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Abstract

The main sources of noise and pick-ups in Alcator C-Mod are iden-

tified and their effects on the measurement and control of the vertical

position are evaluated. Broadband noise may affect controllability of

C-Mod plasmas at limit elongations and may become an issue with

high-order controllers, therefore two applications of Kalman filters are

investigated. A Kalman filter is compared to a state observer based

on the pseudo-inverse of the measurement matrix and proves to be

a better candidate for state reconstruction for vertical stabilization,

provided adequate models of the system, the inputs, the process and

measurement noise and an adequate set of diagnostic measurements

are available. A single-input single-output application of the filter for

the vertical observer rejects high frequency noise without destabilizing

high-elongation plasmas.

Keywords: measurement noise, vertical control, Kalman filter. PACS: 52.55.-
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1 Introduction

Plasmas with shaped cross-sections have higher MHD stability limits [1], but

require sophisticated feedback control [2], [3]. Moreover, vertically elongated

plasmas are vertically unstable and require feedback stabilization [4], [5], [6],

[7], [8], [9].

Noise enters the feedback control loop at various points and limits mea-

surement resolution and control precision. A general evaluation of noise in

tokamak machines is not possible, because noise is very dependent on the

specific hardware, its operating conditions and its surrounding environment.

However, a collection of data from existing machines may help to predict

noise contributions and their implications in large-scale reactors. In section

2 we discuss the main sources of broadband noise and sinusoidal pick-ups

in Alcator C-Mod and their effects on the measurement and control of the

vertical position.

Other forms of perturbations originating from the physics of tokamak

plasmas are generally referred to as disturbances: they can be step-wise

perturbations, such as beta drops, large injections, etc., or periodic pertur-

bations, such as tearing modes. The loop response to noise and disturbances

can be optimized by assigning the poles of the closed-loop system with full-

state feedback control [10]. Full-state feedback control has also been proposed

for the ITER vertical stabilization loop [11]. The first stage of a full-state

controller is a state observer which uses a-priori knowledge and real time
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observations to reconstruct the states of the system. A widely used state

observer is the Kalman filter [12]. Other groups have shown that a Kalman

filter is effective at discriminating Resistive Wall Modes from noise and in-

terferences [13], [14]. In section 3 we discuss the design of a Kalman filter

to reconstruct the states relevant for plasma vertical stabilization. In section

4 we illustrate a single-input single-output application of the filter to reject

noise from the vertical observer and improve plasma controllability at limit

elongations.

2 Measurement of Noise and Pick-ups in Al-

cator C-Mod

Figure 1 shows the configuration of the Alcator C-Mod vertical control system

along with the main sources of noise and pick-up1. The axisymmetric coils

OH1, OH2U, OH2L are used for inductive current drive and for vertical

position control, while EF1U, EF1L, EF2U, EF2L, EF3, EF4 are used for

plasma shape and position control. The anti-series EFC coils are used for

vertical stabilization and are driven by a fast chopper power supply.

Noise sources are indicated in red: the current noise of the power supplies,

the measurement noise of the magnetic diagnostics and the plasma noise.

The magnetic diagnostics in C-Mod consists of a large set of flux loops and

1In the following, noise is used for broadband gaussian processes, while pick-up is used
for narrowband interferences. Plasma noise is used to indicate spurious signals arising
from the plasma itself, which are considered to be broadband and gaussian.
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magnetic field probes. Pick-ups are indicated in blue: the alternator and

line frequency at the power supplies and the line frequency in the magnetic

diagnostics. The chopper bang-bang behavior is mostly negligible because of

its high frequency2.

The vertical position is reconstructed frommagnetic measurements through

a well validated linear observer [2], whose output is the product of the vertical

position of the current centroid and the plasma current (ZCUR Observer in

figure 1). A first feedback loop PID Slow, with proportional, derivative and

integral gains, controls the vertical position on the time scale of the poloidal

equilibrium (i.e. fractions of a second); the output of the PID controller gen-

erates a demand to all of the equilibrium field power supplies with the vector

of coefficients Slow Z Controller. A second loop PD Fast, with proportional

and derivative gains, stabilizes the vertical position on the time scale of the

vertical instability (i.e. milliseconds); the output of the PD controller drives

only the chopper with the gain Fast Z Controller. The chopper is connected

to the anti-series EFC coil pair, which is the actuator for vertical stabiliza-

tion. The bandwidth of the fast loop is cut off at 800Hz by a 4-th order

Butterworth filter at the input of the chopper.

