853 research outputs found

    Plasma Profile and Shape Optimization for the Advanced Tokamak Power Plant, ARIES-AT

    Full text link

    Resonant Axisymmetric Modes

    Get PDF
    Axisymmetric modes in shaped tokamak plasmas are normally associated with vertical displacement events. However, not enough attention has been given to the fact that these modes can be resonant in two different ways. Firstly, for a plasma bounded by a divertor separatrix, a generic n=0 ideal-MHD perturbation, Ο, is singular at the divertor X- point(s), where Beq · ∇Ο = 0, with Beq the equilibrium magnetic field. As a consequence, n=0 perturbations can give rise to current sheets localized along the divertor separatrix. Secondly, a feedback-stabilized n=0 mode tends to acquire an Alfv ́enic oscillation frequency. As a result, a resonant interaction with energetic particle orbits can lead to a new type of fast ion instability

    Model predictive control of resistive wall mode for ITER

    Full text link
    Active feedback stabilization of the dominant resistive wall mode (RWM) for an ITER H-mode scenario at high plasma pressure using infinite-horizon model predictive control (MPC) is presented. The MPC approach is closely-related to linear-quadratic-Gaussian (LQG) control, improving the performance in the vicinity of constraints. The control-oriented model for MPC is obtained with model reduction from a high-dimensional model produced by CarMa code. Due to the limited time for on-line optimization, a suitable MPC formulation considering only input (coil voltage) constraints is chosen, and the primal fast gradient method is used for solving the associated quadratic programming problem. The performance is evaluated in simulation in comparison to LQG control. Sensitivity to noise, robustness to changes of unstable RWM dynamics, and size of the domain of attraction of the initial conditions of the unstable modes are examined.Comment: Original manuscript as submitted to Fusion Engineering and Desig

    Modelling for JET Vertical Stabilization System

    Get PDF
    Nuclear fusion is, in a sense, the opposite of nuclear fission. Fission, which is a mature technology, produces energy through the splitting of heavy atoms like uranium in controlled chain reactions. Unfortunately, the by-products of fission are highly radioactive and long lasting. On the other hand, fusion is the process by which the nuclei of two light atoms such as hydrogen are fused together to form a heavier (helium) nucleus, with energy produced as a by-product. Although controlled fusion is extremely technologically challenging, a fusion-power reactor would offer significant advantages over existing energy sources. This thesis is devoted to the control of tokamaks, magnetic confinement devices constructed in the shape of a torus (or doughnut). Tokamaks are the most promising of several proposed magnetic confinement devices. The need to improve the performance of modern tokamak operations has led to a further development of the plasma shape and position control systems. In particular, extremely elongated plasmas, with high vertical-instability growth rate, are envisaged to reach the required performance for ignition. This request for better performance from the experimentalists’ side has motivated the development of the new vertical-stabilization (VS) system at the JET tokamak, which has been proposed within the Plasma Control Upgrade project. This thesis presents the activity carried out to increase the capability of the VS system and to understand the operational limits in order to assess what can be done to improve the overall performance with the existing hardware and control system so as to minimize the impact on JET operation. The first objective of this work is the analysis of the new diagnostic system and the influence of the mechanical structure on the magnetic measurements used as diagnostics by the VS controller; the main focus is on the influence on the controller performance in the presence of large perturbations. The second objective is to design a new controlled variable to increase the performance of the VS system. The third objective is to provide an equivalent model of an ELM (Edge Localized Mode), in terms of internal plasma profile parameters via best fit of the vertical velocity estimation. The last objective is to obtain a reliable and accurate model of the overall system, based on the new platform MARTe, developed at JET and useful also for other devices

    Towards practical reinforcement learning for tokamak magnetic control

    Full text link
    Reinforcement learning (RL) has shown promising results for real-time control systems, including the domain of plasma magnetic control. However, there are still significant drawbacks compared to traditional feedback control approaches for magnetic confinement. In this work, we address key drawbacks of the RL method; achieving higher control accuracy for desired plasma properties, reducing the steady-state error, and decreasing the required time to learn new tasks. We build on top of \cite{degrave2022magnetic}, and present algorithmic improvements to the agent architecture and training procedure. We present simulation results that show up to 65\% improvement in shape accuracy, achieve substantial reduction in the long-term bias of the plasma current, and additionally reduce the training time required to learn new tasks by a factor of 3 or more. We present new experiments using the upgraded RL-based controllers on the TCV tokamak, which validate the simulation results achieved, and point the way towards routinely achieving accurate discharges using the RL approach
    • 

    corecore