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E-mail: francesco.porcelli@polito.it

Abstract. Axisymmetric modes in shaped tokamak plasmas are normally associated with
vertical displacement events. However, not enough attention has been given to the fact that
these modes can be resonant in two different ways. Firstly, for a plasma bounded by a
divertor separatrix, a generic n=0 ideal-MHD perturbation, ξ, is singular at the divertor X-
point(s), where Beq · ∇ξ = 0, with Beq the equilibrium magnetic field. As a consequence, n=0
perturbations can give rise to current sheets localized along the divertor separatrix. Secondly, a
feedback-stabilized n=0 mode tends to acquire an Alfvénic oscillation frequency. As a result, a
resonant interaction with energetic particle orbits can lead to a new type of fast ion instability.

1. Introduction
Present-day tokamak experiments adopt plasma shaping, and magnetic divertors, in order to
optimize fusion performance, and also to reduce the adverse effects of plasma-wall interactions.
However, cross-section elongation requires careful design of the plasma facing components for
passive feedback stabilization, and active feedback control by currents flowing in external coils,
in order to avoid vertical displacement events (VDE). Such events may endanger the machine
integrity and its safe operation [1–4]. Hence, plasma vertical stability has been the subject of
several analytic and numerical theoretical investigations, of which Refs. [5–10] are a sample.

Typically, in these investigations, the plasma is modelled by ideal-MHD, with boundary
conditions representing the presence of a nearby resistive wall and external feedback currents.
The basic idea is that eddy currents flowing along the wall, and/or in ad hoc metallic conductors
facing the plasma, can lead to passive stabilization of the ideal-MHD vertical mode. Indeed,
passive stabilization is a must, because if somehow vertical displacements were allowed to grow
on the Alfvénic time scale, magnetic fluxes generated by external currents placed outside the
wall of the vacuum chamber for active feedback control would not have the time to penetrate
the wall and counter the fast-growing ideal-MHD instability.

The main objective of the present article is to present an analytic treatment of vertical
displacement perturbations on the basis of the reduced ideal-MHD model, with preliminary
considerations concerning the impact of the X-point resonance. What has been overlooked in
previous theoretical works is that, due to the singular nature of axisymmetric modes at divertor
X-points, perturbed currents flowing along the magnetic separatrix may be induced by these
perturbations.

Stable vertical displacement modes tend to oscillate with a frequency of the order of the
relevant Alfvén frequency. Hence, these modes can be driven unstable by their resonant
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interaction with fast ions. Therefore, a second objective of this article is a discussion on the
nature of this mode-particle resonance and a preliminary analytic assessment and estimate of
the resulting instability growth time.

2. A heuristic model: three parallel current wires
Key elements of the vertical displacement dynamics can be understood on the basis of the
following heuristic model. Let us consider three parallel current wires. At equilibrium, the
plasma wire carrying the current IP is located at x = 0, while two equal external current wires,
each carrying a current IExt , are located at x = ±l. Note that we take the x-axis as the vertical
direction. The currents flow along the z-direction, which mimics the toroidal direction of a
tokamak configuration. All three currents are taken to be positive. The external wires are
fixed in space, while the plasma wire is free to move along the x-axis. Vacuum is assumed to
surround the three wires. Therefore, at equilibrium, no current flows through the two magnetic
X-points located at x = ±lX , with lX < l. This configuration mimics the equilibrium of a
straight tokamak bounded by a double-null magnetic divertor separatrix.

The equation of motion for the plasma wire is (in c.g.s. units)

µ ẍ = (4 IP IExt/c
2)x/(l 2 − x 2), (1)

where µ is the linear mass density, c is the speed of light, and an over-dot signifies time derivative.
We neglect self and mutual induction currents. Thus, IP and IExt remain constant as the plasma
wire is displaced. For small x� l, the solution of Eq. (1) is x = x0 e γH t, where x0 is an initial
displacement, and γH = (1/l)(4IP IExt/µc

