-peer determines a subset
of reference objects from all reference objects obtained from its peers.
This consolidated set of reference objects is then sent to neighboring
super-peers. Again, the selection algorithm is used by the super-peers
for determining a set of centers from its centers and the centers of neigh-
boring peers. Not necessarily all of the super-peers have to agree on a
unique set of centers. Thus, the centers are called “semi-global centers”
in Marin et al. 2009, p. 125].

Every super-peer sends its semi-global centers to assigned peers.
These use the set of centers for indexing and the construction of the
resource descriptions. Here, rather than k-means which is used by
SIMPEER, Marin et al. |2009] apply the LC clustering algorithm (see
section B2T] on pages EOHRN). Since the semi-global centers are al-
ready known by a super-peer, assigned peers do not have to include the
centers into their resource descriptions. Only identifiers of the centers
and metric shell radii (i.e. the minimum and maximum distance from
a center to objects assigned to it) are included in the summary.

Since shell information is stored in the resource descriptions, the
pruning rule based on the range-pivot distance constraint can fully be
employed during query processing for checking the overlap between the
query ball and cluster shells in contrast to cluster balls only in case of
SIMPEER. Among other aspects, also the routing mechanism between
super-peers changes compared to SIMPEER.

Vlachou et al. [2010, 2012a]. Also Vlachou et al. [2010} 2012a]
modify SIMPEER in several directions. Instead of an index based on
the iDistance, every peer maintains an M-tree (see section B221] on
pages [I7HAR) as its local index. Thus, the resource descriptions which
peers send to its super-peer are also modified. A peer uses the cluster
balls maintained in the root node of its local M-tree as the resource
description. Hence, the particular resource description and selection
technique can conceptually be considered as a special case of the ap-
proach presented in Berretti et al. [2002a/bl 12004] (see section on
pages [G7HES]).

Query routing is performed by checking the overlap between the
query ball and the cluster balls which represent the peer summaries.
To speed-up the peer selection process, a modified M-tree for indexing
the peer summaries is maintained at every super-peer. Query routing
among super-peers is based on Rls derived from M-tree indexes main-
tained by the super-peers. Varying block sizes of the M-trees are not
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analyzed in Vlachou et al. m m It is further unclear if the
authors are aware of the approach presented in Berretti et al.
since it is not cited in Vlachou et al. |201




Chapter 4.

IF4AMI—Inverted File for Metric
Indexing and Search

This chapter presents IFAMI [Blank and Henrich, 2012, 2013a] which
brings capabilities for precise search to the MAMSs based on inverted
files. If IF4MI is applied by resources as their choice of a local document
index structure, information already maintained by IF4MI can directly
be used as a resource description in a distributed retrieval scenario (see
chapter B]). IF4MI is built on top of an inverted file and thus inher-
ently provides a multi-feature MAM with text as an additional search
criterion. The main characteristics and benefits of IFAMI are outlined
in section [l Afterwards, the applicability of IF4MI is evaluated in
section

4.1. Outline of IF4MI

The basic idea of IFAMI is straightforward. It uses mis = |C| pivots
and maintains one posting list per pivot containing references to those
database objects for which the very pivot is the closest. IF4MI uses
all the rules presented in section [Z4] for pruning certain regions of the
feature space (i.e. complete posting lists of the structure) or individual
feature objects (i.e. postings) from search. The pruning rules in sec-
tion 24l are outlined in the context of range queries. How these pruning
rules are used for k-NN queries in case of IF4MI is shown in this section.

Since TF4MI is conceptually simple, it can easily be implemented
on top of existing inverted file libraries such as Apache Lucend™ and
benefit from the extensive knowledge in the field of query processing
based on inverted files (see e.g. Biittcher et al. [2010] and Zobel and
Moffat [2006]). To give just one example, we show how the execu-
tion of multi-feature queries combining metric space similarity search

35 see [http: //lucene.apache.org/), last visit: 12.10.2014
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Figure 4.1. — Conceptual outline of the IF4AMI structure. Database objects are

included in the postings instead of object IDs for visualization purposes.

with a textual filter criterion can make use of the inverted file con-
cept. TFAMI outperforms existing MAMs such as the M-tree and the
PM-tree (for both concepts see section B2l on pages H7HAT]) in certain
scenarios according to the number of necessary distance computations.
Additionally, when applying the space partitioning technique of the
M-Index (see section on pages (2HE3)—considered as a current
state-of-the-art MAM [Loko¢ et al., [2014]—the pruning power of the
M-Index can be brought to inverted files. All feature objects of a par-
ticular cluster are assigned to the same posting list without mapping
them to one-dimensional values for storing them in adequate data struc-
tures such as a BT-tree [Comer, 1979]. We also show that the runtime
performance of pivot filtering—used by many MAMs to avoid unneces-
sary distance computations—can be further improved with an adequate
heuristic initially proposed in Celik [2006, ch. 4].

TF4MT applies a set of ms¢ = |C| pivots and assigns a database object
o € O to its closest cluster center ¢* = arg min, ¢ dist(c;, 0). Cluster
IDs are used as virtual term$8. Hence, we obtain a vocabulary size
of mys (see figure I]). During insertion, an object reference is only
inserted into the posting list of ¢*. Note that every object ID is thus

36 Note that cluster centers can be perceived as visual words. They are derived

from existing reference images. Similarly, from a conceptual perspective, some
of our RS4MI resource descriptions presented in chapter [0l can be interpreted
as BoVW histograms.
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Data:
k the desired number of NNs

q the query object
C the set of reference objects

topk[]  result array of length k with (o0id(0), dist(g,0)) pairs,
initially: dist(q, 0) = oo for all entries

L, = determinePermutationList(q, C)

pos =1

while topk[k].dist > (Lg[pos].dist — Lq[1].dist)/2 do

if clusterPruningNotPossible(Lq[pos], topk|k].dist) then
| processPostingList(Lq[pos], topk)

end

if pos == |C| then
| break

end

pos = pos+1

end
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=
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=
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Figure 4.2. — An algorithm for k-NN queries with IF4AMI.

contained only in a single posting list of the inverted index. By default,
the postings of a posting list are sorted by object/document ID in
ascending order.

Two additional matrices R™ and R°"* as explained in section
are administered in main memory and are used for cluster pruning, that
is, the pruning of posting lists without processing them. This requires
O(m?) additional space. At the object level and thus for each posting,
IF4MI maintains up to m;s object-pivot distances dist(c;, 0). By doing
so, we are able to apply pivot filtering when traversing posting lists
which could not be pruned before.

An algorithm for k-NN query processing is outlined in figure
First, the list L, is computed in line 1. Note that L, for every en-
try contains the computed dist(q,c;) value in addition to the cluster
ID so that distance values do not have to be recomputed. This is a

slight modification to L, as introduced in definition The

while-condition in line 3 of the algorithm is a direct application of the
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pruning rule based on the double-pivot distance constraint. Following
from the fact that L, is ordered by ascending distance values dist(q, ¢;),
the search can stop as soon as the condition is not fulfilled for the first
time since Lgy[pos].dist monotonically increases with increasing pos. In
line 4, it is checked if the cluster at position pos of the list L, can be
pruned. Here, the pruning rule based on the range-pivot distance con-
straint is tested with the help of R™ and R°" in an intra- as well as an
inter-cluster fashior22. If a cluster cannot be pruned, its posting list is
processed and pivot filtering is applied to the objects whenever possi-
ble (using at most mi¢ pivots). If an object cannot be pruned, dist(q, o)
has to be computed and topk is possibly updated. Hereby, the current
search radius (i.e. r = topk[k].dist) used for object and cluster pruning
might also be updated.

The algorithm for precise range query processing is straightforward,
replacing topk[k].dist in line 3 with the search radius r and topk with
a data structure of variable length. So is an extension of IF4MI to
approximate search. Instead of testing all |C| clusters (see line 7 of
the algorithm outlined in figure [£2)), the algorithm can stop early by
analyzing only the first few clusters in the list L,. A conceptually
similar approach in this regard is analyzed in section [E.1.]] on pages
[IO7THIOR of this thesis in the context of distributed search.

As mentioned before, the M-Index (see section on pages B2
B3)) can be considered as a current state-of-the-art MAM. With respect
to the necessary number of distance computations, Loko¢ et al. [2014}
p. 18] denotes the M-Index as “the currently best MAM?”. Tts superior
performance according to the number of necessary distance computa-
tions is influenced by the fact that it applies all the pruning rules out-
lined in section 24} TF4MI uses the same pruning rules. However, an
obvious difference between IF4MI and the M-Index is the space parti-
tioning used by these approaches. Thus, we extend IF4MI by applying
the permutation-based space partitioning of the M-Index (see ﬁgure
and compare it in section EE2Z5l with the initial Voronoi-like
space partitioning of IF4MI (see figure[2.1.2 on page 25)). We use an al-
gorithm outlined in Myrvold and Ruskey [2001] to map I-permutations
which identify the clusters of the M-Index to integers in the range of

37 Here, the two matrices R™ and R°"* are used since their memory footprint

is affordable. The influence of individual pruning rules on the resource selec-
tion performance is analyzed in section [F2.4]in the context of our distributed
resource selection scheme RS4MI.
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[1,mf-m] in order to be able to store inner and outer shell radii in the
two matrices R™ and R°"" as before. Query processing is implemented
as a k-NN algorithm similar to the one described in Novak et al. [2011]
which relies on a priority queue ordering clusters by a penalty score.
This penalty score captures the “proximity” between a cluster and the
query object.

4.2. Evaluating IF4MI

After having outlined the general concepts of IF4MI, it is now eval-
uated. First, section 2] provides an overview of the experimental
setup. A quantitative evaluation of IF4MI is presented in section 2.2
Section .23 shows that in certain scenarios IF4AMI can outperform the
M-tree and the PM-tree—two alternative MAMs (for both concepts,
see section B2l on pages ETHAR)—according to the number of neces-
sary distance computations. The memory requirements of the different
approaches are analyzed in section L24]l In section [L2Z5] we compare
our approach with the M-Index (see section B2Z2 on pages E2HE3) and
apply its space partitioning technique to our inverted file-based ap-
proach. Many MAMs such as the PM-tree, the M-Index, and TF4MI
rely on pivot filtering. In section l22.8] we apply a heuristic proposed in
Celik [2006, ch. 4] to reduce the number of pivots which are tested dur-
ing pivot filtering. Finally, section 27 analyzes the benefits of IF4MI
when performing multi-feature queries comprised of a k-NN similarity
query and an additional textual filter criterion.

4.2.1. Experimental Setup

In the following, we assume a CBIR task. Experiments are based on
the CoPhIR dataset [Bolettieri et al., 2009]. Our collection consists
of the first 100000 images from CoPhIR archive no.1. Twenty runs
with varying sets of cluster centers are performed which are randomly
chosen from the remaining 900 000 images of the first archive. In each
run, we use the same set of 200 query objects randomly selected from
CoPhIR archive no. 106 (CoPhIR consists of 106 archives in total.). We
perform 200 20-NN queries® per run and use the features which come

38 When evaluating k-NN queries, k = 20 is assumed throughout this thesis. 20

is a typical value for k in the context of image retrieval and for example also
used in Eisenhardt et al. [2006] and Miiller et al. [2005a].



82 4.2. Evaluating IF4MI

with the CoPhIR dataset (distances in brackets according to Manju-
nath et al. |2002]): Scalable Color (distr, ), Color Structure (distr, ),
Color Layout (weighted dist,), Edge Histogram (variant of disty,, ),
and Homogeneous Texture (variant of disty,, ).

We use four feature combinations with different intrinsic dimension-
ality values p (see formula [2:20 on page 37): FC; (Color Layout only,
p =4.4), FCy (Edge Histogram only, p = 7.7), FC3 (Color Layout and
Edge Histogram, p = 10.9), FC, (all features, p = 13.7). In case of FCj
and FCy, features are normalized and weighted equally. If not stated
otherwise, FCy is used in the remainder of this chapter.

4.2.2. The Number of Distance Computations of IF4MI

At first, we consider the number of distance computations as the dom-
inating cost factor. This is frequently the case in the literature on
MAMs [Skopal, [2010]. In addition, it is motivated by the fact that
IF4MI can be used as a main memory indexing technique because of
its potential for a relatively small index sizd®. Of course, IFAMI can
also be applied as a disk-based index. In this case, cluster pruning is
beneficial to avoid the unnecessary scanning of posting lists which are
stored on disk. When clusters cannot be pruned from search and post-
ing lists are accessed, object pruning comes into place to further reduce
the number of database objects for which distances dist(q, 0) have to
be computed.

Figure shows the average fraction of distance computations, the
average fraction of pruned objects via cluster pruning, and the average
fraction of pruned objects via object pruning. 100% correspond to
|O] 4+ mis = 100000 + 1024 = 101024 distance computations because
the number of distance computations is always at least my = 1024
since the list L, (see the algorithm in figure [L2)) is computed during
query processing in any case. IF(mis, m{;) will in the following denote
the parameter values of IF4MI with mjs indicating the total number
of reference objects used and m{; (m{; < mj) indicating the number
of dist(c;,0) distances stored per database object o € O and used for
pivot filtering.

In case of IF(1024,1024), based on 1024 cluster centers, 1024 precom-
puted dist(c;, 0) distances stored in the postings of any database object
0 € O are used for object pruning (see figure 3). For IF(1024,128),

39

The memory requirements of IFAMI are analyzed in section 24}
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the rightmost bar in each group—is a parameter setting with no cluster pruning
where all posting lists are processed to prune objects based on pivot filtering.
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cluster pruning is still based on the whole set of m;; = 1024 centers
while only a random subset of m!, = 128 centers and thus 128 pre-
computed dist(c;,0) distances are applied for pivot filtering. Of course,
reducing the number of distance values stored in the postings for ex-
ample from 1024 to 128 reduces the memory size of the index and I/0O
cost in case of the posting lists being stored on secondary memory. But,
at the same time, the number of distance computations increases since
fewer objects can be pruned. Both, m{; and m;; are tuning parame-
ters of IF4MI and a more detailed analysis in this regard is part of the
remainder of this chapter.

IF([1024],1024)—corresponding to the rightmost bar in each group in
figure B3l —is a parameter setting similar to LAESA (see section B2.T]
on pages HOHAT) where no cluster pruning is applied at all, although
the cluster structure based on 1024 reference objects is used here for
indexing. In this case, all posting lists are processed in order to prune
objects 0 € O based on mi; = 1024 precomputed dist(c;,0) distances.
From figure 3] it can be observed that pivot filtering at the post-
ing level is very effective. IF(1024,1024) requires the same amount of
distance computations as IF([1024],1024). Nevertheless, in a setting
where the posting lists are stored on secondary memory, the latter is
more expensive according to disk I/O costs since no database objects
are pruned via cluster pruning. In this case, we would like to reduce
the number of pruned objects through more effective cluster pruning
instead of massively relying on object pruning and thus disk I/O reads.
The parameter settings in figure with m{, < mjs represent com-
promises reducing the memory requirements and disk I/O costs while
increasing the number of distance computations. An adequate value
for m{; can be found based on the computational complexity of the
distance measure, the available storage space, and the general scenario
of an index in main or secondary memory.

To give an impression, figure 4] shows—for a randomly selected
run—the number of postings per posting list. For this particular run,
only a single cluster does not contain any postings. We can see that
the distribution of the number of postings per cluster is skew. It is of
course influenced by the technique for choosing the reference objects.

To further analyze the characteristics of IFAMI, we vary the param-
eter values for mis and mf;. Figure shows the fraction of necessary
distance computations compared to a sequential scan for different pa-
rameter values of mir and m{;. Results are shown for FCy4. It can be
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|O] = 100000 postings in total. The placeholder x for mj indicates that these
measurements are independent of m;.

observed that increasing m;s and thus the number of clusters only pays
off—according to the number of necessary distance computations—if
mi; is relatively small (e.g. m{; < 40). In these situations, there is a
steady decrease in the fraction of distance computations with increas-
ing mys, especially when m{f is very small such as in case of IF(mj,1).
For bigger numbers of m!; (e.g. m{; = 128), pivot filtering is able to
prune large amounts of non-relevant database objects and thus a very
small mis = 256 already offers the best efficiency among the measured
parameter settings in terms of the number of distance computations.
The increase in the fraction of distance computations for m{; = 128
when mjs becomes large can be explained by the fact that m;s distance
computations are already performed per query upfront when comput-
ing the list L, before actually entering the pruning process (see line 1
of the algorithm in figure -2 on page 79)). From this perspective, the
space partitioning used by the M-Index seems to be a suitable alter-
native when a large number of clusters is desired. It is analyzed in
section

As can be observed from figure 5] a large number of clusters is
inevitable to reduce the number of distance computations when memory
requirements do not permit the use of a sufficiently large number of
reference objects for pivot filtering. Otherwise, whenever it is affordable
to apply a rather large number of reference objects for pivot filtering
(e.g. mi; = 128), the influence of choosing an adequate mis is not that
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Figure 4.5. — Fraction of distance computations compared to a sequential scan

when varying mis and mij; for IF(mie, mi).

crucial, assuming that distance computations are the dominant cost
factor, and even a small m;; = 256 leads to a reduction in the total
number of distance computations; IF(256,128) performs best among
the different parameter settings displayed in figure

To reduce disk I/O costs when storing the posting lists of IF4MI
in secondary memory and to speed-up query processing even in a main
memory indexing scenario, it becomes crucial to prune as many clusters
as possible from search. Table 1] shows for a randomly selected run
the average number of pruned clusters for different values of mjis. In
case of many clusters (i.e. my = 8192), almost 50% of the clusters
are pruned. However, the remaining 50% have to be processed. The
number of empty clusters is also displayed in table Il Empty clusters
can be avoided by an optimized selection strategy for the reference
objects replacing the random selection.