The noise and pick-up of the magnetic diagnostics were estimated from

open-loop tests with no power supplies and no plasma. The typical 60Hz

pick-up is ∼ 2mV and the broadband contribution is ∼ 2.3mV on each

2The chopping frequency at zero input demand is ∼ 3.5kHz. In standard operation
conditions, this frequency does not move down into the band of interest, even during large
input modulation.
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channel (RMS values). In physical units, the latter figure is equivalent to

∼ 1.2mWb on the flux loops and ∼ 1.2mT on the magnetic field probes.

The total pick-up on the vertical observer is ∼ 13mV and the broadband

contribution is approximately the same value ∼ 13mV . In physical units,

13mV ≡ 0.3mm MA.

The current noise in the control coils was estimated from power supply

test shots at constant demand. The signals produced in the magnetic di-

agnostics by current fluctuations can exceed the diagnostics noise in a few

specific channels, but the overall effect on the vertical observer is negligible.

The output of three of the power supplies show significant pick-up at

frequencies of 60Hz and 54Hz3 and harmonics. The direct coupling of the

pick-ups with the vertical observer is negligible, however they do limit the

performance of C-Mod by driving large vertical oscillations of high-elongation

plasmas.

2.1 Effects of Noise and Pick-ups on the Vertical Po-

sition

Figure 2 shows the spectra of the vertical position observer (ZCUR) for

different target plasmas4. The spectral analysis is conducted on samples

taken during 0.5s of the flattop with an interval T = 100µs, the spectral

3In Alcator C-Mod some of the equilibrium field supplies are powered directly from
the grid, others are powered through an alternator whose operating frequency varies from
∼ 57Hz to ∼ 54Hz during a plasma discharge.

4In the following κ refers to the elongation at the separatrix.
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resolution is ∆f = 2Hz. Most of the information is at low frequency 0 −
200Hz. The main features in these spectra are the components at ∼ 54Hz

and harmonics (∼ 108Hz, ∼ 162Hz) and 60Hz and harmonics (120Hz,

180Hz), corresponding to real plasma oscillations driven by the pick-ups

on some of the power supplies, and the closed loop resonances at ∼ 20Hz

and ∼ 110Hz5. Independent X-ray emission measurements show that their

amplitude can be several millimeters in high-elongation shots.

For a typical elongation κ = 1.7, the total broadband noise is σZCUR ∼
1mm MA, resulting from the magnetic diagnostics noise, the plasma noise

and the effects of the current noise in the control coils. The diagnostics noise

amounts to σDiag ∼ 0.3mm MA, while the effects of the current noise are

mostly negligible, therefore the plasma contributes most of the broadband

noise in the vertical observer:

σPlasma =
q
σ2ZCUR − σ2Diag . 1mm MA (1)

Finally, vertical stabilization uses derivative feedback: it is therefore

useful to estimate the broadband noise affecting the measurement of the

vertical velocity of the plasma (velocity resolution), which on C-Mod is

σdZCUR/dt ∼ 1m/s MA, in the 800Hz bandwidth of the fast vertical channel.

Higher-order derivatives would amplify the high frequency noise and further

5The vertical position feedback loop has two resonances, at ∼ 20Hz and ∼ 110Hz. The
former mode is coupled with the slow poloidal equilibrium, while the latter corresponds
to the fast vertical stabilization system. With the nominal control gains the "slow mode"
is mostly suppressed.
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reduce the control precision.

3 State Observer for Vertical Stabilization Based

on a Kalman Filter

A Kalman filter uses a-priori knowledge of the system and of noise processes

and available observations to reconstruct the states of the system. A linear

dynamic model of the plasma vertical position is obtained by discretizing

the axisymmetric structures of the tokamak in toroidal elements, or circuits,

each one with a specific resistance, self-inductance and mutual inductances,

and by writing the coupled circuit equations inclusive of plasma mediated

effects [15]. A distinction is made between active elements, which are fed

by external voltages, and passive elements. The final result is a state-space

system of the form:

d (δIcv)

dt
= AδIcv +BδVc (2)

where δIcv ≡ [δIc; δIv] is the vector of perturbations of active and passive cur-
rents respectively and δVc is the vector of external voltages (its coefficients

are zero for passive elements). In the case of C-Mod, the problem of vertical

stability is well approximated by a single-input multiple-output (SIMO) sys-

tem, which evolves on a time-scale much faster than the poloidal equilibrium.