2)1/2.
If instead of a plasma wire, we consider a vertically elongated plasma column with a uniform

current density extending, on the Oxy cross-section, up to an elliptical magnetic surface
with minor semi-axis a and major semi-axis b, then, according to the analysis of Ref. [11],
a relationship is established between the currents IP and IExt and the distance l; namely,
IExt/IP = [(b − a)/(b + a)][l2/(a2 + b2)]. Using this expression, γH is found to depend only
on the plasma current IP and on the parameters a and b, but not on l, nor on IExt. Also, for
a cylindrical plasma column with elliptical cross-section, the linear mass density µ should be
replaced by µ→ π a b %m, where %m is the volume mass density. After straightforward algebra,
taking the small ellipticity limit, e0 � 1, where

e0 =
b2 − a2

b2 + a2
, (2)

we can rewrite γH in terms of more familiar plasma parameters:

γH = e0
1/2τA

−1, (3)

where τA
−1 = BP

′
/(4π %m)1/2 is the inverse Alfvén time, and BP

′
is the radial derivative of the

poloidal magnetic field, averaged over a flux surface, at the magnetic axis. Note that 0 ≤ e0 ≤ 1;
in the limit of circular flux surfaces, e0 = 0 and the growth rate γH vanishes.

Ideal-MHD unstable vertical displacements in elongated tokamak plasmas have been observed
experimentally (see, eg., Ref. [12]). For values of e0 that are typical of present-day tokamak
experiments, γH is indeed a very fast growth rate. For instance, if we take a Hydrogen plasma
with e0 = 0.2, a = 1 m, Bp

′
= 1 T/m, and number density n = 10 20 m−3, we find γ −1H ' 1µs.

The ideal vertical instability is suppressed in the presence of a perfectly conducting wall,
provided this wall is not too far away from the plasma [5]. When the plasma current is displaced
from its equilibrium position, image currents are induced at the wall. The sign of these currents
is such that the corresponding forces oppose the motion of the plasma wire. From a heuristic
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point of view, this effect can be mimicked by two currents of opposite sign, ±δI, carried by
the two external wires, and added to the external currents IExt. The currents ±δI can be
thought of as driven by an induced e.m.f. proportional to ẋ. In the perfectly conducting limit,
δİ = DIExtẋ/l, where D is a dimensionless proportionality constant. In the actual tokamak
problem, the parameter D depends on the wall geometry [5] and on other passive stabilization
components eventually placed inside the vacuum chamber. Including the effect of the feedback
currents ±δI, the equation of motion for the plasma wire becomes µ c 2 ẍ ≈ 4 IP IExt (1−D)x/l 2,
where we have taken x � l. Stability is obtained for D > 1. When this inequality is satisfied,
an initial displacement of the plasma wire from its equilibrium position gives rise to oscillatory
motion with characteristic frequency

ωH =
√
D − 1 γH (4)

The stability criterion D > 1 is satisfied in well-designed tokamaks with elongated cross-sections
(see, e.g., Refs. [5, 9]). The effect of triangularity is outside the scope of the present article.

3. Model equations and plasma equilibrium
The magnetic field is represented as B = ez ×∇ψ+Bz ez, where ez is the unit vector along the
z-direction, and Bz is nearly constant. We assume that all physical quantities are independent
of the z coordinate. The plasma flow is represented as v = ez ×∇ϕ.

The magnetic flux function, ψ, and the stream function, ϕ, obey the well-known, reduced
ideal-MHD model equations [13]. In dimensionless form:

∂ψ

∂t
+ [ϕ,ψ] = 0, (5)

∂

∂t
∇ · (%∇ϕ) + [ϕ,U ] = [ψ, J ] , (6)

where the brackets are defined as [χ, η] = ez·∇χ×∇η, J = ∇ 2ψ is the normalized current density,
and U = ∇ 2ϕ is the normalized flow vorticity. Space and time are normalized as r̂ = r/r0, where
r0 = a b/[

(
a 2 + b 2

)
/2]1/2 is a convenient equilibrium scale length, and t̂ = t/τA, where τA is

the relevant Alfvén time as defined below Eq. (3). The dimensionless fields are normalized as

ψ̂ = ψ/(Bp
′
r20), ϕ̂ = (τA/r0

2)ϕ; the plasma density is %̂ = %m/%m0, with %m0 the density on the

magnetic axis, and the current density is Ĵ = (4π/cBp
′
)Jz. In order to simplify the notation,

over-hats are actually dropped in Eqs. (5) and (6), and in the following.
At equilibrium, fields are stationary, and, by assumption, equilibrium plasma flows are absent.