Figure shows the number of distance computations and the num-
ber of database objects pruned from search by cluster and object prun-
ing for IF(m;¢,40) when varying the number m;¢ of reference objects. It
can be observed that larger numbers of clusters lead to more objects
pruned by cluster pruning. On the other hand, less database objects
are pruned by object pruning. A larger number of clusters might thus
justify the use of fewer reference objects for object pruning.
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empty pruned pruned
clusters empty clusters clusters total
mir = 256 0 0 39.5
mis = 512 0 0 104.2
mys = 1024 1 1.0 270.6
mir = 2048 15 13.9 682.2
mir = 4096 76 70.9 1677.9
mir = 8192 395 369.1 3948.2
Table 4.1. — Number of pruned clusters of IF4MI for different values of mis.
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Figure 4.6. — Pruned and unpruned database objects for IF(mif,40).

4.2.3. Comparing the Number of Distance
Computations of IF4MI with the M-tree and the
PM-tree

To compare IF4MI with alternative approaches, we use the M-tree li-
brary from |http: // mufin.fi.muni.cz/ trac/ mtree/| (last visit: 9.10.2014).
This library already provides some improvements to the original M-tree
such as a PM-tree implementation, a multi-way insertion algorithm,
and uses an improved split policy adopted from the Slim-tree (for ref-
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erences see section B2l on pages[THAR)). The node size of the M-tree is
set to 4096 bytes—the default block size of many current file systems—
since for an index based on secondary memory, disk I/O can become
an additional cost factor besides the necessary distance computations.

In contrast to the M-tree, the PM-tree relies on two parameters mpm,
and mi,,,. Inner node entries of the PM-tree make use of a set of
mpm reference objects in order to be able to trim the covering region
of a subtree through my,, metric shells (i.e. hyper-rings). Hereby, a
hyper-ring is described by a reference object ¢; and a pair of minimum
and maximum distances from the database objects in the subtree to
the reference object ¢;. Therefore, O(mpn) additional space has to
be administered per node entry in the inner nodes of a PM-tree. The
second parameter mgm affects the representation of the leaf nodes. A
set of m;m reference objects is used to apply pivot filtering. Hence, m;m
additional dist(c;,0) distance values are stored per database object in
a leaf node entry.

Figure @1 visualizes the fraction of necessary distance computations
compared to a sequential scan for different M-tree and PM-tree vari-
ants (assuming a block size of 4096 bytes) as well as for IFAMI. Dif-
ferent approaches use the same set of m’ reference objects for pivot
filtering to make results more comparable. The PM-tree, denoted as
PM(mpm,my,p,), corresponds to an M-tree if both mj,, = m’ = 0 and
Mpm = 0. PM’(0,0) refers to the M-tree using the multi-way insertion
algorithm presented in Skopal et al. [2003].

We can observe the benefits of applying pivots since from figure 7]
the differences in the number of distance computations between the
M-tree approaches which do not apply pivots, PM(0,0) and PM’(0,0),
and the remaining approaches that do so are clearly noticeable in case
of for example m’ = my{; = my,,, = 128. Furthermore, under the current
parameter setting, IF(1024,m!;) with m{, = 40 or m!, = 128 is able to
outperform the corresponding M-tree and PM-tree approaches when
considering the necessary distance computations. Note that it was not
feasible to include results for PM(1024,my,,,) in figure BT because of
the dramatically increased memory requirements.

Figure[£.§ visualizes the fraction of distance computations in relation
to a sequential scan for different tree-based approaches when varying



Chapter 4. IF4MI 89

100%

80%

60% ——

40% ——

20% ——

Distance computations
in relation to a sequential scan

0% -

m'=16 m'=40 m'=128

Number of reference objects used for pivot filtering

PM(0,0) ® PM'(0,0) = PM(64,m") B PM(128,m’) B PM(256,m) B IF(1024,m)
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the node/block size SM of the trees. In case of PM(128,128@ and a
block size of 2048 bytes, there are many nodes with only a single entry
since 128 - 8 bytes, that is, half of the block size, is already occupied
for storing the hyper-rings. In figure L8] according to the number of
necessary distance computations, block sizes larger than 2048 bytes
are more promising. It can be observed that when solely trying to re-
duce the total number of distance computations, an intermediate block
size performs best among the measured block sizes for the M-tree ap-
proaches (16 384 bytes for PM(0,0) and 8192 bytes for PM'(0,0)). Thus,
from this perspective, there seems to be an adequate clustering, that is,
assignment to subtrees, where feature objects are grouped under a com-
mon node entry which can successfully be pruned from search. With
larger block sizes, a higher branching factor might—especially in case
of PM’(0,0)—lead to a less adequate clustering and thus an increase in
the number of necessary distance computations (see 32 768 or 65 536 for
PM’(0,0) in figure 8). When applying a PM-tree (i.e. PM(128,128)),
the number of distance computations does not increase again in case

40 We include measurements for PM(128,128) since measurements for
PM(256,128) and a block size of 2048 bytes failed because of increased memory
requirements. Nevertheless, for block sizes of 4096 bytes and more, these mea-
surements as well as those of the other PM-tree settings displayed in figure 7]
show a similar trend with less distance computations the higher the block size.
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of larger block sizes. Pivot filtering applied at the leaf level is capable
of still pruning many feature objects from search. A similar effect is
observed in figure .3 on page 83|for IF4AMI (e.g. IF([1024],1024)). Also
the hyper-rings maintained in the inner nodes support a more effective
pruning of subtrees.

It might be argued that especially in case of an indexing scenario
in main memory, a PM-tree approach with a big enough block size
and an adequate number of feature objects used for pivot filtering (e.g.
My, = 128) can be used instead of IFAMI as well, since the perfor-
mance of IF4MI according to the number of distance computations can
be achieved (see figure LA]). In this regard, it is however important to
notice that also an approach purely based on pivot filtering such as for
example LAESA (see section BZZTl on pages M6HAT) might fit the needs
when the only goal is to reduce the number of distance computations
and other costs such as disk I/O are ignored. Here, the memory re-
quirements of the different approaches become important. They are
analyzed in the following section {24

4.2.4. Memory Requirements of the Approaches

The space complexity of IFAMI consists of several parts. |O] - m!; pre-
computed distance values are stored in the posting lists of the inverted
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IF(1024,16) IF(1024,40) IF(1024,128)

memory requirements 65.1 MB 74.8 MB 110.0 MB

Table 4.2. — Measured memory requirements of IFAMI for a database with
|O| = 100000 database objects.

file since only m!; instead of m;¢ distance values are stored per indexed
database object. Besides this, O(m#) additional space is used for stor-
ing R™ and R°". Furthermore, a negligible small amount of directory
information is maintained. Finally, the database objects are stored in
a separate field of the index (e.g. 8, = 0.5 kB per database object in
case of FCy4). The total memory requirements fip of IFAMI can thus
be determined by formula ] where 34 represents the storage space
needed for a single distance value, in our case 4 bytes when no binning
technique is applied. This leads for example to approximately 110 MB
in case of IF(1024,128) which is also measured as shown in table

Bre = Ba - (mig - 0] +2 - miy) + Bo - |O] (4.1)

The memory requirements of IF4MI can be estimated in advance with
the use of formula 1] or formula when adapted to the
space partitioning of the M-Index (see section E2ZH]). Thus, depending
on the runtime complexity of the distance computation and the avail-
able main memory, adequate numbers of applied reference objects, that
is, parameter values for mi; and mi;, can be determined. It should also
be noted that with an unoptimized implementation, the query response
time for the hardest feature combination FCy is on average 0.5 seconds
in case of IF(1024,1024) (single CPU on Intel i7 860, 8 MB cache, 2.8
GHz).

When estimating the memory requirements of the M-tree, the statis-
tics shown in table are used. The size of an inner node entry is
considered to be 512 bytes and a leaf node entry is estimated to oc-
cupy 508 bytes. If a block size of 4096 bytes is assumed, eight entries
fit in inner nodes as well as in leaf nodes. Of course, not all of the
nodes are fully occupied. In the following calculations, an average load
factor of In2 ~ 69.3% is assumed (see Yao |1978]). This results—on
average—in 5.54 and 5.59 node entries for inner and leaf nodes respec-
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routing object 500 bytes routing object 500 bytes

reference to subtree 4 bytes distance to parent 4 bytes

radius 4 bytes object identifier 4 bytes

distance to parent 4 bytes

sum 512 bytes sum 508 bytes
4.3.1 — Inner node entry. 4.3.2 — Leaf node entry.
Table 4.3. — Memory requirements for M-tree node entries.

tively®l There are |O| = 100000 database objects to be indexed. Using
these numbers, we can roughly estimate % nodes on the leaf level.
One level above, there are % nodes. Two levels above, there are
% nodes, and so on. This leads to an estimated M-tree index
size of PButree = 89.4 MB. So, more memory is used in comparison to
IF(1024,40) (see table L2)) at the same time leading to more distance
computations (see figure .7 on page 39).

Of course, the PM-tree approaches need more memory than the
M-tree for representing the hyper-rings as distance pairs in the inner
nodes and storing object-pivot distances in the leaf nodes. Memory
requirements considerably increase.

In large-scale scenarios with potentially millions of database objects
where it is inevitable to store parts of the index on secondary memory,
there might be the need for adapting the node size of the tree structures
to the physical block size of the underlying file system to reduce disk
I/O costs. As shown before, IFAMI can outperform the PM-tree with
a typical block size of 4096 bytes according to the number of necessary
distance computations. Furthermore, the required storage space of the
PM-tree due to the use of the reference objects might become a serious
problem. When applying MAMs, no assumption is made about the rep-
resentation of the database objects. Thus, their memory requirements
can become arbitrary complex. Of course, references can be used in-
stead of the objects themselves. However, this requires additional disk
accesses when no caching mechanisms are applied.

41 We believe that this is an optimistic estimate which leads to an underestimation

of the true M-tree index size. As an indicator, the M-tree library offers statistics
which show that the average number of leaf node entries is 4.94 for PM(0,0)
and 3.24 for PM’(0,0).
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distance computations memory requirements

MImoa(40,3) 58 828.3 66.50 MB
IF(347,40) 58 822.0 66.49 MB

Table 4.4. — Comparing the space partitioning of IF4AMI and the M-Index on a
database with 100 000 objects in case of 20-NN queries.

4.2.5. Using the Space Partitioning of the M-Index

Table[Z4] compares two different space partitioning approaches applied
to IFAMI. MIyod(mmi, ) denotes the variant where the space parti-
tioning of the M-Index is applied. In contrast to the original M-Index,
MT04 (Mmi, 1) is built upon the inverted file library and does not rely
on the mechanism for mapping database objects to one-dimensional
values and storing them in a B¥-tree [Comer, [1979]. MIunod(mimi, )

can on level [ theoretically maintain up to m%ni clusters. Every cluster
is mapped to a single posting list to which an object reference is added
if a database object lies in the particular cluster. Within a posting, the
dist(c;, 0) values used for pivot filtering are stored as before.

The parameters of Ml 4 are set to mu; = 40 and [ = 3. Experi-
ments in Novak et al. [2011] sect.4.3.1] based on the CoPhIR dataset
with 100000 database objects show that a static structure with a con-
stant value of [ = 3 already achieves good efficiency measured by the
number of distance computations. Even a dynamic tree structure evolv-
ing by limiting the number of feature objects per cluster cell cannot out-
perform the static structure in case of 50-NN queries when the num-
ber of reference objects my,; is bigger than 20. In order to compare
MT1,04(40,3) with TF4MI, both approaches use the same set of pivots
for pivot filtering and thus mi; = muy,; = 40. The value of m;¢ is set to
347—which is the maximum possible value so that the measured mem-
ory size of IF(m;f,40) remains below the corresponding memory require-
ments of MI,04(40,3). Results according to the number of necessary
distance computations are similar (see table L]) which was expected
since the same set of reference objects is used for pivot filtering and the
same pruning rules are applied. The efficiency of the static M-Index
in terms of the number of distance computations is thus possible for
IF4MI which can be extended by the Voronoi-like space partitioning of
the M-Index.
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To show that the similar performance of IF(347,40) and MI,,04(40,3)
according to the number of necessary distance computations is not com-
pletely due to the pruning power of pivot filtering, figure visualizes
the number of database objects which are pruned by cluster pruning. It
can be observed that MI,,,0q(40,3) offers a slightly better pruning power
according to cluster pruning. However, IF(347,40) can compensate this
by excluding more database objects through pivot filtering. The two
numbers of necessary distance computations in figure correspond
to the numbers displayed in table @4l The height of the MI,,04(40,3)
bar in figure is 347 — 40 = 307 units smaller than the height of
the TF(347,40) bar, since for every query IF(347,40) requires 347 dis-
tance computations to compute the list L, (see line 1 of the algorithm

in figure whereas Mly,04(40,3) only needs 40 distance

computations to determine the pivot permutation for the query.

The memory requirements of MIyod(mmi,!) can be determined by

slightly modifying formula [f.T on page 91] Since mi; = mu,; and since
the number of clusters resulting from the [-permutations is at most

m%ni, the memory requirements of MIy,o4(mmi,!) can be estimated by:

By = B - (Muni - [O] +2-mb) + Bo - (O] (4.2)
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4.2.6. Improvements to Pivot Filtering

Many MAMs rely on pivot filtering such as the M-Index, the PM-tree,
and IF4MI, to name only a few. The number of database objects which
can be pruned through pivot filtering depends on how many and which
pivots are selected (see section 26]). Furthermore, the order in which
the selected pivots are processed becomes crucial for speeding-up the
pivot filtering. Thus, in this section, it is analyzed how to best evaluate
the pivot filtering condition outlined in formula This
is of special importance to IF4MI since the number of reference objects
used for pivot filtering can be large. In the following, four different
strategies are analyzed for determining the order in which the centers
¢; € C are processed so that |dist(q, ¢;) — dist(c;,0)| > r is fulfilled as
early as possible (see formulaZT9).

Random: In this case, no specialized strategy for determining the
order of how to evaluate different centers ¢; € C' is applied. Thus, the
centers ¢; are processed from ¢ = 1,2,...,m{; which corresponds to a
random ordering since centers are initially chosen at random. This ran-
dom ordering represents the baseline against which the three alternative
approaches presented in the following are compared.

L4 reverse and Ly order: During pivot filtering, lower bound dis-
tances d; = |dist(q, ¢;) — dist(c;,0)| of the true distance dist(q,0) are
computed with the help of reference objects ¢; to determine if the pos-
sibly expensive computation of dist(q,0) can be avoided. The consid-
eration of the cluster centers ¢; in the formulaZ.I9 can be stopped
as soon as d; > r is fulfilled for the first time with » denoting the
current search radius. Thus, it is desirable to first check centers ¢;
with large lower bound distances d;. An analysis of the formula d; =
|dist(q, ¢;) — dist(c;, 0)| shows that the resulting absolute value can be
high either because dist(q, c;) is high and dist(c;,0) is low or because
dist(q, c;) is low and dist(c;,0) is high. As a consequence, especially
medium values for dist(q, ¢;) are candidates with a limited potential for
selective lower bounds. Since the list L, is computed anyway at the
beginning of the query process, L, can directly be applied exploiting
this observation. L, reverse corresponds to an ordering of the centers
¢; by decreasing distance dist(q,c;)—in opposition to the increasing
order denoted as L, order typical for many scenarios (see e.g. Eisen-
hardt et al. [2006] or the algorithm in figure[L2]). Results in figure 10
indicate that both strategies cannot outperform the processing of the
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Figure 4.10. — Necessary pivot filtering steps per successfully pruned database
object for different pivot filtering heuristics in case of IF(1024,1024).

reference objects in random order. However, a hybrid combination is
investigated, too.