The SIMO’s input is δVvs, i.e. the demand to the vertical stabilization EFC
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coils. The state equation is obtained by setting all the inputs to zero, except

for δVvs.

d (δIcv)

dt
= AδIcv + bδVvs (3)

Note that the matrix B is now a vector b. The SIMO’s output is the

vector of diagnostic measurements δy, comprising the flux loops, the poloidal

field coils, the Rogowski coil and the control currents:

δy = CδIcv (4)

Our full state-space model of tokamak and plasma is of order 200 and

needs to be reduced for real-time computation of the filter. In our custom

implementation of model reduction, the plant is firstly diagonalized and the

eigenvalues ordered so that the unstable mode is in the lower right corner of

the state matrix. The stable part of the plant is then reduced with Schur

balanced truncation [18]. Finally, the system and the truncation matrices are

augmented with the unstable mode and the reduced system is diagonalized,

in order to preserve the identity of the modes. A high-elongation equilibrium

with growth rate λ = 370rad/s is used here and in the following for numerical

studies and simulations. The corresponding matrices are extracted from

calibrated Alcasim simulations [16] of a high-elongation shot.

One problem is to determine how many modes are enough to reproduce

the input-output response of the system. For this purpose, we introduce the
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relative error bound:

ε ≡ 2
P

i:excluded σiP
i:all σi

(5)

where the Hankel Singular Values (HSV’s) σi measure the contribution of

the modes of the system to the energy of the input-output response [17].

Figure 3 shows the relative error bound for model reduction of our reference

equilibrium. Because the error plateaus above five modes, this number seems

to be sufficient to reproduce the stable part of the system.

Figure 4 shows the eigenvalues of the reduced model for different orders

Nred. This is a convenient way to understand which modes are kept in the

reduced model. Blue diamonds show some of the stable eigenvalues for order

Nred = 9. There are some slow modes with small negative eigenvalues, which

are mainly localized in the equilibrium field coils. There is also the EFC

mode, which is localized in the EFC coils and the nearest wall, and has a

decay constant ∼ −200rad/s. The remaining modes have even smaller time
constants. As the order is reduced to Nred = 5 (magenta circles), only two of

the slowmodes, the EFCmode and a couple of faster modes are kept, however

the fastest mode at ∼ −2600rad/s should be a result of the synthesis of the
two fastest modes of Nred = 9. The identity of the modes at lower orders can

be analyzed by similar arguments.

The tokamak and plasma’s reduced state-space {Ar,br,Cr} is augmented
with the vertical stabilization power supply’s state-space {Aps,bps, cps} to
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obtain equations 6 and 7:

dx

dt
=

⎡⎢⎣ Aps 0

brcps Ar

⎤⎥⎦x+
⎡⎢⎣bps
0

⎤⎥⎦u = Atotx+ btotu (6)

δy =

∙
0 Cr

¸
x = Ctotx (7)

where x ≡ [xps; δIcv] is the augmented state vector, xps stands for the internal
states of the supply and u is the power supply demand.

Finally, the model is discretized on the sampling time T of the C-Mod

digital plasma control system, leading to equations 8 and 9:

x(k) = Adx(k − 1) + bdu(k − 1) +w (k) (8)

y(k) = Cdx(k) + r (k) (9)

where Ad = exp (AtotT ), bd =

TZ
0

exp (Atotτ) dτbtot, Cd = Ctot, w is the

process noise and r is the measurement noise.

3.1 Kalman Filter Equations

A Kalman filter comprises a set of time-update equations (equations 10 and

11) and a set of measurement-update equations (equations 12 - 14) [12]:
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bx−(k) = Adbx(k − 1) + bdu(k − 1) (10)

P−(k) = AdP(k − 1)AT
d +Q (k) (11)

K(k) = P−(k)CT
d

£
CdP

−(k)CT
d +R (k)

¤−1
(12)

bx(k) = bx−(k) +K(k) £yexp(k)−Cdbx−(k)¤ (13)

P(k) = [I−K(k)Cd]P
−(k) (14)

where bx−(k) is the a priori estimate of the state at time k; P(k) is the error co-
variance matrix at time k: P(k) ≡ E

n
(δx (k)−E {δx (k)})T · (δx (k)− E {δx (k)})

o
,

δx ≡ x(k)−bx(k) (P−(k) is the corresponding a priori estimate); Q (k) is the
process noise covariance matrix: Q (k) ≡ E

n
(w (k)−E {w (k)})T · (w (k)−E {w (k)})

o
;

K(k) is the Kalman gain at time k; R is the measurement noise covariance

matrix: R (k) ≡ E
n
(r (k)−E {r (k)})T · (r (k)−E {r (k)})

o
; yexp(k) is the

output measurements at time k.

If the process and measurement noise are stationary (Q (k) ≡ Q, R (k) ≡
R), the Kalman gain and the error covariance matrix can be calculated off-

line. The error covariance matrix is initialized to the process noise covariance

matrix P(0) ≡ Q and equations 11, 12, 14 are solved iteratively until con-
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vergence. The only equations to compute in real time are 10 and 13, which

can be written in compact form:

bx(k) = A0
dbx(k − 1) + b0du(k − 1) +Kyexp(k) (15)

where A
0
d = (I−KCd)Ad, b

0
d = (I−KCd)bd.