In order to solve Eqs. (5,6) analytically, we adopt the relatively simple equilibrium discussed
in Ref. [11]. The equilibrium current density, Jeq, is assumed to be uniform up to an elliptical
boundary with minor semi-axis a and major semi-axis b, and to drop to zero beyond that
boundary. External current are assumed to be placed symmetrically along the x-axis (x is
the vertical direction), at x = ±l. Clearly, the elliptical boundary must be a magnetic flux-
surface, which lies necessarily within the region bounded by the magnetic separatrix. In elliptical
coordinates (µ, θ), where x = A cosh(µ) cos(θ) and y = A sinh(µ) sin(θ), with A =

√
b2 − a2, the

elliptical boundary corresponds to µ = µb. Also, a = A sinhµb and b = A coshµb. Thus, Jeq
depends only on the µ coordinate and, consistently with the normalization adopted for the
current density, Jeq(µ) = 2H(µb − µ), where H(x) is the Heaviside unit step function. It can
also be stated that the equilibrium current density is a function of the equilibrium flux, ψeq, and
so [ψeq, Jeq] = 0, which implies ∇ 2ψeq = Jeq(ψeq).

According to the analysis of Ref. [11], it can be shown that the solution ψeq of the equilibrium
problem in the limit where the parameter ε = [(a2 + b2)/l2]e0 is small reduces to Gajewski’s
solution [14], represented as follows. Inside the elliptical boundary, where µ < µb and ψ = ψ−eq,
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the solution of ∇ 2ψ−eq = 2 that is well behaved on the magnetic axis and that reduces to a
constant on the elliptical boundary is best written in terms of Cartesian components:

ψ−eq(x, y) =
1

2

(
x2

b2
+
y2

a2

)
(7)

Outside the elliptical boundary, where µ > µb and ψeq = ψ+
eq, ∇ 2ψ+

eq = 0. We require that
ψeq(µ, θ) and ∂ψeq/∂n = n · ∇ψeq be continuous across the elliptical boundary, as we assume
that no equilibrium current sheet is present on the boundary. Here, the unit vector n is the
normal to the boundary. A suitable analytic solution can be obtained:

ψ+
eq(µ, θ) =

1

2
+ α2

{
µ− µb −

e0
2

sinh [2(µ− µb)] cos(2θ)
}

(8)

with α2 = ab/r20 and e0 the ellipticity parameter defined in Eq. (2). The magnetic flux surfaces
ψeq(µ, θ) = const exhibit a magnetic separatrix for ψeq(µ, θ) = ψX = µb α

2, with X-points
located at µ = µX = 2µb and θ = θX = (0, π). Gajewski’s solution approximates well the
complete solution given in Ref. [11] up to values of |x| and |y| much smaller than l, which, for
ε� 1, include the separatrix region.

4. Normal mode analysis of vertical displacements: the base scenario
The simplest assumption for the equilibrium plasma density is that its profile is the same as
that of the equilibrium current density, i.e., %eq = H(µb − µ), with H(x) the unit step function.
We refer to this as the “base scenario”. This scenario has two important implications: (i) We
can show that a rigid-shift vertical displacement is indeed the analytic solution of the linearized
reduced ideal-MHD model. For this displacement, the stream function in Cartesian coordinate
can be represented as ϕ = −γξy, where the constant ξ is the actual distance by which the
magnetic axis, and indeed the whole plasma within the elliptical boundary µ = µb, move along
the vertical x-direction. Furthermore, we can show analytically, on the basis of the reduced
ideal-MHD model, that the relevant growth rate, γ, as well as the feedback-stabilized oscillation
frequency, are in very good agreement with those obtained heuristically in Sec. 2; (ii) Since the
plasma density vanishes at the X-points, the X-point singularity does not play a role for the
base scenario. This is the reason why the results for this scenario agree so well with the results
obtained by the heuristic three-wire model of Sec. 2. There are, however, some interesting
results obtained for the base scenario that cannot be captured by the heuristic model. The more
realistic scenario where the plasma density extends to the X-points will be considered in Sec. 6.