L, alternate: This approach follows the observation from Celik
ﬂm ch. 4] that good pivots lie either close to or far from the query
object (see section and section B2l on pages HGHAT). Thus, the
two approaches L, reverse and L, order are combined and the cen-
ters are chosen from L, (see definition in an alternate
way. First, the center at position mi; of the list L, is selected, then
it is proceeded with the center at position 1, the center at position
mi; — 1, the center at position 2, and so on. Consequences for query
processing can be observed from figure IOl This approach clearly
outperforms the other techniques. In case of FCy, if a database object
can be successfully pruned from query processing by applying pivot
filtering, approximately 55 lower bound distances are computed on av-
erage compared to 146 without optimization. Since on average 42 198.1
database objects are pruned for this particular setting (see object prun-
ing for FC4 and IF(1024,1024) in figure .3 on page 83), the number
of lower bound distance computations can on average be reduced per
query from approximately 6.2 million to 2.3 million.
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Instead of using L, and thus dist(q, ¢;), the decision of choosing ref-
erence objects for pivot filtering can also be based on L,, that is, an
ordering of all ¢; € C according to dist(o,¢;). L, is computed during
the insertion of a database object o € O, but it is not explicitly present
in the current index structure at query time. Cluster indices i could be
stored in addition to now sorted dist(o,c;) values (either in L, order
or reversely) to be able to compute the lower bound distances without
having to recompute L, at query time. Alternatively, with the initial
design of an individual posting as displayed in figure[I.I on page 78} the
list of dist(o, ¢;) values could be sorted at query time in order to identify
the largest value, the smallest value, the second largest value, the sec-
ond smallest value, etc. While the first alternative would increase the
size of the index, the second would negatively influence runtime perfor-
mance. Furthermore, when testing a random run with 200 queries, the
alternate strategy based on L, could not reduce the number of distance
computations compared to L, alternate.

4.2.7. Processing Filter Queries

Studies in CBIR show that query processing purely based on content-
based search techniques is not always sufficient for effective retrieval.
Textual information provides an important additional search criterion
which is frequently applied [Paramita et al.,|2009; Popescu et al., 2010}
Tsikrika et al.,[2011]. Not only in the domain of CBIR, it is necessary
to integrate various search criteria and filter searches. The same ap-
plies for web search where for example file type, language, or date are
recognized as important filter criteria.

In this section, we show exemplarily how IFAMI can benefit from
the extensive knowledge in the field of inverted files (see e.g. Biittcher
et al. [2010] and Zobel and Moffat [2006]). Skip pointers are used in
order to make query processing more efficient since they prevent the
unnecessary reading of posting list entries. Textual filter conditions are
applied in combination with content-based k-NN queries. Therefore,
also the tags of the CoPhIR collection are indexed. Of course, instead
of applying tags as filters, other criteria are also possible.

We analyze a random run with 200 queries. The queries are con-
structed as follows. We use randomly chosen images as described in
section {221l and define the tag with the highest document frequency
among all tags associated with the image as our filtering query term.
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mirs = 1024 mis = 512 mirs = 256

average 9766 24 855 35670
minimum 2494 5017 9779
maximum 19906 67 655 72 680
median 7631 20046 32775
25th percentile 6212 13514 23623
75th percentile 15401 28 878 43 896
#queries 26 70 88

Table 4.5. — Skipped postings for IF(mif,*) in case of textual filter queries.

Among the 200 randomly chosen query images, only 138 are tagged at
all, leaving 138 test queries.

IF4MI-based query processing considers the inverted file indexing
image content properties only if the document frequency of the filter
term is higher than the number of clusters m;s. Otherwise, the number
of distance computations dist(q, ¢;) in order to compute the list L, (see
line 1 of the algorithm outlined in figure[d.2 on page 79)) already exceeds
the number of necessary distance computations when calculating the
object-query distances dist(q,0) directly for all objects fulfilling the
textual filter criterion. As shown in the last line of table 5l only for
26 query images the document frequency of the most frequent tag is
higher than 1024, only for 70 query images the document frequency of
the most frequent tag is higher than 512, and only for 88 query images
the document frequency of the most frequent tag is higher than 25622,

Table L5l additionally shows for FC4 how many postings are skipped
when performing 20-NN queries and additionally applying the textual
query filter. The default parameter values of Lucene in version 3.0.2
such as a skip interval of 16 are directly applied without optimization.
We can see that with decreasing m;s and thus fewer clusters and on
average longer posting lists, the number of skipped postings increases.
This is especially beneficial in case of a main memory index. Here, not

42 To benefit from skipping—under the assumption that distance computations

are the dominant cost factor—multiple indexes with different values of m;¢ such
as 1024, 512, 256, etc. might be maintained simultaneously.
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disk access but the reading and decoding of posting lists becomes the
dominating cost factor [Boldi and Vigna, [2005, p. 26]. Note that in case
of myr = 512, an average value of approximately 25000 skips does not
mean that approximately 75000 database objects are accessed since
cluster pruning is applied and posting lists are excluded from query
processing whenever possible.






Chapter 5.

RS4MI—Resource Description
and Selection for Metric
Indexing and Search

This chapter introduces RS4MI—a resource description and selection
scheme for similarity search in general metric spaces. The chapter con-
sists of three major sections. Section [Blfocuses on approximate search
techniques (see Blank et al. [2007], Blank and Henrich [2009], and Blank
and Henrich [2010alb, 2012a]) which extend the approach from Eisen-
hardt et al. [2006] outlined in section B3 on pages[2HEl Afterwards,
algorithms for precise search are discussed. Section B2l addresses range
query processing (see Blank and Henrich [2013b]) whereas section B3]
discusses the processing of k-NN queries.

5.1. RS4MI for Approximate Search

The approach from Eisenhardt et al. [2006] briefly outlined in sec-
tion B34l on pages is an approximate search technique. Leaving
the resource selection algorithm unchanged, there are several possibili-
ties for improving the resource descriptions. This issue is addressed in
the following section B.I.J] where the Highly Fine-grained Summaries
(HFS) and the Ultra Fine-grained Summaries (UFS) are presented. As
an excursus, section shows that these resource descriptions can
also be successfully applied in the domain of geographic IR where usu-
ally concepts related to SAMs are used. Section compares the
performance of HFS and UFS with basic alternative techniques derived
from centralized SAMs.
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5.1.1. Extending Cluster Histograms to HFS and UFS

We extend the work from Eisenhardt et al. |[2006] outlined in sec-
tion B3 on pages[[ZHT3lin several directions. In case of HFS,,, with m
indicating the number of reference objects being used, we increase the
number of reference objects for computing the cluster histograms for ex-
ample from m = 256 to m = 8192 or even more (see Blank et al. [2007]).
By doing so, the feature space is partitioned in a more fine-grained way
offering improved resource selection performance. Since a higher num-
ber of reference objects leads to less space efficient summaries, we apply
compression techniques. Thus, we can achieve better resource selection
performance with more space efficient resource descriptions compared
to the approach from Eisenhardt et al. [2006]. Reference objects are
selected from an external source and transferred to the peers together
with updates of the P2P software. This leads to a decrease in overall
network load and makes distributed selection mechanisms of the refer-
ence objects obsolete. Resource selection performance is only slightly
affected by this change as it is shown on pages Binary his-
tograms (UFS,,) can outperform integer histograms (HFS,,) [Blank
and Henrich, [2010a]. In contrast to HFS, UFS are based on a bit vec-
tor with the bit at position ¢ (1 < ¢ < m) indicating if center ¢; is the
closest center to one or more of a peer’s database objects. Hence, we ob-
tain a bit vector of size m. Of course, there is some loss of information
when switching from HFS to UFS with m staying constant. However,
UFS have the potential of resulting in more space efficient resource
descriptions. This allows for more reference objects being used which
can result in similar or even improved resource selection performance
compared to HFS when utilizing the same amount of memory.

Experimental setup

We use a collection of 233 827 images crawled from Flickr during the
years 2005 and 2006. The images are assigned to peers based on the
Flickr user ID to reflect a realistic scenario. Hence, we assume that
every Flickr user operates a peer of its own. The images are mapped to
10601 users/peers which are used in our simulation. Figure ] shows
the distribution of peer sizes, that is, the number of images which are
maintained per peer. The general characteristic of the distribution is
typical for P2P file sharing applications with few peers managing large
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Figure 5.1. — Distribution of peer sizes, that is, the number of database objects

maintained per peer.

amounts of the images and many peers administering only few images
[Saroiu et al., 2002].

We analyze a scenario where every peer knows the resource descrip-
tion of every other peer. Of course, such an approach does not scale.
However, this scenario is for example typical in a PlanetP subnet of a
scalable Rumorama-based P2P IR system. Rumorama [Miiller et al.,
2005b] can cope with multiple subnets and thus scale to much higher
workloads than the ones analyzed here.

In the experiments in this section B.I.1] every image is described by
a 166-dimensional uniformly quantized color histogram based on the
HSV color space with 18 hues, three saturations, and three values, plus
four levels of gray (for an outline of the feature which is e.g. also used
in Eisenhardt et al. [2006], see Smith [1997, p.16f]). Image feature
objects are compared using the Fuclidean distance. We analyze 20
runs where we change the reference objects used. During a run, we
perform 100 queries and we randomly select a query image from the
underlying collection. The set of queries stays constant over all runs.
We analyze the number of queried peers for retrieving the 20 closest
feature objects to a given query feature object.

Reference objects for summary creation and peer ranking are chosen
from the underlying collection (denoted as UFS/HFS in the following
figures) or from a second collection of 45931 Flickr images (denoted in
the following as UFSe/HF Se, with “e” indicating the use of an external
collection for obtaining the reference objects). It is important to note
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Figure 5.2. — Fraction of queried peers to retrieve the top-20 image feature

objects, i.e. the 20-NNs.

that both collections are disjoint according to the unique Flickr image
IDs and user IDs, but there is some minor natural overlap among the
collections; 24 of the 233 827 images also appear in the external col-
lection because some images are independently uploaded by multiple
users on Flickr. Selecting the reference objects from the external col-
lection reflects a scenario where the reference objects are transferred to
the resources upfront, for example with updates of the P2P software,
to reduce network load in the operation phase. All resources use the
same set of pivots and thus rely on the same global Voronoi-like space
partitioning.

Analysis of resource selection performance

Figure shows the fraction of peers which are queried on average to
retrieve the 20 closest feature objects (i.e. the top-20 or 20-NNs) accord-
ing to a given query object. Resource selection performance increases
degressively with increasing m. When comparing HFSe to HFS and
UFSe to UFS within each group of bars, that is, for a fix value of m,
there is a small gap in resource selection performance. This increase in
the fraction of visited peers when choosing the reference objects from
the external collection is especially noticeable in case of m = 16384
(i.e. the rightmost bar group in figure [(2). For UFS/HFS, the proba-
bility of choosing a reference object which is used also as a query object
increases with increasing m. Such situations can lead to improved re-
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m 256 1024 4096 8192 16384

HFSe 821B 1103B 141.3B 1625B 1952B
UFSe 629B 74.5 B 87.3 B 96.2 B 107.5 B

Table 5.1. — Average summary sizes in bytes (zipped).

source selection performance since queries are randomly chosen from
the underlying data collection. Also the general characteristics of the
two data collections may differ, reflected by the distribution of the fea-
ture objects within the feature space.

Figure additionally shows slightly improved resource selection
performance for HFS(e)256 compared to UFS(e)as6 respectively® which
is due to the use of non-binary histogram information during peer rank-
ing in case of HFS(e). In general, this slight gap between HFS(e) and
UFS(e) more and more diminishes with an increasing number of centers
because HFS(e) histograms more and more pass into binary histograms.
Already for HFS1p24 compared to UFS1g24 and HFSejg24 compared to
UFSeip24, there is no noticeable difference in resource selection perfor-
mance.

Analysis of summary sizes

The size of the resource descriptions after zipping is analyzed in ta-
ble BE1] and figure Table Bl shows average summary sizes (oy°
when using UFSe instead of HFSe. As expected, summaries in case of
UFSe are on average clearly more space efficient than in case of HFSd,

Figure (3] visualizes the different quartiles and minimum/maximum
values of the summary sizes in a box plot. It shows that the median
in case of HFSe is higher than for UFSe. Interquartile ranges of HFSe
and UFSe become more and more similar when increasing m. However,
summaries in case of UFSe are clearly more space efficient than in

43 HFS(e)m, is used as an abbreviation for “HFS,, and HFSe,,”. The same nota-
tion is also adopted for UFS throughout this thesis. In a similar way, HFS/UFS
abbreviates “HFS and UFS”.

The numbers for HFS and UFS when no external collection of pivots is used
are not displayed here because they show similar characteristics and provide
no additional insights.

44
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Figure 5.3. — Box plot of summary sizes (zipped).

case of HFSe. Also the overall range of HFSe summary sizes is bigger
than the range of summary sizes in case of UFSe. The distributions of
summary sizes are positively skewed indicating many peers with small
summaries and few peers with big summaries. Thus, the distribution of
peer sizes visualized in figure[B.Ilis roughly reflected in the distribution
of summary sizes shown in figure

A mixed peer ranking scheme using for example HFSe for the peers
with few documents and UFSe for the peers with many documents
can also be an alternative. The cost of one round of rumor spreading
where every peer sends its resource description to all other peers in the
system can roughly be estimated by 8iq® - n - (n — 1) with n being the
number of peers in a PlanetP-like setting. Hence, the estimated cost
is proportional to S74®. This is the reason why we mostly focus on the
analysis of average summary sizes within this thesis. Since a decrease in
resource selection performance can be perceived only for small values of
m when switching from HFS(e) to UFS(e) respectively (see figure B2,
the UFS(e) alternative with a smaller 84® compared to HFS(e) can
safely be chosen for all peers in the network in case of big values of m.

In a more comprehensive cost analysis, the cost for query processing
has to be additionally taken into account such as for example in Blank
and Henrich [2010b] where we analyze if sending summary data and per-
forming resource selection trades-off a naive approach where the peers
directly transfer full index data instead of summarizing low-dimensional
latitude and longitude coordinates in case of geographic IR.
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Analysis of time complexity

In general, it is important that peer ranking consumes only a rea-
sonable amount of time. We use the peer ranking scheme proposed
by Eisenhardt et al. [2006] as described in section B34 on pages [[21-
[[3l When applying this scheme, ranking peers mainly means sort-
ing m-dimensional vectors, that is, the HFS(e),, /UFS(e),, histograms,
where the importance of the single dimensions is defined by the list
L, which contains the IDs ¢ of the reference objects ¢; € C sorted by
the dist(q, c;) distances in ascending order. The earlier a cluster ID 4
appears when scanning L, from the beginning to the end, the more
important the very vector dimension is. In a first run, the peers are
sorted according to the dimension representing the closest reference ob-
ject. Of course, this sorting can be done in O(nlogn) where n stands
for the number of peers in the considered PlanetP network. In a worst
case scenario, all peers would be identical in the number of database
objects maintained in each of the m clusters ending up in a complexity
of O(mnlogn). Thus, the worst case complexity for the peer ranking
depends on m which is disadvantageous for HFS(e)/UFS(e) with high
values of m.

To test whether this worst case scenario has practical implications, we
compare the original approach considering—if necessary—all clusters
until the end with a modified variant using at most the 256 clusters
with its centers closest to the query. If no decision is possible after
comparing the histogram values for these 256 clusters, a random choice
is made.

In the following, UFS(e),,(256) denotes the modified approach con-
sidering m centers for summary creation and at most the 256 closest
centers to the query object for peer ranking. When increasing m to
a rather large number such as m = 16384, the feature space is parti-
tioned in a fine-grained way. If only 256 centers are used for the peer
ranking, the fraction of unused clusters which potentially contain use-
ful information increases; for example in case of UFS(e)16384(256), at
least 1 — égg 7 = 98.4% of the summary bins are ignored during peer
ranking.

Figure B4l indicates that there is no noticeable difference in resource
selection performance between UFS(e),, and UFS(e),,(256) for sum-
maries with up to m = 8192 centers. Only UFS(e)163s4 performs
slightly better than UFS(e)16384(256). The results in figure B4 demon-
strate that only few of the m histogram bins are usually considered
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UFS(e)(256) vs. UFS(e).

for peer ranking. Thus, the worst case time complexity for the peer
ranking of in this case O(256 nlogn) is no longer crucial.

5.1.2. Excursus: HFS and UFS for Geographic IR

In this excursus, we compare two basic resource description and se-
lection techniques for geographic IR—a technique based on bounding
boxes and a grid approach—with our HFS and UFS. Resource selection
performance of those approaches is briefly discussed in Blank and Hen-
rich . Approximate k-NN query processing is analyzed in Blank
and Henrich . The results are summarized in this section.

Bounding Box (BB) summaries

With the BB approach, every peer computes a bounding box around
the geographic coordinates of its image collection (see figure L5 T). A
latitude/longitude-pair (for short: lat/lon-pair) is encoded with eight
bytes, four for latitude and four for longitude. Therefore, we require
8-2 = 16 bytes of raw data for the bounding box (i.e. two lat/lon-pairs,
e.g. the lower left and upper right corner).

Peer ranking is performed as follows. If a peer p, contains the query
location within its bounding box whereas peer p;, does not, peer p, is
ranked higher than peer py, and vice versa. When the query location
lies within the bounding box of both peers p, and py, the size of a peer
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Figure 5.5. — Visualizing summary creation for geographic IR. Four images are
geotagged in this example, indicated as x.

(i.e. the number of images a peer administers) is used as an additional
criterion. Peers with more images are ranked higher than peers with
fewer images. If neither the resource description of peer p, nor the
resource description of peer p, overlaps the query location, the peer with
the smaller minimum distance from the query location to its bounding
box is preferred.

In general, we assume a spherical model of the earth with a radius
of 6371 kilometers. If not stated otherwise, a peer uses the Haversine
distance [Sinnott, [1984] to compute the distance between two points on
the sphere.

Grid-based summaries (GRID)

In a second approach, the geographic coordinate space is represented as
a grid (see figure(52). A parameter 7 defines the number of grid rows.
The number of columns is twice the number of rows since the longitude
range is twice as big as the latitude range. The range of a grid cell
(in degrees) is determined by @ = % in the latitude and longitude
domain. Such a simplified view is for example also applied in Dolin et
al. [1997] and results in non-uniform grid cell sizes on the sphere. We
gain selectivity and thus resource selection performance by increasing
the number of grid cells at the price of additional storage overhead
partially compensated through compression techniques. Every grid cell
is represented by a single bit. If one or more image locations fall into a
certain cell, the corresponding bit is set to 1. Otherwise, it remains 0.
Bit positions in the summary are determined horizontally from left to
right and from bottom to top.

During peer ranking, the grid cell containing the query location is
determined. If peer p, has an image within this cell whereas peer py



110 5.1. RS4MI for Approximate Search

has not, peer p, is ranked higher than peer p;, and vice versa. We
also consider neighboring grid cells. If either both or none of peer
po and peer p, have an image located within the cell containing the
query location, GRID considers the neighboring cells recursively until
a ranking decision can be made. So, in the first round the ranking
decision is always based on a single cell; in the second round it is
in most cased based on 1 + 8 = 9 cells and in the third round on
1+ 8+ 16 = 25 cells, and so on. The ranking criterion in every round is
the number of grid cells containing one or more image locations—the
more the better. When based on the summary information no ranking
decision can be made, peers are ranked at random.

Experiments

In the experiments in this section, we analyze BB, GRID, HFS, and
UFS (see figure[50]). We use a collection of publicly available geotagged
Flickr images which had been uploaded to Flickr and which we crawled
in 20078, In our scenario, again, every Flickr user operates a peer of
its own. We therefore assign images to peers by means of the Flickr
user ID. The Geoflickr collection consists of 406 450 geotagged image
locations from 5951 different users/peers.

Figure shows the distribution of the number of images per peer.
Again, the distribution is skewed which is typical for P2P networks
[Saroiu et al., 2002]. Approximately the first 1% of the biggest peers,
that is, the 60 biggest peers, administer 42.0% of the images. The
biggest peer maintains 8.8% of the images. In opposition, approxi-
mately 20.7% of the peers administer only a single image. Approxi-
mately 50% of the images are maintained by 1.8% of the peers.

Figure 5.7 shows the geographic distribution of the image locations.
The Geoflickr collection consists of photos taken in various parts of the
world with hotspots in North America, Europe, and Japan.

45 This is not always the case since there might be no neighboring cells in a certain

direction, for example as soon as a cell in the north or south is reached. Of
course, at the 180-degree meridian we assume that there is no boundary and
neighborhood relations are valid in both directions.

A second collection with 246 937 images from the United Kingdom mapped
to 2609 peers and obtained from |http://www.geograph.org.uk/| (last visit:
24.9.2014) is used and analyzed in Blank and Henrich [2010b} [2012a] lead-
ing to similar results as the collection obtained from Flickr on which we focus
here.

46
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In the experiments, we use 200 image locations as queries. These
are randomly selected from the underlying data collection. For HFS
and UFS where the outcome of the experiments is affected by the se-
lection of reference points, we perform ten runs with the 200 queries
each, varying the set of randomly chosen reference objects in each run.
Space efficiency of different resource description approaches is analyzed
by looking at average summary sizes. For compressing the summaries,
we apply the J avaZd default gzip implementation. Our measurements
include serialization overhead necessary to distribute the resource de-
scriptions within the network. We randomly choose a geo-location of
an image from the entire document collection as the query location.

47 see |http: //www.java.com/) last visit: 2.9.2014
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Since we do not remove the image with the query location, it is—on
average—more likely that a big peer contributes to the final search re-
sult than a small peer because—on average—it is more likely to choose
the query from a big peer than from a small peer@.

As before, when measuring resource selection performance, we de-
termine the fraction of peers that is contacted to retrieve the global
top-k image locations (k = 20) according to a given lat/lon-pair as
query location. The global top-k geo-locations are computed using the
Vincenty distance [Vincenty, [1975]. Assuming an ellipsoidal shape of
the earth for determining the ground truth seems reasonable as we are
looking for the true NNs on a global scale. In opposition, within our
algorithms we assume a spherical shape of the earth for runtime perfor-
mance reasons®. Since we are interested in the quality of the resource
selection techniques, we analyze all of a peer’s image locations as soon
as it is contacted because the top-k image locations of a peer deter-
mined using the Haversine distance might differ from the top-k image
locations computed using the Vincenty distance. In a real-world ap-
plication, a peer will transfer only the top-k image locations (together
with some additional information such as the peer ID, etc.).

When analyzing resource selection performance in table and fig-
ure [.8] it can be observed that the minimum values are the same for
all approaches; 0.02% means that only one peer needs to be queried
for finding all 20-NNs. In general, both HFSg19o and UFSg192 perform
better than BB and GRIDgs. HFSg199 and UFSg199 as well as GRIDgy4
result in the same number of summary bins (64 - 2 - 64 = 8192). In-
terquartile ranges of HFSg192 and UFSg1g2 are smaller than for GRIDgy
and especially BB. GRIDg4 offers better resource selection performance
than BB which is a too simplistic approach and representing a peer by
multiple bounding boxes seems necessary. The median and the 75th
percentile of GRIDg4 are clearly below corresponding values for BB.
Also the interquartile range is smaller. Nevertheless, at least for some
queries, it is very difficult for GRIDg4 to offer adequate resource se-

48 An alternative mode for selecting the query location where we select a random

peer and from this peer we choose a geo-location of an image at random is
additionally analyzed in Blank and Henrich [2010b]. In this case, it is more
likely that also a small peer contributes to the top-k query result since peers
are chosen equiprobable.

This seems reasonable and even the use of the Euclidean distance instead of
the Haversine distance results in similar resource selection performance [Blank
and Henrich, 2012a].

49
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HFSg192 UFSg192 BB GRIDg4

average 0.20% 0.34% 1.89% 1.30%
minimum 0.02% 0.02% 0.02% 0.02%
maximum 2.91% 4.23% 9.14% 17.69%
median 0.03% 0.07% 0.91% 0.55%
25th percentile 0.02% 0.03% 0.08% 0.12%
75th percentile 0.15% 0.20% 2.91% 1.68%

avg. summary size 121.8 B 61.1 B 45.0 B 58.4 B

Table 5.2. — Resource selection performance and average summary sizes for
the HFS, UFS, BB, and GRID approaches.
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Figure 5.8. — Resource selection performance of HFS, UFS, BB and GRID.

lection performance as for example indicated by the maximum value
of almost 18%. In such cases, queries lie in a very populated grid
cell, that is, a grid cell where many peers assign documents to. When
looking at queries which offer poor resource selection performance for
GRIDg4 in more detail, it can be observed that usually these queries
lie in cells where many of the documents reside (i.e. cells which contain
metropolises such as London for example).

Average summary sizes for the different peer selection schemes are
also displayed in table[5.22) Compression is applied to all approaches but
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BB since it is beneficial in these cases. The size of a BB summary is al-
ways 16 bytes for the bounding box plus 27 bytes serialization overhead,
so 43 bytes in total. As it is desirable to use the number of documents of
a peer in the peer ranking process, we assume additional two bytes for
peer size information which leads to overall summary sizes of 45 bytes
for BB. HFSg192—using integer histograms—results in clearly less space
efficient resource descriptions than GRIDg4 which also relies on 8192
summary bins but uses binary histograms. GRIDg4 also offers slightly
more space efficient resource descriptions than UFSg192. Densely pop-
ulated data regions are partitioned in a more fine-grained way in case
of UFS resulting in more bits being set compared to GRIDg4. However,
this also results in better resource selection performance for UFSgigo
compared to GRIDgy4.

So far, we have assumed that the m reference points are chosen from
the underlying data collection. Although this approach is feasible in
general, we now evaluate different sources for the reference points sim-
ilar to the HFSe and UFSe approaches analyzed in section [B.1.1] where
an external collection of reference images is used.

Here, we employ United Nations per-country statistics from the year
2002 obtained through Worldmappe® about mens’ income (INC),
gross domestic product (GDP), population (POP), and WWW usage
(WEB). Based on these statistics, we proportionally select the num-
ber of reference points from a certain country using the GeoNames
gazetteerm. Reference points are selected among all populated places
of a certain country at random. So, for example, if 5% of the world’s
total mens’ income is earned in a certain country, 5% of the reference
points are randomly chosen among all populated places of the spe-
cific country according to the information provided by the GeoNames
gazetteer.

When using external sources for the reference points, selecting them
according to GDP is the most promising approach followed by WEB
and INC, respectively (see figure B9). These techniques adapt best
to the data collection that is used. In general, figure shows that
resource selection performance relies on an adequate selection of the
reference points according to the expected origin of the query loca-
tions as well as the administered image locations. A monitoring can

50 see |http: // www.worldmapper.org/} last visit: 18.9.2014

51 see http: //www.geonames.org/, last visit: 14.10.2014
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Figure 5.9. — Selected strategies for choosing the reference points for UFSe

when analyzing 20 runs with the 200 queries each.

for example be established into the system, analyzing the geographic
distribution of query and image locations.

Resource selection for precise search in geographic IR

Blank and Henrich m M analyze the applicability of HFS(e)
and UFS(e) for approximate k-NN query processing and compare those

techniques with the basic BB and GRID approaches. This work is ex-
tended in Kufer et al. m m and Kufer and Henrich m to pre-
cise search and more elaborate resource description and selection tech-
niques are compared with HFS(e)/UFS(e). Kufer et al. focuses
on the extension to precise search and the comparison of UFS(e) /HFS(e)
with alternative techniques adopting ideas from computational geom-
etry (see Preparata and Shamos ) and SAMs (see Samet )
such as the R-tree [Guttman, m the grid file [Nievergelt et al.,

, and the k-d-tree [Bentley, 1975]. Kufer et al. m and Kufer
and Henrich combine different resource description techniques
in the context of precise k-NN query processing and adopt additional
|ﬁlﬁtiz&tion schemes inspired by the Buddy-tree [Seeger and Kriegel,
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5.2. RS4MlI for Precise Range Query
Processing

In this section, we compare three different resource description and se-
lection schemes for precise range query processing in arbitrary metric
spaces. The experimental setup is outlined in section B.2.11 In sec-
tion [222] the technique from Berretti et al. [2002albl [2004], as intro-
duced in section B3 2 on pagesBTHES] is analyzed. Another approach—
based on k-medoids clustering and used as a second comparison baseline
for RS4MI—is presented in section B.2.31 RS4MI range query process-
ing for precise search is described and analyzed in section .24l Finally,
section . Z.0]subsumes the main results of the experimental comparison.

5.2.1. Experimental Setup

Again, we analyze a scenario where each peer knows the resource de-
scription of every other peer. As underlying data collection, we use the
same image collection as described in section .11l on pages
consisting of 233 827 images crawled from Flickr. Assigning images to
peers based on the Flickr user ID results in 10601 peers. The distri-
bution of the number of images per peer is visualized in figure
Pivots for summary creation and peer ranking in case of
RS4MI are randomly chosen from the external image collection with
45931 images which is also introduced in section ETT] on pages [021-
ozt

As feature descriptor, we use the unquantized version of the Color
and Edge Directivity Descriptor (CEDD)m. It results in a 144-dimen-
sional feature vector of four-byte floats and thus in total 3, = 576
bytes per image. CEDD has the potential to outperform the MPEG-7
features for CBIR [Chatzichristofis et al., 2010]. The Hellinger metric
disty outlined in section is applied—converting the non-metric
squared chord distance disty. into a metric. It is shown in Liu et al.
[2008] that distsc provides good retrieval results in case of CBIR. How-
ever, our analysis does not focus on search effectiveness in CBIR and
thus the choice of an effective feature descriptor in combination with a
suitable distance metric is out of the scope of our work.

52 CEDD features [Chatzichristofis and Boutalis, |2008| are extracted using the
Lire library obtained from http: // www.semanticmetadata.net/ lire/| (last visit:
17.10.2014).
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min 25 median mean 75 max

result size 1 4 21.5 126.7 94.3 2028
peers 1 3 18 72.0 76.3 654
Table 5.3. — Statistics of the result size and the number of peers administering

result documents for the 200 range queries with a search radius of » = 0.5.

Our general setting offers an intrinsic dimensionality as defined in
formula [2:20 _on page 37] of almost ten (p = 9.9) and thus represents a
rather hard indexing task.

In the experiments, query objects are randomly chosen from the un-
derlying data collection. This seems reasonable in case of range queries
range(q,r) relying on the query-by-example paradigm. Again, resource
selection performance is measured by analyzing the fraction of queried
peers to retrieve all images with feature objects lying within distance
r from ¢. In addition to search efficiency, the size of the resource de-
scriptions is analyzed. If not mentioned otherwise, summaries are com-
pressed with gzip as beford™d,

We evaluate 200 range queries with search radius » = 0.5 for every
parameter setting. Table[@3lshows statistics on the number of database
objects in the search result and from how many peers they are obtained.
Relevant documents are on average found at 72 peers. An optimal
resource selection would thus on average only contact % ~ 0.7% of
the peers to retrieve the relevant documents.

5.2.2. M-tree-based Local Clustering for Comparison

As a first comparison baseline for RS4MI, we analyze the approach from
Berretti et al. [2002aybl 2004] outlined in section B3 on pages GTHGS
In order to do so, we use revision 27 of the publicly available M-tree
library®® which is also used in chapter @ The approach mainly depends
on two parameters. A cluster radius threshold 6 and the block/node
size of the M-tree 6@4 are the keys for trading-off the selectivity of the

53 The runtime complexity for building the resource descriptions is not analyzed

in this work. This task is parallelized in a real-world scenario with every
peer computing its resource description and hereby all promising approaches
subsumed in section are suitably fast.

54 see |http: // mufin.fi.muni.cz/trac/ mtree/) last visit: 3.10.2014
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resource descriptions versus their size. The effects when varying these
two parameters are evaluated in the following.

An insertion of all database objects of a resource into an M-tree and
the threshold-based search algorithm for generating the resource de-
scription results in multiple, possibly overlapping cluster balls. A pivot
together with an associated covering radius (representing a metric ball
maintained in a node entry of the M-tree) is stored in the resource
description for every cluster to enable precise range query process-
ing. With this information, the pruning rule based on the range-pivot
distance constraint (see section [Z42)) testing the overlap between the
query ball and the cluster balls is then applied during search for the
pruning of non-relevant peers, that is, peers with no relevant docu-
ments.

Analysis of M-tree-based local clustering

In the upper left quadrant of figure f.10] the resource selection perfor-
mance of the summaries arising from the M-tree-based local clustering
approach is shown. The lower left quadrant depicts the average sum-
mary sizes. To understand this figure, the following aspects have to
be considered: (1) A block size of 576 bytes corresponds to leaf nodes
containing one object each. In this case, the M-tree implementation
assures that inner nodes (including the root node) are bigger and the
degree of each inner node is two. In general, an M-tree block size of
BM means that a leaf node contains at most [8M/8,] objects. Hence,
for example a node size of 18432 corresponds to leaf nodes containing
at most 32 objects in case of B, = 576. (2) A cluster radius threshold
of 0.01 has the consequence that the summary roughly contains clus-
ters describing exactly the leaf nodes. At the other extreme, a cluster
radius threshold of 16 384 is big enough to yield a summary with only
a single cluster representing the root node of the M-tree containing the
complete set of objects on the peerB3.

With the above information in mind, we can interpret the left side of
figure If we consider the average summary size in dependence of
the cluster radius threshold (lower left quadrant), it becomes obvious
that the summary sizes decrease for higher threshold values. The reason

55 Please note that in our case, all pairwise object distances in case of disty are

at most 2. However, due to heuristic upper bound approximation of the cluster
radii in the inner nodes of the M-tree, values bigger than 2 exist in the tree.
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Figure 5.10. — M-tree-based local clustering (left) with special treatment of

single node trees (right).

is that for higher threshold values the clusters for the summaries are
taken from higher levels of the M-tree. Obviously, this effect is only
given for small block sizes because for higher block sizes (e.g. the utmost
right bars) the height of the M-trees is extremely low anyway.