Let ψ(µ, θ, t) = ψeq(µ, θ)+ψ̃(µ, θ) e γ t and ϕ(µ, θ, t) = φ̃(µ, θ) e γ t, where the over-tilde denotes
small perturbations. To first order in perturbed quantities, Eqs. (5) and (6) yield

γ ψ̃ + [ϕ̃, ψeq] = 0, (9)

γ∇ · (%eq∇ϕ̃) =
[
ψ̃, Jeq

]
+
[
ψeq, J̃

]
. (10)

In the region inside the equilibrium elliptical boundary, µ < µb, the stream function
corresponding to a rigid vertical shift, in elliptical coordinates, is

ϕ̃(µ, θ) = −γ ξ A sinhµ sin θ. (11)

Clearly, the vorticity field ∇ϕ̃ = 0 for the rigid-shift stream function, and so, since the plasma
density is assumed to be constant inside the elliptical region, also the l.h.s. of Eq. (10) vanishes.
Furthermore, [ψ̃, Jeq] = 0 within that region. Therefore, a consistent solution must also satisfy

[ψeq, J̃ ] = 0, or more simply J̃ = 0, inside the elliptical boundary.
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The perturbed magnetic flux, ψ̃−, can be obtained from the flux-freezing Eq. (9), which, in
Cartesian coordinates, yields ψ̃− = −ξ0x/b, where ξ0 = ξ/b, and in elliptical coordinates,

ψ̃−(µ, θ) = −ξ0
coshµ

coshµb
cos θ (12)

The vorticity Eq. (10) is, thereby, fulfilled as a consequence of the fact that Ũ = ∇2ϕ̃,
J̃ = ∇2ψ̃, ∇%eq and ∇Jeq all vanish inside the elliptical boundary. Note that in elliptical
coordinates, ∇2χ = h−2(∂2χ/∂µ2 + ∂2χ/∂θ2), where h = 1/|∇µ| = 1/|∇θ| is a scale factor. We
still have to make sure that the three terms in Eq. (10) balance also on the elliptical boundary,
where each term is proportional to a delta function, δ(µ − µb). This is shown next. As a
byproduct, the growth rate γ is determined by the balance condition.

In the vacuum region beyond the elliptical boundary, µ > µb, the equation for perturbed flux
function ψ̃+ is [ψeq, J̃

+] = 0, which reduces to J̃+ = ∇ 2ψ̃+ = 0. The solution that satisfies the
continuity condition at the elliptical boundary and the regularity condition at infinity is

ψ̃+(µ, θ) = −ξ0 e−(µ−µb) cos θ (13)

The derivative of the perturbed flux function with respect to the µ coordinate exhibits a
discontinuity at the elliptical boundary, µ = µb, which gives rise to a perturbed current sheet
along the ”toroidal” z-direction:

J̃(µ, θ) = j̃b(θ)δ(µ− µb) =
1

h2

(
∂ψ̃+

∂µ
− ∂ψ̃−

∂µ

)∣∣∣∣∣
µb

δ(µ− µb), (14)

where δ(x) is the Dirac delta function. A simple calculation gives

j̃b(θ) =
2(a+ b)

b(a2 + b2)

ξ0 cos θ

1− e0 cos 2θ
. (15)

In addition, the inertial term, as well as the term [ψ̃, Jeq] in Eq. (10), are proportional to
δ(µ − µb) sin θ, the latter since dJeq/dµ = −2δ(µ − µb). Multiplying both sides of Eq. (10) by
the scale factor h2, and integrating across the elliptical boundary over an infinitesimal interval
in µ, allows us to pick up the delta-function contributions and to determine the mode growth
rate γ :

lim
δµ→0

∫ µb+δµ

µb−δµ
h2 γ∇· (%∇ϕ̃) dµ = lim

δµ→0

{∫ µb+δµ

µb−δµ
h2
[
ψ̃, Jeq

]
dµ+

∫ µb+δµ

µb−δµ
h2
[
ψeq, J̃

]
dµ

}
(16)

We can evaluate the three terms above separately as follows:

lim
δµ→0

∫ µb+δµ

µb−δµ
h2 γ∇ · (%∇ϕ̃) dµ = −γ ∂ϕ̃

∂µ

∣∣∣∣
µ−b

= γ2 b2 ξ0 sin θ (17)

lim
δµ→0

∫ µb+δµ

µb−δµ
h2
[
ψ̃, Jeq

]
dµ = Jeq

∂ψ̃

∂θ

∣∣∣∣∣
µb

= 2 ξ0 sin θ (18)

lim
δµ→0

∫ µb+δµ

µb−δµ
h2
[
ψeq, J̃

]
dµ =

d

dθ

[
j̃(θ)

∂ψeq
∂µ

∣∣∣∣
µb

]
= −a+ b

ab2
ξ0 sin θ (19)