The upper left quadrant of figure shows the resource selection
performance measured by the fraction of queried peers. Let us first con-
sider the fraction of queried peers in dependence of the cluster radius
threshold. As a special case, the block size of 576 together with a clus-
ter radius threshold of 0.01 has to be considered. In this situation, each
leaf node contains only a single item and because of the low threshold
value, the clusters describing the leaf nodes are included in the sum-
maries. Consequently, the summaries exactly represent the objects on
each peer. Based on this information, a querying peer can exactly de-
termine the peers containing objects in the query ball and therefore
the fraction of queried peers corresponds to the theoretical optimum
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of 0.7%. However, this result is achieved by a complete replication of
the database objects within the network on all peers. Unfortunately,
these parameter settings are not realistic for huge networks. Neither
a threshold value yielding only leaf nodes nor a node size storing only
one object per node are practical.

Despite from these special cases, the fraction of queried peers is
roughly between 70% and 80%. It is also interesting to consider the
effect of the block sizes for example for a cluster radius threshold of 8.
With this threshold, only in very rare cases the clusters used in the
summary are taken from lower levels of the tree. With the block size
of 576 bytes, peers with only one image are represented by one cluster
in the summary and peers with two or more images are (with some
exceptions) represented by two clusters since the fan-out of the root
node is two in this case. With the block size of 1152 bytes, peers with
one or two images are represented by one cluster in the summary and
peers with three or more images are (with few exceptions) represented
by two clusters. The less precise representation of peers with two im-
ages results in an increase of the peers which have to be considered from
75.8% to 81.8% and at the same time reduces the average summary size
drastically. With the block size of 2304 bytes, peers with one to four
images are represented by one cluster in the summary and peers with
five or more images are (again with few exceptions) represented by two
to four clusters. Hence, the summaries of small peers become less ac-
curate but the summaries of bigger peers become more accurate, since
the root node of the M-tree now has up to four children. Obviously,
these considerations can be continued for bigger block sizes.

The above results inspired us to change the approach marginally
to exploit the long-tail distribution of images on peers (see figure[5.1
[on page T03). Over 50% of the peers contain seven or less images.
As a consequence, if the summaries of these small peers contain the
exact database objects, only the peers out of these 50% which really
contribute to the range query result would have to be visited. With
such a technique, we can easily outperform the approaches presented
above which have to address 70% to 80% of the peers.

To integrate this idea into the M-tree-based local clustering approach,
we use a special treatment for situations where the M-tree consists of
only one (leaf) node—which is typical for small peers. In this case, the
summary now contains one cluster with zero radius for each object in
this leaf node instead of one single cluster with a comparatively large
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radius describing the whole node. As a consequence, for example with
a block size of 18432 bytes, a peer maintaining 32 objects fitting into
one single leaf node is now represented by a summary containing these
32 objects as 32 single clusters with the objects as centers and zero
radius.

The effect of this variation is shown on the right hand side of fig-
ure[0.T0l Let us—again at a cluster radius threshold of 8—consider the
bars representing a node size of 4608 bytes, respectively at most eight
objects. In this case 5643 (i.e. 53%) of all peers are represented exactly
in the summaries. This allows to reduce the number of queried peers
to 45.3%. The average summary size is now 1.5 kilobytes compared to
1.0 kilobytes without the special treatment of small peers.

Although the improvements achieved with this variation are impres-
sive, it remains problematic that we have such indirect and hard to
handle parameters; the threshold value 6, the block size 6%/[ of the
M-tree, and the special treatment of trees comprising only one node.
In fact, it seems easier to use an explicit clustering approach with more
intuitive parameters. This leads us to the local k-medoids clustering
presented in the following.

5.2.3. Local k-medoids Clustering for Comparison

Some of the resource selection approaches apply k-means clustering
to _cluster the database objects of a peer (see e.g. Doulkeridis et al.
[2007] and El Allali et al. [2008]). However, k-means—due to the mean
calculation—is not applicable in arbitrary metric spaces. When using
k-medoids clustering instead (or any other suitable algorithm appli-
cable in general metric spaces, see section [B1]), an additional baseline
technique for the comparison with RS4MI can be designed. In this case,
each peer clusters its local data collection and stores cluster balls, that
is, cluster centers and corresponding covering radii in its resource de-
scription. This results in similar resource descriptions as the approach
discussed earlier in section The resource description of a peer
thus consists of a list of cluster center and covering radius pairs.
There are two general options for determining k—the desired number
of clusters of a peer needed as an input parameter to k-medoids cluster-
ing. As one alternative, the maximum number of allowed clusters per
peer k can be set as a global threshold being identical for all peers. Of
course, peers with less than k distinct database objects directly transfer
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them and do not apply clustering. On the other hand, algorithms which
automatically detect an appropriate number of clusters can be used by
the peers. Multiple of these algorithms are presented in literature (for
references see e.g. Tibshirani et al. [2001]). Our choice of algorithms in
the following is by no means exhaustive. It is our intention to evaluate
different techniques which return a range of average numbers of clusters
per peer when applied to our scenario.

Rule of thumb (r.o.t.): A coarse rule of thumb is presented in Mar-
dia et al. [1979, p.365]. It suggests to calculate the number of clusters
of a dataset of size |O| as k = 1/|0|/2. Thus, we use k = [/|0,]/2]
when applying this rule of thumb to the database O, of a peer p, € P.

This rule of thumb directly calculates the number of desired clusters.
In contrast, the techniques presented in the following are applied in an
iterative process. A single key figure results for a specific value of k.
Various values of k are thus to be tested in order to select the best k
minimizing/maximizing the key figure. To improve the runtime perfor-
mance, also when applying the rule of thumb, the FAMES extension
to k-medoids clustering is used (see section Bl). For determining the
initial candidate set of medoids, in ten runs we minimize the sum over
all clusters of within-cluster object-to-medoid distances.

Besides the rule of thumb, we apply three variants of the well-known
gap statistic. The gap statistic [Tibshirani et al., 2001] is frequently
used and offers the property that—in contrast to many alternative
approaches—it can also detect the presence of only a single cluster.

GAP: The gap statistic as originally proposed in Tibshirani et al.
[2001] is based on a sampling process which is not directly applicable
in_arbitrary metric spaces. However, as suggested in Tibshirani et al.
[2001], when only distance information is available, a specific mapping
technique such as multidimensional scaling can be used to obtain fea-
ture vectors in a low-dimensional space, which provide the basis for the
sampling process. In our experiments, we directly apply ten sampling
steps on the initial feature vectors without the use of an additional
mapping technique in order to obtain a best case comparison baseline
against which we compare our approach RS4MI.

GAP,, as introduced in Yan and Ye [2007| slightly modifies the
weighting scheme of the gap statistic.

GAP,, represents another modification of the gap statistic and all
logarithms used in the formulas of the gap statistic are removed [Mo-
hajer et al.,[2011].
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r.o.t. GAP GAP. GAP, SIL; SIL,
visited peers 67.4% 73.7% 75.3% 76.4% 76.4% 65.7%
clusters per peer 3.1 2.3 1.9 1.5 2.3 2.8

summary size [in B] 1350.3 1048.4  880.7 722.9 1029.5 1232.2

Table 5.4. — Results for local k-medoids clustering with an automatic determi-
nation of the number of clusters k.

SIL; and SILj: The silhouette technique [Rousseeuw, [1987] is also
adapted as a means for calculating the desired number of clusters of
a peer. It is only applicable in case of £ > 1. Thus, two alternatives
are used in our experiments. If two is indicated as the optimum cluster
number, we set kK = 1 in case of SILy; k = 2 is used in case of SILs.
Peers with only a single database object of course only store a single
cluster in the resource description.

To determine an appropriate value for k, the above-mentioned ap-
proaches based on the gap statistic and the silhouette technique are
iteratively tested on every peer p, € P until k = [min(24/]04],|04|)]
with |O,| denoting the number of documents/images of a peer p,.

Analysis of local k-medoids clustering

Table 5.4 shows the average fraction of visited peers, the average num-
ber of clusters per peer, as well as average summary sizes in case of
local k-medoids clustering when automatically determining the num-
ber of clusters per peer. The rule of thumb (r.0.t.) leads to decent
resource selection performance at the cost of comparatively big sum-
maries. A better performance is achieved by the SILs approach with
at the same time more space efficient resource descriptions.

Using the gap statistic for determining the number of clusters of a
peer results in average summary sizes of approximately 1 kB and 73.7%
of peers being contacted for retrieving all relevant documents. GAP,,
and GAP,, lead to fewer numbers of clusters per peer and thus more
space efficient resource descriptions. However, both perform worse than
GAP.

SIL; offers similar average summary sizes as GAP. The average num-
ber of clusters per peer is in both cases approximately 2.3 but GAP
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k 1 2 4 8 32 128
queried peers 79.9% 68.7%  54.4% 37.7% 13.1% 2.7%
clusters per peer 1.0 1.9 3.4 5.6 12.2 18.2

summary size 525.0B 867.2B 14kB 23kB 49kB 7.3kB

Table 5.5. — Results for local k-medoids clustering with all peers using the
same global k.

shows a better resource selection performance with fewer visited peers.
SIL; always assumes one cluster when there might be two which GAP
can detect. SILs visits fewer peers than the other competing approaches
at the cost of storing on average 2.8 clusters per peer in the summaries,
and is even better than the rule of thumb which identifies on average
3.1 clusters per peer.

A main drawback of the k-medoids approaches analyzed in this sec-
tion so far is that the summary sizes cannot be influenced by any kind
of design parameter of the approach. An alternative in this respect
is to globally specify k, the maximum allowed number of clusters per
peer. In this case, peers p, with |O,| < k store all database objects in
their summary. Since for some peers the number of database objects is
smaller than k, the average number of clusters per peer becomes smaller
than k as well. This scenario which is thus similar to the special treat-
ment of single node trees in section is evaluated in table

The explicit definition of an upper bound for the number of clusters
allows for a direct and accurate adjustment of summary sizes and se-
lectivity. This gives a clear advantage over the M-tree-based approach
and also over the approaches outlined in this section which automat-
ically determine a suitable number of clusters per peer. However, if
very small summaries are necessary, the flexibility is restricted by the
discrete values of k.

It can be observed from table that only in cases where the max-
imum desired number of clusters per peer is set to k = 1 or k = 2,
average summary sizes with less than 1 kB can be achieved. If a maxi-
mum of two clusters is allowed, 68.7% of the resources are visited with
an average summary size of 867 bytes. To further reduce this number,
only a single cluster per peer can be allowed. However, almost 80% of
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the peers are queried in this case with an average summary size of 525
bytes.

5.2.4. RS4MI Variants and their Evaluation

RS4MI can make use of all pruning rules mentioned in section [Z4]
A global set of m reference objects C—the same for all resources—is
applied to assign a database object o € O, of a resource p, € P to the
closest cluster center ¢* = argmin,,ec dist(c;,0).

The set of reference objects is transferred to the peers together with
updates of the P2P software so that no additional network load is im-
posed during the operation phase of the P2P IR system. Such an
approach is for example proposed in Blank et al. [2007].

Multiple variants of RS4MI resource descriptions are evaluated in the
following to find the best alternative. These variants can make use of
different pruning rules and thus differ in resource selection performance
and average summary size.

RS4MI; «xxxx: Here, only a single bit is stored per cluster to indicate
if any database objects lie in the very cluster or not. This results
in a bit vector of size m and thus resource descriptions with O(m)
space complexity, conceptually the same resource descriptions as UF'S,,,
introduced in section .1l The pruning rule based on the double-pivot
distance constraint outlined in section [ZZ1]is the only rule which can
be used in this case to prune peers from search.

RS4MI,77xx: Resource descriptions offering O(m) space complexity
can also be designed by storing the inner and/or outer cluster shell
radii. By doing so, the pruning rule based on the range-pivot distance
constraint can be applied on an intra-cluster level (see section ZZ42).
In addition to storing both, inner and outer cluster shell radii for the
m clusters (i.e. RS4MIy11xx ), We test parameter settings of RSAMIy 1 xxx
and RS4MI,y1xx where only inner or outer cluster shell radii are stored,
respectively. A single distance value is represented as a four-byte float.

Of course, the pruning rule based on the double-pivot distance con-
straint can also be applied in this case. If no inner and/or outer cluster
shell radius is set for a particular cluster, it is indicated by the sum-
mary that the corresponding peer does not administer any database
objects within the very cluster. Similarly, the pruning rule based on
the double-pivot distance constraint is used by all of the following re-
source selection schemes whenever applicable.
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RS4MI,x77: If the rules for cluster pruning described in section 2.4
are fully applied, two matrices R™™ and R°"* are administered by every
peer as its resource description (RS4Mlyyy11). This requires O(m?)
space per resource. As before, a single matrix cell requires four bytes
for storing radius information. Both matrices are sent as a resource
description and used for the pruning of resources without querying
them. We also test parameter settings where only a single matrix R®
(RS4MIxx1x) Or RO (RS4MI 1) is used.

Two further combinations are included in the analysis. RS4MIy1yx1
stores inner cluster shell radii and the matrix R°"* as a resource de-
scription. In opposition, RS4MI,411x applies outer cluster shell radii
and the R™ matrix to potentially discard a peer during search.

Finally, we also evaluate a hybrid®@ resource selection scheme where
either per-cluster or per-object information is stored in the resource
description of a peer—depending on the particular database size of the
peer.

Analysis of RS4MI

In the following, different ways of how to best design summaries in
case of RS4MI are evaluated. First, summaries storing only per-cluster
information are analyzed. Later, a hybrid setting is evaluated.

RS4MI approaches storing per-cluster information. The top
left part of figure B.I1] visualizes the resource selection performance for
resource descriptions with O(m) space complexity. It can be observed
that RS4MIjxxxx and thus only applying the pruning rule based on
the double-pivot distance constraint does not lead to an acceptable re-
source selection performance. However, RS4MI;,x With a bit vector
as an underlying data structure results in very space efficient resource
descriptions, even in case of larger values of m (e.g. m = 1024 in fig-
ure [B.T7] bottom left).

When comparing RSAMI,1xxx with RS4MIx1xx, it can be observed
that although both approaches have similar average summary sizes,

56 Note that the term hybrid could also denote a resource selection scheme where

both per-cluster and per-object information is stored in a resource descrip-
tion of a peer. However, in our case hybrid refers to the case where either
per-cluster or per-object information is stored. Of course, RS4MI can also
be extended to store feature objects directly in the summaries (e.g. for peers
with few documents) similar to the approaches evaluated in section [(.222] and
section 2.3
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Figure 5.11. — Results of RS4MI for summaries with space complexity O(m)
(left) and O(m?) (right).

RS4MIx1xx can discard clearly more peers than RS4Mly xxx- Even
RS4MI11xx cannot noticeably improve resource selection performance.
Thus, RS4MI,41xx With a very large number of reference objects being
used (e.g. m = 8192 or even more) seems to be a good choice among
the approaches considered in the left part of figure 111

Resource descriptions with O(m?) space complexity are analyzed in
figure .11l on the right. For these approaches, a binning technique is
applied to reduce the summary sizes. Every four-byte distance value is
quantized into a single byte. For quantization, the minimum and max-
imum distance value from the feature objects of the external collection
to every cluster center ¢; is determined. The range between these two
boundaries per reference object ¢; is uniformly quantized into 253 in-
tervals. From the remaining three values, two are used to represent
distance values below and above the boundaries. The third remaining
value is used to indicate an empty cluster with no entry. Again, it is
assumed that the minimum and maximum distances from feature ob-
jects of the external collection to the cluster centers ¢; are known to
all peers in advance and transferred to them with updates of the P2P
software so that all peers can estimate the distance bounds from the
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quantized values. This information is also small enough to be trans-
ferred to participating peers during the operation phase of the P2P IR
system.

Figure BTl (bottom right) shows that the average summary sizes
in case of RS4MIyx1x, RS4MIyxyxx1, RS4MI 141, and RS4MI, 115 are
very similar. According to the resource selection performance (see fig-
ure [E1T] top right) RS4MIy11x applying the R™ matrix and an array
of length m with covering cluster radii clearly outperforms the other
three approaches. Also RS4MlI,,,1; encoding the quantized R™ and
R°Y matrices with a small value of for example m = 64 is promising.
For the feature set being indexed, RS4MIxx11 with m being small and
RS4MIx1xx with m being big constitute the most promising RS4MI
approaches.

To further reduce the summary sizes of RS4MI,y1xx With m = 8192,
alternative compression algorithms can be used. When changing the
compression algorithm, summary sizes are reduced on average from
253.2 bytes (gzip) to 222.1 bytes (bzip2), and to 234.2 bytes in case of
lzma. Thus, a reduction of approximately 10% seems easily possibldZd,

Summary sizes for RS4MIy 11 with m = 64 can also be reduced.
Table shows the results. The bzip2 implementation seems to be in-
appropriate with average summary size noticeably increasing and also
lzma does not lead to a significant reduction. Thus, in addition to gzip,
bzip2, and lzma, three image compression algorithms are tested where
the concatenation of the quantized R™ and R°"* matrices is interpreted
as a 2-dimensional 256 bit gray-scale image of size 64 x 128 pixels. Stan-
dard png compression provides some overhead, but paqSo@ and es-
pecially webp™ lossless image compression provide more space efficient
resource descriptions than gzip; webp in particular by significantly re-
ducing the memory requirements of the summaries of peers with images
in few clusters.

Hybrid RS4MI approaches storing per-object information.
The RS4MI approaches presented so far solely rely on cluster pruning

57 Additional compression results are based on the At4J library
(http:// at4j.sourceforge.net/, last visit: 17.10.2014) and contributing li-
braries such as 7-Zip (http://www.7-zip.org/, last visit: 17.10.2014) and
Apache Commons Compress (http://commons.apache.org/compress/, last
visit: 17.10.2014).

58 see |http: // mattmahoney.net/ dc/ #paq, last visit: 17.10.2014

59 see https: // developers.google.com/ speed/webp/| last visit: 17.10.2014


http://at4j.sourceforge.net/
http://www.7-zip.org/
http://commons.apache.org/compress/
http://mattmahoney.net/dc/#paq
https://developers.google.com/speed/webp/

Chapter 5. RS4MI 129

gzip bzip2 lzma png paq808 webp

summary size 867.0B 1020.1B 863.4B 880.4B 803.1B 777.7B

Table 5.6. — Average summary sizes for RS4Ml,x11 with m = 64.

m 1 2 4 8 12 16

queried peers 97.3% 95.5% 90.9% 82.5% 75.8% 73.5%
summary size [in bytes] 136.5 216.9 372.5 676.2 976.1 1274.6

Table 5.7. — Results when solely applying pivot filtering.

principles. Object pruning and thus the storage of per-object infor-
mation in the resource descriptions is not considered. However, the
distribution of peer sizes visualized in figure indicates
many peers with few documents. Thus, at least for peers with very few
documents it seems beneficial to store per-object summary information
and apply pivot filtering (see section Z43).

First, we analyze settings where only object-pivot distances (and
thus no per-cluster information) are used in the resource descriptions.
Table b7 shows the results for different numbers of reference objects.
Such an undifferentiated approach is inappropriate and results in very
big summary sizes for peers with many documents. When using 16 ref-
erence objects and thus encoding 16 object-to-pivot distance values per
database object, 73.5% of peers are queried with resource descriptions
of 1.3 kB on average.

We also analyze a hybrid resource description scheme with peers
choosing either per-object or per-cluster summarization, depending on
|04, the number of documents a peer p, administers. To roughly
estimate the number of possible reference objects per database object
for which object-pivot distances are stored in the summary of a peer
Pa, the formula numRefsPerObject = |58 /(4 -|04])] is applied. The
parameter Bf&’g hereby denotes the desired average summary size in
bytes and a factor of four in the denominator is used since a single
distance value is represented as a four-byte float. From table .8 it can
be observed that this estimate of the average summary size roughly
holds. If numRefsPerObject > 0, pivot filtering is applied on the basis
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geve 100 200 400 600 800 1000
(8439)  (9612) (10202) (10385) (10459) (10503)
81.1%  76.0%  69.9% = 66.0% = 63.4%  61.4%
1749 B 2519B 4269B 585.1B 759.6B 919.2 B

m = 512

80.3% 75.7% 69.8% 65.9% 63.4% 61.4%
2148 B 277.8B 443.0B 5968 B 7689B 926.8 B

m = 4096

Table 5.8. — Results for hybrid RS4MI summaries. Table cells show the fraction
of queried peers (top) and the average summary size (bottom). The number of
peers applying pivot filtering is given in brackets (10601 peers in total).

of per-object resource descriptions. Otherwise, per-cluster summaries
RS4MI,x1xx are used as before.

Table visualizes results of the hybrid resource selection scheme
when varying 5%® and m. The number of peers applying pivot filter-
ing is denoted in brackets. If these results are compared with the ones
applying only per-cluster information (see figure[5-1T on page 127)), sev-
eral approaches can be outperformed; for example a parameter settings
with m = 512 and %® = 600 seems promising. However, resource
selection performance of RS4AMI,x1xx(m = 8192) can only be achieved
with much bigger average summary sizes since compression techniques
in case of RS4MIx1xx (m = 8192) can dramatically reduce the summary
size of peers with documents in only few clusters.

5.2.5. Brief Comparison of the Approaches

We now focus on the most promising techniques of the different ap-
proaches discussed so far to assess their potential in large scale net-
works. In sections and B.2.3] the techniques yielding an exact
representation of small peers—either applying a special treatment for
single node M-trees or defining a desired value for k—are promising in
situations with a long-tail distribution of the objects over the peers.
Small peers directly transferring the database objects is also possible
for RS4MI to further improve resource selection performance.

Table gives a brief overview of different approaches discussed in
section £.2.2] section B.2.3] and section (2.4} All approaches result in
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queried peers avg. summary size

M-tree(B) =576, 0=16384) 75.8% 813.2 B
2-medoids 68.7% 867.7 B
RS4MIxx1xx (m=8192) 62.2% 253.0 B
RS4MIxxx11(m=64) 57.2% 880.7 B

Table 5.9. — Comparing different approaches with results averaged over ten

runs with the 200 queries each.

average summary sizes below 1kB. Conceptually, the resource selec-
tion techniques based on M-tree and k-medoids clustering are similar
to each other, both applying local clustering and transferring cluster
centers and corresponding covering radii. The parameterization of the
techniques is crucial for both approaches. In this regard, the k-medoids-
based local clustering approach with its easy to interpret design param-
eter k is more handy than the M-tree-based clustering and also resource
selection performance (as briefly summarized in table and in more
detail outlined in sections B2Z2]and [.2Z3)) does not give a clear evidence
for using the approach based on the M-tree. RS4AMI;x1xx(m = 8192)
leads to better resource selection performance with significantly smaller
average resource description sizes. The number of queried peers is fur-
ther reduced by RS4MIxx11(m = 64) at the cost of larger summaries,
comparable with those of 2-medoids. Of course, it is also possible to
use different RS4MI summary types within a single P2P IR system.

5.3. RS4MlI for Precise k-Nearest Neighbors
Query Processing

Precise RS4MI range query processing is addressed in section As
another important query type for similarity search with RS4MI, this
section focuses on precise k-NN query processing. At first, a concep-
tual algorithm is presented in section (3.0} Afterwards, the resource
selection performance of the algorithm is assessed in section
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Data:
k the desired number of NNs

q the query object

C the global set of reference objects
Lp initially unranked list of peers

Npip number of peers queried in parallel

topk[] result array of length k with (0id(0), dist(q, 0)) pairs,
topk, indicates a local result array from a peer p

L, = determinePermutationList(q, C)

r = determine UpperBoundOfkNN (k, Lq, Lp)

Lp = rankPeers(r, Lq, Lp)

while Lp # () do

's = fetchNextPeers(npip, Lp)
for p in L’» do
if peerPruningNotPossible(p,r, Lq) then

topky, = queryPeer(k,p,q,r)
topk = update(topk, topky)

© 0 N o A W N

end

=
(=]

end
Lp = rankPeers(r, Ly, Lp)//only for particular ranking schemes

=
[

=
N

end

=
[

Figure 5.12. — A conceptual algorithm for precise RS4MI k-NN queries.

5.3.1. A Conceptual Algorithm for Precise RS4MI
k-Nearest Neighbors Query Processing

An algorithm for precise RS4MI k-NN query processing is outlined in
figure It assumes access to the set of resource descriptions in a
peer index. The algorithm starts in line 1 by determining the list L,
as introduced in definition and used in the algorithm in
figure Note that also here L, contains—in addition

to the cluster ID—precomputed distance values for every entry so that
they do not have to be recomputed. An upper bound for the distance
between the query object g and the k-th NN is determined from the
summaries in line 2. This upper bound distance is used as the initial
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search radius r and it is determined from the set of resource descrip-
tions of all peers to be as tight as possibld®d. In our scenario, the
set of reference objects C' = {¢; | 1 < i < m} is known to all peers.
Upper bound distances d; = dist(q, ¢;) + r¢"* can thus for example in
case of RS4MI,1xx be calculated for every populated cluster of a re-
source. The best performing RS4MI resource descriptions RS4MIy1xx
and RS4MI, 11 mentioned in section maintain covering radius
information r¢"*. Thus, they are directly applicable here. If this is
not the case, the estimation of a tight initial search radius can also be
skipped and it can be set to positive infinity. In line 3, the peers are
ranked. The list Lp is sorted for determining the order in which peers
are queried. A particular algorithm for the peer ranking step is the ap-
proach from Eisenhardt et al. [2006] presented in section B3 on pages
[2HT3] Tt is evaluated together with alternative ranking algorithms in
the following section 1.3.2] The list of peers Lp is processed as long as
there are more entries (line 4). A list segment L'» with up to npip peers
is fetched in each round and removed from the beginning of the list Lp
(line 5). For all peers from this list segment, it is then tested if the very
peer can be pruned from search by applying the pruning rules outlined
in section[Z4] (line 7). If this is not the case, the query is sent to the very
peer and the enquirer waits for the results (line 8). Multiple peers can
of course be queried in parallel in a distributed scenario. We simulate
such a behavior when analyzing the quality of different peer ranking
mechanisms and fetch up to npip peers in every round before reranking
the peers in line 1288, This reranking is only necessary for some peer
ranking schemes (see section 32)). The array with the global result
is updated whenever a peer which responds to the query provides local
results which can improve the global result (line 9). In this case, if the
dist(q, o) value of the k-NN changes, also the search radius r decreases.

With some modifications and optimizations, the runtime complexity
of our k-NN algorithm is not an issue. If in line 2 of the algorithm
the runtime for considering all populated clusters of all peers becomes
too high, sampling techniques can be applied when determining the
upper bound distance or the initial search radius can even be set to

60 Here, an algorithm is presented which successively reduces the search radius

for determining the result set. Alternative algorithm designs for example with
an increasing search radius are of course also possible.

Of course, in a distributed scenario, additional peers can be queried before the
results from all npip peers are obtained.

61
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positive infinity. In case of a big number of peers, the computation
in line 3 reduces to O(nlogn) if only the first few clusters and not
all m clusters are considered for the peer ranking (see section LI
on pages [[OTHIOR). Testing all n peers if they have to be queried is
in O(mn) when we assume that in the worst case no cluster pruning
can be performed. However, such cases are hypothetical. Furthermore,
a peer index can be applied to speed-up the peer pruning. The cost
for querying a remote peer which depends on network delay and other
aspects cannot be influenced by the algorithm design. Finally, the
additional peer ranking steps in line 12 of the algorithm become obsolete
if the most promising peer ranking schemes from the following section
are applied.

5.3.2. Evaluating Precise RS4MI k-Nearest Neighbors
Query Processing

For an evaluation, we use the same setup as presented in section .21
when evaluating precise RS4MI range query processing. We analyze the
resource selection performance of different peer ranking approaches for
the algorithm presented in figure[5.12 on page 132]in case of RS4MIg100,
a particularly promising RS4MI resource selection scheme for precise
range query processing (see section [B20)).

As a first resource ranking approach, we slightly adapt the algorithm
from Eisenhardt et al. [2006] which is outlined in section B34 on pages
[[2H73l RS4Mlyp100 resource descriptions do not explicitly contain fre-
quency counts such as HFS or binarized frequency information such as
UFS. However, the presence of a covering radius in the RS4MIgg190 re-
source descriptions indicates one or more feature objects in a particular
cluster. Thus, we can apply the algorithm from Eisenhardt et al. [2006]
outlined in section B:3.4] on pages in the same way as in case
of UFS. This approach is in the following evaluation tables denoted as
stable.

As an alternative, we use the mindist function applied by the M-tree
for identifying promising subtrees in case of a k-NN query [Ciaccia et
al., 1997, p.429]:

mindist(q, [¢;],ou ) = maz (dist(q, ¢;) — ™, 0) (5.1)
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Formula [B.J] computes a lower bound distance from the query object
to database objects in a particular cluster ball of a peer by subtracting
the radius of the cluster ball r{"* from the distance dist(q, c¢;) between
the query object and the cluster center. In case of a negative value,
mindist is set to zero because this implies that the cluster ball contains
the query object.

When comparing two peers p, and py, mindist values are determined
for all m clusters of the two peers and ascendingly ordered per peer.
In case of an unpopulated cluster, the mindist value is set to positive
infinity. The two lists of ordered mindist values are processed in parallel
from the beginning to the end. If the corresponding mindist value of
peer p, is smaller than the value of peer py, p, is ranked before pp, and
vice versa. If the two mindist values are equal, the decision is made by
taking the next mindist value from each list and comparing these two
values, and so on. If the end of the list is reached, the two peers are
ranked at random. This is a very rare case, though.

In another approach, we rank peers based on the definition of the
proximity proz between two metric balls from Amato [2002, p. 72] and
Amato et al. [2003, p. 197] given in formula B2}

proz([g]y, [cilon) =
0 if 4+ ot < dist(q, c;)

r+r" —dist(q,ci)

2-dmax— dist(q,c;) if max (7“, nc;)ut) < mZ'TL(T, TQUt) + dZSt(q, C’i)

7

2-min(r,r"")

T —dist(q.cr) otherwise

(5.2)

If the sum of the two radii r + r¢"" is smaller than the distance
dist(q, c;) between the two ball centers, there is no overlap between a
query ball [¢], and a cluster ball [¢;], ou.. Thus, the proximity is zero
in this case (see line 1 in the case anz;lysis in formula B2)). Line 2 of
the case analysis in formula addresses partial overlap and line 3
analyzes the covering of one ball by the other where twice the radius
of the smaller ball is normalized and used as the ranking criterion.
The proximity definition in formula assures normalized values in
the range [0, 1]. If both metric balls completely overlap, the proximity
becomes one. This normalization is however not needed in our scenario



136 5.3. RS4MI for Precise k-Nearest Neighbors Query Processing

and thus formula can be adapted for the resource ranking even in
cases when the distance metric has no upper bound d™?*.

The ranking of the peers is based on the sum of the prox values over
all populated clusters of a peer—the higher the corresponding cumu-
lated prox value, the better for the ranking. Also here, if cumulated
proz values of two peers are equal, a random ranking decision is made.

The proximity definition in formula produces values “linearly
proportional to the overlap of the regions” [Amato, 2002, p.72]. It
is used_here to mimic an approach only roughly sketched in Berretti
et al. |2002b, p.199]. This approach estimates the number of rele-
vant database objects a resource can provide and can conceptually be
described by the formula >, f(r,7"", dist(q, ¢;)). The function f is
influenced by two aspects: a) the amount of overlap between the query
ball and the cluster ball and b) the number of database objects in
the particular cluster (i.e. the cluster population). In our evaluation,
a) is reflected by the proximity definition given in formula We
do however not consider the encoding of cluster populations b) in the
RS4MIyg10¢ resource descriptions. Since we propose to use a large num-
ber of reference objects m, cluster population counts beyond zero and
one become rarer and rarer with increasing m. In a particular run, for
example when using the Euclidean distance and RS4MIg100(m = 256),
28.6% of the populated clusters have population counts bigger than
one whereas in case of RS4MIyg100(m = 16384) this number reduces to
7.0%. Of course, extending RS4MI with population counts is possible.

As additional comparison baselines, we also rank peers at random
and based on the peer size, that is, the number of documents a peer
administers.

Results are shown in table for a run with 200 queries using the
Hellinger distance disty and a value of nyi, = 10. It can be observed
that resource rankings based on the algorithm from Eisenhardt et al.
[2006] (stable) and based on the mindist function are the two most
promising approaches. For retrieving 16 of the 20 NNs (i.e. 80%), 3.1%
and 3.2% of the peers must be queried on average. If all 20 NNs are to
be retrieved, these numbers increase up to 9.4% for both approaches.
As can also be observed from table BI0, the k-NN query processing
ends for both approaches after contacting 64.0% of the peers. Even if
all 20 NNs have already been found, it is impossible to stop immediately
and additional peers must be queried before being able to safely discard
all successive peers.
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stable mindist prox size random

60% found  1.5% 1.6% 4.3% 9.4% 40.2%
70% found  2.2% 2.3% 6.5%  13.9% 46.6%
80% found  3.1% 3.2% 9.9%  20.2% 52.7%
90% found  5.0% 5.1% 15.2%  30.0% 58.7%
100% found  9.4% 9.4% 26.4% 47.4% 64.7%
end 64.0% 64.0% 64.0% 64.5% 68.4%

Table 5.10. — Fraction of peers visited [in %] for retrieving a fraction of the
20-NNs in case of RS4Mlgg100 with m = 8192 when using the Hellinger distance.