Varenna-Lausanne 2020
Journal of Physics: Conference Series 1785 (2021) 012004

IOP Publishing
doi:10.1088/1742-6596/1785/1/012004

6

Reintroducing, for clarity, physical dimensions for the growth rate γ and for the plasma minor
and major semi-axis a and b, we obtain γ2 = (r0

4/a2b2)(1− a/b)τ−2A , which can also be written
in terms of the ellipticity parameter e0 as

γ2 = (1− e0)(1 + e0 −
√

1− e20 )τ−2A . (20)

The result in Eq. (20) is valid for arbitrary values of e0 within the interval 0 ≤ e0 ≤ 1. In the
limit of small e0, Eq. (20) reduces to γ2 ≈ e0τ

−2
A , which agrees very well with the growth rate

(3) obtained heuristically in Sec. 2. An alternative form of the growth rate can be expressed in
terms of the elongation parameter, κ = b/a ≥ 1, i.e., γ2 = 4κ(κ− 1)/(1 + κ2)2τ−2A .

When feedback stabilization is present, the perturbed flux function involves an additional
term due to the external feedback currents. This term is continuous across the elliptical
boundary, and can be conveniently written as

ψ̃ext = e0ξ1
b

a+ b

coshµ

coshµb
cos θ, (21)

where ξ1 is a constant that depends on the strength of the feedback currents. Therefore, the
perturbed flux is modified by feedback into

ψ̃−f = ψ̃− + ψ̃ext = −
(
ξ0 − e0

b

a+ b
ξ1

)
coshµ

coshµb
cos θ (22)

ψ̃+
f = ψ̃+ + ψ̃ext = −ξ0e−(µ−µb) cos θ + e0ξ1

b

a+ b

coshµ

coshµb
cos θ (23)

Similarly, the stream function is modified by feedback into

ϕ̃−f = −γ
(
ξ0 − e0

b

a+ b
ξ1

)
ab

sinhµ

sinhµb
sin θ. (24)

Since ψ̃ext is continuous across the elliptical boundary, the perturbed current sheet, Eq. (15),
is not modified by feedback. However, ∂ψ̃/∂µ and ∂ψ̃/∂θ at µ = µb do change. Using the
expressions (22), (23) and (24) in Eq. (16), the growth rate is modified into

γ2 = γ0
2 1− (ξ1/ξ0)

1− e0 [bξ1/(a+ b)ξ0]
, (25)

where γ0
2 is the growth rate in the absence of feedback as given in Eq. (20). Therefore, the

criterion for feedback stabilization is
ξ1/ξ0 > 1. (26)

We now show that the ratio ξ1/ξ0 equals the parameter D introduced in Sec. 2. Following
the discussion at the end of Sec. 2, the perturbed flux, associated with the two currents ±δI, is
ψ̃ext = (δI/π)(A/l) coshµ cos θ, to first order in r/l, with r = (x2 + y2)1/2. As in Sec. 2, we let
δI = DIextξ/l. Relating IExt to the plasma current IP , see above Eq. (2), using IP = πabJeq
and the proper normalization for the dimensionless magnetic flux, see below Eq. (6), we obtain

ψ̃ext = e0Dξ0
b

a+ b

coshµ

coshµb
cos θ. (27)

Comparing this expression with that given by Eq. (21) reveals that D = ξ1/ξ0, as expected.
Therefore, in the limit of small ellipticity, the feedback stabilization criterion (26) is well
approximated by the criterion D > 1 obtained heuristically in Sec. 2.
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5. Interaction of vertical displacements with energetic ions
As shown in Secs. 2 and 4, feedback stabilization converts the n=0 unstable perturbation
into a neutrally stable MHD oscillation with frequency ωH given by Eq. (4), or better still,
ωH = (−γ2f )1/2, with γf in Eq. (25), provided D = ξ1/ξ0 > 1.

This mode may indeed have been observed in recent JET tokamak plasma experiments
designed to study the confinement of fusion products [15]. Finite amplitude n = 0 oscillations
with frequency ωobs ≈ 2.0 × 106s−1 were reported. The D-3He plasmas were heated by a
combination of neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH). The
resulting fast ion population reached energies in the MeV range. Using the JET parameters of
Ref. [15], namely, plasma minor radius a ' 0.9m, major radius R0 ' 3m, average ion density
ni ∼ 3.5 × 1019m−3, average ion mass mi ∼ 2.1mH , ellipticity e0 ∼ 0.25, and estimating
B
′
P ∼ 1T/m, we find γH ∼ 1.3× 106s−1, and so, ωH ≈ ωobs if we take D ≈ 1.6. This is indeed

a reasonable value, if we compare it, e.g., with the valued of D inferred from Ref. [5].
We suggest that JET observations of finite-amplitude n = 0 oscillations may be explained

by the resonant interaction of these modes with MeV fast ions. Fast ions with trapped
”banana” orbits may also contribute, but in general this involves higher fast ion energies,
and therefore the trapped ion resonance will be neglected in this preliminary analysis. The
relevant resonance involves the transit frequency, ωt, of circulating fast ions. In the following,
we sketch the derivation of the dispersion relation for n = 0 perturbations in the presence of
energetic particles, which can be conveniently written as δK = −δWMHD − δWhot(ω), where
δK =

∫
d3xρmξ

∗ · (∂2ξ/∂t2)/2 = −ρmω2|ξ|2V/2 is the perturbed plasma kinetic energy and
V is the plasma volume. In the latter expression for δK, we have assumed a constant plasma
density and the rigid-shift displacement derived in Sec. 4. Furthermore, δWMHD is the usual
ideal-MHD potential energy functional, modified by feedback, as discussed, e.g., in Ref. [16],
and δWhot is the fast ion potential energy, of which a general expression can be found, e.g., in
Ref. [17].

Analytic progress is possible assuming that the fast ion density, nh, is relatively low as
compared with the thermal plasma density, ni, so that |δWMHD| � |δWhot|. When this
inequality is satisfied, the fast ion contribution can be treated perturbatively, with nh/ni as
small expansion parameter. To zeroth order in this parameter, the rigid shift displacement
obtained in Sec. 4 can indeed be used to evaluate δK and δWMHD. Then, only the zeroth-order
rigid-shift displacement is required to evaluate the first order term δWhot. The real part of δWhot

will give rise to a small correction to the oscillation frequency. On the other hand, the imaginary
part of δWhot will introduce a growth rate, or damping, of the n = 0 mode. Therefore, in the
following, we will concentrate on the calculation of Im(δW hot).

Let us introduce ˆδK = δK/[(ρm|ξ|2V )/2] = ω2, ˆδWMHD = δWMHD/[(ρm|ξ|2V )/2] = ω2
H ,

and ˆδW hot = δWhot/[(ρm|ξ|2V )/2]. The dispersion relation takes the form

ω2 = ω2
H + ˆδW hot(ω). (28)

We can use for ω2
H the value obtained in Eq. (25). Following Ref. [17], we can write

δWhot(ω) = δW1 + δW2(ω), where the fluid-like part δW1 is a real quantity, while δW2 is a
complex quantity as it contains the contribution of resonant fast particles. For n = 0, δW2

reduces to (cf. Eq.(76) of Ref. [17])

δW2 = − 2π2c

Zem2

∑
σ

∫
dPϕdEdµ⊥τtω

∂F

∂E

+∞∑
p=−∞

|Υp|2

ω + pωt
(29)

The integration variables are invariants of the particle motion: toroidal canonical momentum
Pϕ, kinetic energy E and magnetic moment µ⊥. In general, the equilibrium distribution function
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F is a function of these three invariants and of the index σ = ±1, where σ = 1 corresponds to
co-circulating orbits and σ = −1 to counter-circulating orbits (with respect to the direction of
the toroidal magnetic field). The transit time is defined as τt = 2π/|ωt| . The Fourier coefficients
Υp are associated with the expansion of the perturbed guiding center Lagrangian, L̃(1) over the
particle orbit periodicity, namely:

Υp(E , µ, Pϕ) =
〈
L̃(1) exp (ipωtτ)

〉
(30)

where 〈χ〉 =
∮
dτχ/τt represents averaging over unperturbed orbits. The perturbed Lagrangian

for n = 0 ideal-MHD perturbations reduces to L(1) ' −(mv2‖ + µ⊥B)ξ · κ, with κ the magnetic

curvature vector and v‖ the particle velocity along magnetic field lines [17].
Equation (29) indicates that the relevant mode-particle resonance is ω = −pωt. The p = ±1

harmonics give the largest contribution to the imaginary part of δW2. Since |Υ1|2 = |Υ−1|2, Eq.
(29) can be rewritten as:

δW2 = − 4π2c

Zem2

∫
dPϕdEdµ⊥τtω

∂F

∂E
|Υ1|2

ω − ωt
(31)

Toroidicity gives a contribution to the curvature vector that is orthogonal to the vertical
displacement ξ. Therefore, only the “straight tokamak” cylindrical curvature is relevant for
the calculation of the scalar product ξ · κ appearing in the perturbed Lagrangian, which, after
straightforward algebra, can be further approximated as: L(1) ≈ ε2E (2− Λ) ξ sin (ϑ)/rq(r)2,
where Λ = µ⊥B0/E , B0 is the magnetic field on axis, ε = r/R0, R0 is tokamak major radius,
ξ is the constant amplitude of the vertical displacement, q(r) is the safety factor and (r, ϑ) are
standard poloidal coordinates. It follows that

Υ(1) = i
ε2

q(r)2
E(2− Λ)

ξ

r
〈sin (ϑ) sin (τωt)〉 (32)

The thin radial orbit width approximation has been used in Eq. (32). In this limit, the particle
orbit does not depart significantly from r = const magnetic surfaces (in the limit of small
ellipticity), and the variable Pϕ can be replaced by the coordinate r.

A preliminary analytic assessment of δW2 can be obtained using the distribution function:

F (r,Λ, v) = CH(rh − r)δ(Λ) exp

[
−
(
v − v0
δv0

)2
]

(33)

where C is a normalization constant, the unit step function H(rh − r) represents a uniform
radial distribution of energetic particles, E0 = mv20/2 is the typical energy of fast ions and the
parameter δ is assumed to be relatively small. When Λ = 0, the transit frequency reduces to
ωt = σv/[R0q(r)], and 〈sin (ϑ) sin (τωt)〉 = π. For q = 1 and R0 = 3m, JET resonance condition
ωt ∼ ωobs ≈ 2.0× 106s−1 involves fast ions with energies E0 ≈ 410keV .

Let us write Im( ˆδW hot) = ω2
Hλhot and ω = ωR + iγ. Assuming λhot � 1, and substituting

in the dispersion relation (28), yields ωR ≈ ωH and the growth rate

γ = ωHλhot/2 (34)

The sign of λhot depends only on the ratio v∗/v0, where v∗ = R0qωH is the resonant velocity.
Assuming a nearly constant q ≈ 1, it is possible to show that

λhot ∼ Cε2
(rh
a

)4 ∂

∂v
exp

[
−
(
v − v0
δv0

)2
]∣∣∣∣
v=v∗

(35)
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For δ < 1, C ∼ δ−1nh/nc. Clearly, λhot vanishes for v∗/v0 = 1. The controlling factor
exp{−[(v∗−v0)/δv0]2} is of order unity when (v∗/v0)−1 ∼ δ. For these values of v∗/v0, assuming
δ ∼ 0.1, nh/nc ∼ 10−2 and rh ∼ 0.3m, and typical parameters of the JET experiments reported
in Ref. [15], we estimate λhot ∼ 10−2 − 10−3, corresponding to n = 0 modes destabilized by fast
ions, growing on a time scale γ−1 in the range 0.1− 1 ms. This growth rate is comparable with
linear growth rates of toroidal Alfven eigenmodes and of m = n = 1 fishbone modes destabilized
by fast ions.

6. X-point magnetic resonance
Work is in progress to assess the impact of the X-point resonance on vertical displacements.
We consider the scenario where the equilibrium plasma density is uniform, but extends all the
way to the magnetic separatrix, % = H(ψX − ψ). In this scenario, correct treatment of the
X-point resonance becomes essential. Analytic progress is possible if the equilibrium current
density and magnetic structure are assumed to be the same as those discussed in Secs. 3 and 4.
In particular, the equilibrium current density is zero beyond the elliptical boundary. However,
perturbed currents are now allowed to flow along the separatrix.

Also for this scenario, the rigid-shift solution for the perturbed stream function, ϕ̃, discussed
in Sec. 4, see Eq. (11), is found to be a valid solution of the perturbed ideal-MHD reduced model;
indeed, its validity now extends all the way to the separatrix. As a consequence, the perturbed
magnetic flux ψ̃(µ, θ) in the region inside the magnetic separatrix also involves a single harmonic
of the elliptical angle θ, and it satisfies the ideal-MHD constraint at the X-points, ψ̃(µX , θX) = 0,
where µX = 2µb, θX = 0, π are the X-points coordinates. However, since the separatrix is not a
µ = const surface, several θ harmonics will be coupled on the separatrix and into the vacuum
solution.