With respect to resource selection performance, there is only a mar-
ginal gap between these two ranking approaches. Also from a runtime
perspective, both approaches are promising since they do not apply the
search radius r for the peer ranking and thus a reranking as described
in line 12 of the algorithm shown in figure becomes obsolete.

A proximity based resource ranking as indicated in the prox column
of table clearly performs worse. In addition, since the proximity
definition in formula relies on the search radius r, this approach is
also worse from a runtime perspective if line 12 of the algorithm shown
in figure is used.

As additional baselines, the size and the random columns indicate
clearly more inefficient ranking mechanisms.

To see the effects of a decreasing intrinsic dimensionality, we replace
the Hellinger distance by the Euclidean distance. This reduces the
intrinsic dimensionality of the scenario as defined by formula [2.:20 on]
[page 37]from 9.9 to 2.9. This decrease in intrinsic dimensionality leads
to fewer peers being contacted on average in order to retrieve the same
amount of NNs as can be observed from table 111

In particular, the decrease of the intrinsic dimensionality leads to no-
ticeably more peers being pruned from search. For stable, mindist, and
proxz, only 41.0% in contrast to 64.0% of the peers are queried before
the algorithm for precise search stops. Furthermore, by comparing both
tables it can be observed that the proximity-based ranking prox is more
affected by an increase in intrinsic dimensionality than the approaches
displayed in the columns stable and mindist. When comparing prox
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stable mindist prox size random
60% found  1.2% 1.3% 3.4% 8.5% 28.0%
70% found  1.8% 1.9% 50% 12.5% 32.0%
80% found  2.5% 2.6% 74% 17.1% 36.4%
90% found  3.9% 3.9% 10.8% 23.4% 40.2%
100% found  7.8% 7.9% 17.2%  33.8% 43.9%
end 41.0% 41.0% 41.0% 41.8% 45.9%

Table 5.11. — Fraction of peers visited [in %] for retrieving a fraction of the
20-NNs in case of RS4Mlgg100 with m = 8192 when using the Euclidean distance.

stabler, mindisty, stablen mindistyu

60% found 1.2% 1.3% 1.5% 1.6%
70% found 1.7% 1.8% 2.2% 2.3%
80% found 2.5% 2.6% 3.2% 3.3%
90% found 3.8% 3.9% 5.0% 5.0%
100% found 7.4% 7.4% 9.7% 9.7%
end 41.0% 41.0% 63.9% 63.9%
Table 5.12. — Fraction of queried peers [in %] for retrieving a fraction of the

20-NNs in case of RS4Mlgp100 with m = 8192 averaged over ten runs.

with stable or mindist, differences in resource selection performance in
case of the Euclidean distance are smaller than in case of the Hellinger
distance. The fact that also the columns size and random show a bet-
ter resource selection performance when using the Euclidean distance
confirms that a lower intrinsic dimensionality in general leads to an
easier indexing and search scenario.

For assessing the performance differences between stable and mindist
in more detail, we analyze the results averaged over ten runs with the
200 queries each in table The numbers confirm that the sta-
ble approach slightly outperforms the mindist approach in case of the
Hellinger distance disty as well as the Euclidean distance disty,, .
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It is worth analyzing the differences between the stable and the
mindist approach on a conceptual level. If we assume a Voronoi-like
partitioning (see section B3] on pages BOHZE) as in case of stable,
we can determine lower bound distances for objects in clusters [¢;] €
{[e;]|1 < i < m}. For database objects in the query cluster, without
any additional information, the lower bound distance is zero. The cen-
ter of the query cluster is determined by ¢* = arg min, . dist(c;,0).
Thus, when lower bounding potential objects in any cluster besides
the query cluster, that is, clusters [¢;] € {[ci]}\[c*], the difference
dist(q, c;) — dist(q, ¢*) is non-negative—=zero if dist(q, c¢;) = dist(q, c*).
Since both dist(q, c*) and the denominator of two in equation [ZT4] of
lemma, are constant when lower bounding potential ob-
jects in any cluster besides the query cluster, an ordering of clusters by
the lower bound distance stated in lemma [ yields the same ordering
as in case of L, which is only based on dist(q, ¢;). It can thus be con-
cluded that the resource ranking approach from Eisenhardt et al. [2006)
outlined in section (3.4l on pages and denoted as stable in this
section is equivalent to a ranking based on the lower bound distance
given by lemma [I

With this observation in mind, stable refers to a resource ranking
based on lower bound distances arising from the Voronoi-like space par-
titioning. In contrast, a resource ranking based on mindist uses lower
bound distances derived from the (possibly overlapping) cluster balls.
As our measurements indicate, in case of a rather large number of ref-
erence objects (m = 8192), the lower bound based on the Voronoi-like
space partitioning is slightly more effective than the lower bound based
on the cluster balls.
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Applicability of the Approaches

Potential application fields for IF4AMI and RS4MI are versatile. In this
chapter, we name some research fields where resource description and
selection techniques for arbitrary metric spaces and thus RS4MI includ-
ing HFS and UFS can provide a valuable contribution. We list domains
where we see potential for the application of our resource description
and selection techniques. In many application fields, resource selection
techniques for text retrieval are already used and the application of
techniques like ours is possible when extending those applications to
other media types besides text.

In general, we see two modes of application—searching for similar
feature objects and searching for similar resources, that is, collections
of feature objects. The first application mode strictly follows the re-
source selection task as described in this thesis. Here, a similarity
query with a particular query object is issued and matched against a
set of resource descriptions. RS4MI including HFS and UFS can be
applied. On the other hand, there are applications where a particular
collection—represented as a resource description—is matched against
other resource descriptions. Here, any particular dissimilarity measure
can be applied (see section 22). If the dissimilarity measure is a dis-
tance metric, IF4AMI can for example be used as an access method.
These two modes of application are reflected in the following list of
application fields.

Centralized access methods. The relatedness of centralized and dis-
tributed access methods becomes evident throughout this thesis.
A decision of choosing the best subtree in tree-based access meth-
ods is for example conceptually similar to the resource selection
task. Summaries in distributed IR can correspond to aggrega-
tions maintained in the nodes of a tree such as bounding boxes
in the case of an R-tree [Guttman, [1984], or more general in
the context of MAMs, metric balls in case of an M-tree (see sec-
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tion B22ZT] on pages E7HAR]). In our case, aggregations maintained
by IFAMI such as the R™ and R°“* matrices or parts of them
offer promising resource descriptions in case of RS4MI.

Centralized MAMs are used in various applications. Examples
are performance prediction in grid environments [Li and Wolters,
2006], text retrieval [Skopal and Moravec, 2005], multimedia
and 3D object retrieval [Bustos et al., [2007], similarity search
on business process models [Kunze and Weske, 2011], malware
detection [Hu et al., 2009], search in biological databases [Xu
and Miranker, 2004], or more general, data compression, pattern
recognition, machine learning, statistical data analysis, and data
mining [Chévez et al., [2001b, ch.2; Zezula et al., 2006, p. 3f.].

Expertise retrieval. Expert search [Balog et al., 2009] and expertise

retrieval [Balog et al., 2012] use resource description and selec-
tion techniques. In expert search, a user is interested in finding
human experts in an enterprise for example. Thus, documents
a person has (co)authored can be modeled as a resource and
finding an expert then results in selecting the most promising
resource. In this context, RS4MI can offer possibilities when
modeling multimedia user content.

Focused crawling. The idea of focused crawling is initially proposed

in Chakrabarti et al. [1999]. Zhang and Nasraoui [2009] sug-
gests a two-step profile-based approach for the focused crawling
of social multimedia websites. In a first step, profile pages are
identified for generating profile representations which later guide
the crawling process. In the second step, a ranking based on the
user profiles is applied for determining the order in which the
pages with the actual images are crawled. The approach is based
on textual information gathered on the pages. Content-based im-
age properties are not considered in Zhang and Nasraoui [2009].
Here, RS4MI can find its application.

In a more structural change, the idea of an approach as pro-
posed in Zhang and Nasraoui [2009] where profiles first have to
be generated can be turned into an approach where a service au-
tomatically provides summaries of websites or individual pages
including image content. A focused crawler can then directly
estimate the potential usefulness of a resource for the focused



Chapter 6. Applicability of the Approaches 143

crawling task before actually visiting the source. This way, crawl
efficiency can be improved by preventing the crawler from an-
alyzing too many non-relevant sites or pages. Additional web
traffic can thus be avoided.

Personal meta-search. Personal meta-search is a particular applica-
tion of distributed IR where all the online resources of a per-
son are queried (e-mail accounts, web pages, image collections,
etc.). These resources are typically heterogeneous in size, me-
dia type, and update frequency and are often stored in different
locations [Thomas and Hawking, 2009]. Selective and space effi-
cient summaries can be used in this context to identify relevant
resources. Thomas and Hawking [2009] addresses text search
whereas RS4MI offers possibilities when content-based search on
different media types such as image, audio, or video files is to be
supported.

Recommender systems. Space efficient resource descriptions can also
be beneficial in the context of recommender systems and social
search for example to compute the similarity between different
users of social network sites. Similar users can be determined
not only based on having the same friends, using the same tags,
bookmarking the same media items, etc. [Guy et al., [2010], but
also depending on the similarity of media content or more gen-
eral the data they administer. A user’s collection can thus be
represented by a RS4MI summary and the task of finding sim-
ilar users can then be accomplished by comparing the RS4MI
resource descriptions, possibly with the help of IF4MI.

Sensor and ad hoc networks. The resource selection techniques pre-
sented in this thesis can also be applied in (visual) sensor net-
works as well as in ad hoc networks. Elahi et al. [2009, p. 228] in-
troduces the “sensor ranking primitive” for content-based sensor
search and emphasizes the necessity of efficient sensor ranking.
Lupu et al. [2007] presents an approach for ad hoc information
sharing based on mobile devices when people meet at certain
events or places. In this context, it is argued that it might not
be feasible to transfer complete index data but only summarized
information. Both approaches Elahi et al. [2009] and Lupu et al.
[2007] are however not designed for search in arbitrary metric
spaces. Here, RS4MI can be an option.
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Theme identification. Another potential application field is automatic
photo collection summarization (see e.g. Obrador et al. [2010]).
Theme identification of photo sets for example in case of digital
print products such as photo album creation is concerned with
the task of finding suitable background themes for a given set
of images. A user collection consisting of a set of photos can
for example be modeled as a RS4MI summary. Finally, theme
descriptions and the description of a user’s photo collection can
be compared to recommend the best matching theme(s).

Vertical search. Distributed IR techniques are also used for vertical
selection in aggregated search [Arguello et al., [2009]. Vertical
selection is the task of identifying relevant verticals, that is, fo-
cused search services such as image, news, video, or shopping
search. A user issuing a textual query “music beatles” might
also be interested in music videos and thus video search results
or small previews should be integrated into the result presen-
tation of classic web search. In this context, a vertical can be
interpreted as a resource and the task of selecting relevant ver-
ticals is conceptually similar to resource selection in distributed
IR requiring adequate features (i.e. resource descriptions) and
corresponding selection mechanisms. Content-based multimedia
information can be integrated into vertical selection by applying
techniques outlined in this thesis. For a general introduction on
aggregated search see Lalmas [2011].

Visual analytics. A main benefit of RS4MI with HFS and UFS is that
the resource descriptions and the corresponding resource selec-
tion step can be visualized in a meaningful way. This opens
doors for visual analytics which is defined in Keim et al. |[2008]
p. 157] as follows: “Visual analytics combines automated analysis
techniques with interactive visualizations for an effective under-
standing, reasoning and decision making on the basis of very large
and complex data sets.”

To give a tangible example, we will in the following exemplarily
outline the concept of our visual analytics interface proposed
in Henrich and Blank [2012] which gives additional insights in
the resource selection process and which can visually support
the resource selection task. The visual interface is outlined in
figure It has a minimalistic design consisting of a board
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Figure 6.1. — Overview of our visual analytics interface.

and a horizontal and vertical axis. In the following, we assume
UFS resource descriptions. However, the interface is by no means
restricted to this particular summary type.

The resource descriptions of all participating resources are vi-
sualized on the board. To keep it clean without any additional
overhead, a single row of pixels on the board is reserved for vi-
sualizing a particular resource description. The horizontal axis
on top of the interface captures the distribution of the number of
populated UFS bins. It shows the aggregated cluster population,
that is, the number of summary bins containing at least one im-
age representation aggregated over all resources/peers. On the
other hand, the vertical axis on the left captures the distribution
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of the number of images of the resources (i.e. the peer sizes).
They are estimated here based on the UFS summaried®2.

For UFS, a red pixel on the board represents an occupied sum-
mary bin, that is, a summary bin value set to 1. When a summary
bin is set to 0, the pixel representing the summary bin remains
gray (see e.g. figure[61]). In case of other RS4MI summary types,
graduated pixel colors can for example indicate cluster counts in
case of HF'S and ball radii in case of RS4MIgg100.

Figure shows a ranking by peer size where the top part of the
board contains by far more red pixels than the bottom part. Also
the estimated peer size distribution on the vertical axis indicates
the ranking by the number of summary bins set to 1.

If the cluster centers are derived from real data objects which is
common in metric space indexing, the centers can be visualized
for example by hovering over the horizontal axis (see figure [6.2]).
Cluster centers can be selected as query images for issuing simi-
larity queries.

Figure shows the visualization of the resource ranking step
when using the ranking mechanism initially proposed in Eisen-
hardt et al. [2006] and outlined in section B34 on pages
in case of UFS. The pixel order on the board from left to right
changes as clusters are rearranged. This can also be noticed when
looking at the horizontal axis.

Characteristic properties of the UFS/HFS ranking mechanism
are shown on the board in figure where it can be perceived
that roughly spoken more populated clusters with centers close
to the query lead to higher ranking positions. The cluster order is
determined by the list L, as introduced in definition [{ on page 28|
and thus the distance from a cluster center to the query object.
An example query result is shown in figure

It should also be noted that resource descriptions can be visu-
alized in different ways. If images are for example tagged with
geographic locations, it is possible to provide an overview of the
geographic distribution of a peer’s image collection. This can be

62

For this visualization, we use the images of the MIRFLICKR-25000 collection
[Huiskes and Lew, [2008]. CEDD [Chatzichristofis and Boutalis, [2008] features
are extracted and compared using the Hellinger distance. Images are again
assigned to peers by the Flickr user ID.
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Figure 6.2. — Selecting a center as a query object after ranking the resources
by estimated peer size.

achieved by visualizing geographic resource descriptions as briefly
addressed in section T2l on page [[THl (see figure [£.0 where UFS
summaries are also used for the geographic domain).

In addition, we would like to emphasize that addressing the visual
analytics definition given above, our interface allows to focus on
certain characteristics of the data collection. It is possible to
assess special parts of the data collection such as for example
resources with the least similar images which are found at the
bottom part of the resource ranking as shown in figure [6.0]

Following the general design paradigm, clicking on a bar in the
vertical axis and thus selecting a certain peer triggers a search for
similar resources. To do so, resource descriptions themselves are
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Figure 6.3. — The resource ranking in case of UFS.

perceived as feature objects and compared with the query. This
is in contrast to the selection of a certain cluster center from the
horizontal axis as a query image. Thus, both application modes
briefly introduced at the beginning of this section are supported
by the resource selection interface—searching for similar images
to a query image and searching for similar resources/collections
to a given image collection.

Web service discovery. The metric space model is also assumed when
addressing the task of web service discovery. Web service repre-
sentations including functional and non-functional semantics are
compared with a distance metric in Wu et al. [2009]. In scenar-
ios where multiple services are to be described, RS4MI can come
into play. P2P systems are frequently proposed as decentralized
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Figure 6.5. — Visualizing a second type of resource descriptions.

infrastructures for web service discovery (see e.g. Banaei-Kashani
et al. and Verma et al. M)
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Figure 6.6. — Analyzing the bottom part of the resource ranking.

XML retrieval and blog site search. Distributed text IR research has
also influenced techniques for XML retrieval [Larson, m and

blog feed search [Elsas et al.,

. In blog feed search, a blog

feed can be perceived as a single collection and individual blog
posts (i.e. feed entries) are interpreted as documents in order
to retrieve similar blogs according to a given information need.
In passage retrieval such as XML retrieval, different sections,
subsections, etc. can be grouped together and be perceived as

a resource (for references see Lalmas

2009)).

Also here, tech-

niques presented in this thesis can be applied if for example
content-based multimedia search is to be supported.



Chapter 7.

Conclusion and Outlook

This thesis addresses the need for efficient search techniques assuming
the metric space model. Here, the dissimilarity between two data ob-
jects is measured as a distance between them. The distance measure is
a distance metric and thus obeys the metric postulates. Arbitrary dis-
tance metrics can be applied and thus the metric space model provides
a flexible indexing paradigm in times of a growing diversity in data
types in different application contexts [Novék, [2008, p.5] and an ever
increasing amount of media items in the WWW_ in companies, and on
private devices.