Orthogonal magnetic flux coordinates (u, v) can be introduced in the region outside the
elliptical boundary, where the equilibrium current density is assumed to vanish, and all the way
to infinity. Thus, u = α−2(ψeq − ψX), where the parameter α was defined in Sec. 3, while
∂v/∂θ = ∂u/∂µ. A dispersion relation can be obtained following a procedure at all similar to
that in Sec. 4, the main difference being that now the perturbed equation of motion involves
terms that are zero everywhere except on the magnetic separatrix, where they are proportional
to delta functions, δ(u). Detailed of the algebra will be presented in a separate publication.
Here, we summarize the main results:

(i) A perturbed current sheet forms at the separatrix, J̃(u, v) = j̃X(v)δ(u), with j̃X(v) an even
function of v, at least in the vicinity of the X-points. Near the X-point at v = 0 (θ = 0), one

finds j̃X(v) ∼ −e3/20 |v|1/2. This non-analytic form of j̃X(v) for small v is indicative of the
fact that several harmonics in the angle v make up the spatial structures of the perturbed
flux and current density near the separatrix.

(ii) Since the derivative of j̃X(v) with respect to the v coordinate is negative for small v, also
γ2 is negative. Therefore, it is found that the perturbed currents, that are induced along
the magnetic separatrix as a consequence of the ideal-MHD X-point resonance, are capable
of suppressing the growth of vertical displacements, at least on the ideal-MHD time scale.
Therefore, passive feedback stabilization of the fast-growing ideal-MHD instability would
not be required in this case. The stabilized n = 0 mode is found to oscillate with a frequency
scaling with ellipticity as ω ∼ e0ωA.

(iii) A special solution can also be found, such that no current sheet forms along the separatrix.
In this case, γ2 = 0. Therefore, this special solution corresponds to a new ideal-MHD
equilibrium, where the current-carrying plasma column is shifted vertically.
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7. Conclusions
This article contains three main results. First of all, we have shown that a rigid-shift
displacement is indeed the analytic solution for the normal mode analysis of axisymmetric n = 0
modes. This result has been obtained on the basis of the linearized, reduced ideal-MHD model,
starting from a relatively simple “straight tokamak” equilibrium. Our result for the growth
rate of ideal-MHD unstable vertical displacements, valid for arbitrary values of the ellipticity

parameter e0, is given in Eq. (20). In the limit of small e0, the growth rate scales as γ ∼ e1/20 τ−1A ,
where τA is the relevant Alfvén time. With feedback stabilization, the n = 0 mode becomes

oscillatory in nature, with a frequency ω ∼ e
1/2
0 ωA, where ωA = τ−1A . This is what we have

called in Sec. 4 the “base scenario” for n = 0 vertical modes.
Secondly, in Sec. 5, we have investigated the possibility that the feedback-stabilized n = 0

modes interact with fast ions. The relevant resonance condition is ω ∼ ±ωt, where ωt is the
transit frequency of circulating fast ion orbits. In JET experiments, where finite amplitude
n = 0 modes were observed [15], the resonance condition can be satisfied by MeV fast ions.
Preliminary analysis (Sec. 5) suggests that the resonant mode-fast particle interaction may
indeed drive n = 0 modes unstable, with a growth time of order 0.1 - 1 ms.

Finally, in Sec. 6, we have considered the realistic scenario where the equilibrium plasma
density extends to the X-points of the magnetic divertor separatrix. In this circumstance, special
care is needed to treat the X-point resonance correctly, as n = 0 perturbed current sheets may
form along the separatrix. It is found that these currents are such to completely stabilize
ideal-MHD vertical displacements, replacing in a way the effect of passive feedback stabilization
associated with wall-image and/or external currents.

Clearly, the fact that perturbed current sheets are likely to form along the magnetic separatrix
suggests that plasma resistivity may have a profound impact on the stability of n = 0 vertical
displacements. Resistive effects are important in a narrow boundary later extending along the
magnetic separatrix. The work presented here provides the “outer”, ideal-MHD mode structure
for asymptotic matching with the boundary layer solution.
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