After a general introduction, this thesis describes the foundations of
metric space indexing which provide the theoretical background and
the basis for the design and the analysis of MAMs (see chapter[2]). The
thesis addresses both centralized and distributed MAMs and outlines
existing approaches in both fields in a structured way (see chapter B).
Two MAMs are developed in this thesis—IF4MI and RS4MI. IF4MI be-
longs to the group of centralized MAMs (see chapter Hl). On the other
hand, RS4MI as a distributed MAM is primarily targeted to search
scenarios where data objects are physically distributed (see chapter 0.
However, RS4MI is by no means restricted to a certain type of P2P IR
system or distributed IR in general. An overview of various application
fields for our distributed resource description and selection techniques
RS4MI including HFS and UFS is also given in this thesis (see chap-
ter @)). There, we also name application fields for centralized MAMs
such as IF4MI.

Addressing the major thesis objectives outlined in section
[page 10] we can conclude the following. This thesis shows how to im-
prove the resource description and selection technique from Eisenhardt
et al. [2006] which enhances earlier work from Miiller et al. [2005a].
More fine-grained resource descriptions called HFS and UFS lead to an
improved resource selection performance. Increased space requirements
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of the resource descriptions are encountered by the use of compression
techniques.

Besides these improvements, we devise resource description and selec-
tion techniques for precise search and thus the general RS4MI approach
is no longer tied to approximate query processing. RS4MI is applica-
ble in arbitrary metric spaces. It can outperform existing approaches
which are based on local clustering. Different RS4MI summary types
can be used and combined in a single distributed IR system and when
appropriate, small peers can be represented exactly, that is, transfer
index data in an unsummarized way.

Furthermore, we show how RS4MI can positively influence future re-
search in different application fields even apart from P2P IR and classic
distributed IR. As one concrete example, we adapt ideas from RS4MI
and develop the centralized MAM entitled IF4MI. If IF4MI is for exam-
ple applied by the resources as their choice of a local document index
structure, information already maintained by IF4AMI can directly be
used as a resource description without any need for a new computation
of an RS4MI summary. As a second example, the resource description
and selection techniques are applied in the field of visual analytics for
the analysis of large sets of image collections. Here, the applicability is
by no means restricted to the image media type.

There are multiple technical improvements to both approaches TF4MI
and RS4MI. As for every other MAM, to name only a subset of improve-
ments, batch processing of queries, improved pivot selection strategies,
indexing the pivots themselves, and the support of additional query
types are some potential areas of future research. These technical im-
provements are frequently addressed in the field of centralized MAMs
and additional requirements can thus be derived from features of al-
ternative MAMs (see e.g. Chavez et al. [2001b|, Hetland [2009b], and
Zezula et al. [2006]).

More particularly, there is also a variety of future work more closely
related to our resource description and selection techniques. One direc-
tion of future research can address the idea of index swapping presented
in Eisenhardt et al. [2006] and Eisenhardt et al. [2008] where the re-
sources try to sharpen their resource descriptions by transferring index
data within the system. More focused resource descriptions can lead
to better resource selection performance. This technique reflects the
trend towards hybrid indexing scenarios where techniques from local
and global indexing schemes are combined.
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For the query processing techniques presented in this thesis, several
design alternatives are possible. With regard to precise k-NN query
processing as an extension of range query processing, we state one par-
ticular algorithm. Several variations and alternatives are possible: for
its general design, for estimating the search radius, for measuring the
amount of overlap between the query and the cluster balls and thus
for determining mechanisms on how to best rank the resources (see
e.g. Amato [2002, ch. 4] and Amato et al. [2003]), for allowing different
resource description types to be used in a particular system, to name
only a few.

Varying the space partitioning techniques on top of RS4MI is another
design alternative. Ideas from PBI including the permutation-based
space partitioning can be applied. Algorithms for approximate and
precise search can be designed and compared with the approaches de-
veloped in this thesis.

An interesting field of future work regarding distributed RS4MI query
processing is also the development of an index structure for the resource
descriptions to speed-up the resource selection process. It seems natural
to extend and adapt IF4AMI in this regard.

Multiple research questions also arise with respect to the development
of the resource selection interface for visual analytics. It should be
analyzed how to best visualize particular resource descriptions. If a
huge amount of clusters is applied, using one pixel per cluster and
resource might not be possible because of a limited screen resolution. In
addition, it is difficult to visualize a huge amount of resources at a time.
Thus, aggregation and grouping mechanisms should be investigated
which go in hand with the resource selection algorithms.

With the upcoming demand for more flexible indexing paradigms
than addressed by traditional SAMs and MAMs [Skopal and Bustos,
2011}, it is also interesting to analyze if and how techniques from TF4MI
and RS4MI can be helpful for the design of non-metric access methods.

Furthermore, we look forward to the application of IFAMI and RS4MI
in the application fields discussed in chapter Therefore, an open
source implementation of IFAMI within the widely used inverted file
library Apache Lucend® can be an interesting option for the dissemi-
nation of the IF4AMI approach, inherently providing capabilities for the
computation of RS4MI resource descriptions.

63 see [http: //lucene.apache.org/) last visit: 12.10.2014


http://lucene.apache.org/




Appendix A.

Photo License Information

License information of the photos printed in chapter [@ are listed
in the following. The photos are taken from the MIRFLICKR
25000 image collection (http://press.liacs.nl/mirflickr/, last visit:
23.6.2014). We name the title of the photo (in italics), followed
by the MIRFLICKR image number in brackets, Flickr user informa-
tion (last visit of URLs: 23.6.2014), and creative commons (CC) li-
cense information in version 2.0; for details about the licenses see
http: // creativecommons.org/licenses/| (last visit: 23.6.2014).

Figure and figure

Waterfall Odyssey 2008 (no.14) by Joe Plocki
(https: // www.flickr.com/ people/ turbojoe/) — CC BY-NC

Figure
query image:

Waterfall Odyssey 2008 (no.14) by Joe Plocki
(https: // www. flickr.com/ people/ turbojoe/|) — CC BY-NC

result images (line by line from top left to bottom right):
Drops (no.17992) by mm?7163 — CC BY-NC
AUGURI Best Wishes (no.8826) by Federico Soffici — CC BY-NC-SA

Fergal Martin jumps and scores (no.15083) by Kenneth Barrett
(https: // www.flickr.com/ people/ griangrafanna) — CC BY-NC

Yellow Steel (no.7350) by Chris Smart
(https: // www.flickr.com/ people/ sigma) — CC BY-NC-ND

Tannery Falls IT (no.12472) by James Marvin Phelps
(https: // www.flickr.com/ people/ mandj98) — CC BY


http://press.liacs.nl/mirflickr/
http://creativecommons.org/licenses/
https://www.flickr.com/people/turbojoe/
https://www.flickr.com/people/turbojoe/
https://www.flickr.com/people/griangrafanna
https://www.flickr.com/people/sigma
https://www.flickr.com/people/mandj98
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Home (no.24095) by Claudia
(https: // www.flickr.com/ people/ querida79) — CC BY-NC-SA

Meet me in the middle, (no.1986) by John S. Ra
(https: // www.flickr.com/ people/ racreations) — CC BY-ND

Maiko off the clock (no.17363) by Chris Gladis
(https: // www.flickr.com/ people/ MShades) — CC BY

vidas ajeNas (no.1569) by Sun Say — CC BY-ND

Figure [0.6)
query image:

Waterfall Odyssey 2008 (no.14) by Joe Plocki
(https: // www.flickr.com/ people/ turbojoe/)) — CC BY-NC

bottom left group (line by line from top left to bottom right):
Escort Carrier (no.14354) by Soren — CC BY-NC

Zuck (no.6281) by Soren — CC BY-NC

Type 90 Missile Carrier (no.3950) by Soren — CC BY-NC

Danboard (no.5357) by Soren — CC BY-NC

bottom right group (from top to bottom):

smeg (no.18601) by Aliceson
(https: // www.flickr.com/ people/ aliceson)) — CC BY-NC-ND

Free Burma (no.13000) by Alex Schraufstetter
(https: // www.flickr.com/ people/ dyzzy) — CC BY-NC-SA

Red Light Room (no.21828) by Quim Gil
(https: // www.flickr.com/ people/ qgil) — CC BY-SA


https://www.flickr.com/people/querida79
https://www.flickr.com/people/racreations
https://www.flickr.com/people/MShades
https://www.flickr.com/people/turbojoe/
https://www.flickr.com/people/aliceson
https://www.flickr.com/people/dyzzy
https://www.flickr.com/people/qgil

List of Abbreviations

AESA
BoVW
CAN

CBIR
CEDD
CLARA
CLARANS

CPU
DBSCAN
DHT
EMD
FAMES
GNAT
GPU
GROUP
HFS
IF4MI
IR
k-NN
LAESA
LC

LM

Approximating and Eliminating Search Algorithm
bag of visual words

Content-Addressable Network

content-based image retrieval

Color and Edge Directivity Descriptor

Clustering LARge Applications

Clustering Large Applications based upon RANdomized
Search

central processing unit

Density-Based Spatial Clustering of Applications with Noise
distributed hashtable

earth mover's distance

FAst MEdoid Selection

Geometric Near-neighbor Access Tree

graphics processing unit

Gossip-based peer-to-peeR cOmmUnity building Protocol
Highly Fine-grained Summaries

Inverted File for Metric Indexing and search

information retrieval

k-nearest neighbor

Linear Approximating and Eliminating Search Algorithm
List of Clusters

language model
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List of Abbreviations

LSH

LSI
MAM
MCAN
MON
MRoute
MSN
NN
P2P
PAM
PBI
PCA
PDMS
PP
PREGO
PtoAM
RI
RS4MI

SAM
SON
SRI
SSS
UFS
WWW
XML

locality-sensitive hashing

latent semantic indexing

metric access method

Metric Content-Addressable Network
Metric Overlay Network

Multimedia Routing Index

Metric Social Network

nearest neighbor

peer-to-peer

Partitioning Around Medoids
permutation-based indexes

principal component analysis

peer data management system

pivot permutation

P2P REcommender system based on Gossip Overlays
Ptolemaic access method

routing index

Resource description and Selection for Metric Indexing and
search

spatial access method
Semantic Overlay Network
Semantic Routing Index
Sparse Spatial Selection

Ultra Fine-grained Summaries
World Wide Web

Extensible Markup Language
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Q T = &8 » o

Q
B

Rin

the set of natural numbers (p.25)
the set of real numbers (p.8)

a metric space (p.16)

a vector space (p.9)

a subspace of a metric space described as a
hyper-ring; i.e. a metric shell (p.34)

the query ball (p.9)

a subspace of a metric space (p.24)

the universe/domain of feature objects (p.8)
a set of arbitrary elements (p.21)

a set of arbitrary elements (p.21)

the set of reference objects ¢; with
C={c|i=1,...,m} (p.26)

the result set of a k-NN query (p.9)

list of peers/resources determining the order in
which they are queried (p.132)

list of cluster IDs sorted by increasing dist(c;, x)
for ¢; € C' when assuming a Voronoi-like
partitioning; synonym: pivot permutation (p.27)

the database as the set of database objects (p.8)
the database of a resource/peer p, (p.60)

the set of resources/peers p, with
P={ps|a=1,...,n} (p.60)

a m x m matrix with r}% radii (p.33)
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List of Symbols

Rout

[C]Tuut

S

S

dmax

a m x m matrix with 79}" radii (p.33)

a 0 x 0 similarity matrix with s, ; values (p.18)

running variable with a € INT: used in different
contexts (p.60)

running variable with b € INT; used in different
contexts (p.73)

a cluster center; synonyms: reference object,
pivot, anchor (p.24)

a cluster with center ¢ arising from Voronoi-like
partitioning (p.25)

a metric ball defined by its center ¢ and a
(covering) radius 7°"* (p.30)

a lower bound distance of the distance dist(g, 0)
calculated as d; = |dist(q, ¢;) — dist(c;, 0)| with
1<i<m (p.47)

an upper bound distance of the distance dist(g,0)
calculated as d; = dist(q, c;) + dist(ci, 0) with
1<i<m(p.133)

the maximum possible distance value between two
feature objects if the distance metric has an upper
bound (p.135)

the number of “words” by which a database or
query object is represented in case of Sznajder
et al. [2008] (p.56)

running variable with ¢ € INT: used in different
contexts (p.18)

running variable with j € IN*t; used in different
contexts (p.18)

used in three different contexts: (1) the number of
NNs to be retrieved in a k-NN query, (2) the
desired number of clusters in k-means or
k-medoids clustering, (3) the number of
dimensions of a k-d-tree; the meaning becomes
clear from the context where k is used (p.9)
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Npip

Sy

Pa

y

in
2]

out
V)

the number of reference objects determining a
cluster in permutation-based partitioning with
l€ NT and 1 <1< m (p.28)

the number of reference objects; sometimes
indices such as in case of mif or mpm are used to
distinguish the application context where reference
objects are applied (p.26)

the number of reference objects; usually m’ < m
(p-52)

the number of peers/resources (p.106)

the number of peers/resources queried in parallel
(p.132)

a database object 0 € O (p.9)

a database object represented as a d-dimensional
feature vector; ofi] denotes a vector component 4
with 1 <¢ < § (p.18)

a peer/resource p, € P (p.60)
a query object ¢ € U (p.8)

a query object represented as a J-dimensional
feature vector; gli] denotes a vector component 4
with 1 <¢ < § (p.18)

the search radius r € R* (p.9)

the inner radius of a metric shell (r*; € R{); a
single index 7 in case of ;" denotes the ID of the
shell center, an index pair ¢,j denotes the
minimum distance of database objects from
cluster [c;] to center ¢; (1 < 4,5 < m) (p.30)

the (covering) radius of a metric ball or the outer
radius of a metric shell (r{}* € Rg); a single index
i in case of 7"* denotes the ID of the ball or shell
center, an index pair ¢,j denotes the maximum
distance of database objects from cluster [¢;] to

center ¢; (1 <i,5 <m) (p.30)
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Si,j a similarity value capturing the similarity between
two feature vector dimensions i and j
(1<i,j<9)(p.18)

t a (term) weight in a posting of an inverted file;
e.g. determined by L. (c;) (p.54)

w a feature object w € U (p.17)

x a feature object € U (p.9)

T a feature object represented as a -dimensional
feature vector; Z[i] denotes a vector component 4
with 1 <4 <6 (p.9)

y a feature object y € U (p.9)

i a feature object represented as a d-dimensional
feature vector; 4[] denotes a vector component i
with 1 <4 <6 (p.9)

z a feature object z € U (p.16)

a function determining the ID(s) of the cluster
center(s) ¢; € C' with minimum distance
dist(ci, x) to feature object z (p.27)

a distance measure between two feature objects x
and y (p.8)

a distance measure in a mapped vector space
(p-50)

a function for estimating the number of relevant
database objects in a metric ball in case of a range
query based on the search radius r, the radius of
the metric ball 7", and the distance dist(q, c;)
between the query object and the ball center as

discussed in Berretti et al. [2002a, p.199] (p.136)

a k-NN query which determines the k closest
database objects to the query object g (p.9)

a function determining the position/rank ¢t € ]Nar
of the index 7 in L.; if 7 is not contained in the
list, zero is returned (p.54)
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map(x) a function mapping = from a metric space into a
vector space, the representation in the mapped
vector space is denoted as & (p.50)

mindist(x, [c], out ) the minimum distance between a feature object x
and a metric ball [¢],out as defined in Ciaccia et al.
(1997, p.429] (p.134)

oid(o) a function determining the object ID of a database
object 0 € O (p.79)

proz([ci] out, [¢j] out)  the proximity of two metric balls as defined in
' ! Amato [2002, p. 72] and Amato et al. 2003,
p.197] (p.135)

range(q, r) a range query which determines all database
objects 0 € O with dist(g,0) < r (p.9)

sim(z,y) a similarity measure between two feature objects x
and y (p.8)

a parameter of the Minkowski distance with a € IN*
(p-18)

i the block size of an M-tree or PM-tree (p.67)

Ba the storage space needed for a single distance
value (p.91)

Bidx the storage space needed for a particular index;

idx € {IF, MImoq, M-tree} (p.90)

Bo the storage space needed for a single database
object (p.91)

3278 the average space requirement of a set of resource
descriptions (p.105)

BEE the desired average space requirement of a set of
resource descriptions (p.129)

L the arithmetic mean (p.37)
o the variance (p.37)

the representational dimension(ality) of the feature
space (p.17)
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[% a distance threshold for computing resource
descriptions with the help of an M-tree as
proposed in Berretti et al. [2002allbl 2004] (p.67)

L separation constant of the Metric iDistance (see
Novak [2008, p.59f.]) (p.51)

I3 a distance threshold (p.29)

P the intrinsic dimension(ality) of a dataset as
defined in Chavez et al. [2001b, p.303] (p.37)

T the number of rows of the grid summaries for

geographic IR with 7 € INT (p.109)
a distance threshold (p.18)
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