The process covarianceQ and the measurement covarianceR are external

parameters: their relative magnitude sets the trade-off between filter band-

width and noise rejection. In the simplest case, the process covariance matrix

Q is initialized assuming that the noise processes driving the modes of the

reduced model are uncorrelated gaussian processes with uniform variance σ2w

and that the noise processes driving the internal states of the power supply

have zero amplitude. The measurement covariance matrix R is initialized

assuming that all the channels are uncorrelated gaussian processes with the

same variance σ2R. The ratio σ2R/σ
2
w is an external parameter available for

tuning: when σ2R/σ
2
w → 0 , the filter assumes that all the fluctuations of

the measurements are a direct consequence of the fluctuations of the states

and no filtering occurs. This is readily seen in the simple case when Cd is

square and invertible. Solving equations 11, 12, 14 gives K = C−1d . Then,

from equation 13, bx(k) = C−1d yexp(k). Conversely, when σ2R/σ
2
w → ∞, the

filter assumes that all the fluctuations of the measurements are noise and the

measurements are discarded entirely. In fact, K = 0 in this case.

For the purpose of simulations, a different paramenter is introduced α2 ≡
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kAZCURk2
kAZCURCdk2

σ2R
σ2w
, where AZCUR is the vector of coefficients of the vertical

observer.

3.2 Simulated Behavior of the Filter

Figure 5 shows the linear model to test the behavior of the filter. The verti-

cal stabilization loop comprises the full model of the plant, augmented with

the dynamic models of the power supplies (State-Space); the linearized diag-

nostics (Ctotalpc); the digitizer (Zero-Order Hold), with the DPCS sampling

time T = 100µs; the vertical observer (A_ZCUR), the fast PD controller

(Fast Controller) and the chopper gain (Chopper Gain), which are the same

as in experimental discharges.

The Kalman filter is implemented with a Matlab sFunction (VerticalFil-

ter6 ).

A pseudo-inverse state observer (pinv State-Observer) is used to bench-

mark the behavior of the Kalman filter. The observer is preceded by an

optimized low-pass filter (Digital Filter Design) in order to reject part of the

measurement noise.

Process Noise is a vector of uncorrelated broadband gaussian noise processes

of uniform amplitude, which is calibrated in order to produce RMS fluctua-

tions of the vertical observer ∼ 0.5mm MA in the absence of all other noise

sources.

Diagnostics Noise is a vector of uncorrelated broadband gaussian noise
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processes of uniform amplitude, which is calibrated in order to obtain RMS

fluctuations of the vertical observer ∼ 40mV in DPCS units, equivalent to

the resolution of the vertical observer ∼ 1mm MA. 60Hz Typical is the

60Hz pick-up in the magnetic diagnostics of amplitude 2mV per channel.

54Hz Pick-up models the large pick-up on OH2U and was calibrated in

order to produce large 54Hz vertical oscillations of peak-to-peak amplitude

∼ 1.2cm, as observed in experiments: it can be turned on or off to study how
the filter behaves in the presence of broadband noise only or when a large

sinusoidal input is present that is not included either in the SIMO model of

the plant or in the model of noise in the Kalman filter.

The purpose of the linear model is to determine if the Kalman filter can

reconstruct the states of a reduced-order system, while rejecting noise, better

than a simple pseudo-inverse observer with an optimized low-pass filter, in

realistic scenarios of noise and pick-ups. Moreover, the Kalman filter can be

tested for robustness against parameter setting.

The pseudo-inverse observer is built by calculating the pseudo-inverse of

the output matrix of the reduced-order system Cr with the Matlab pinv

routine [19]. The observer does not reject most of the input noise, therefore

it is necessary to add an optimized low-pass filter6.

The error of the state observers is calculated by subtracting the recon-

6The filter was designed with the Digital Filter Design toolbox of Simulink, with the
goal of rejecting most of the noise, without introducing enough phase lag to destabilize
the feedback loop. The best solution appeared to be a 5-th order FIR Equiripple with
800Hz pass-band, 5kHz stop-band, −40dB stop-band attenuation and phase lag < 10 deg
at 200Hz.
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structed states from the real states, which are extracted from the full model

with the truncation matrix slbig. The power spectrum is calculated for each

one of the error signals and integrated in order to have both a spectral dis-

tribution and a RMS estimate of the error. The latter is normalized by the

RMS values of the real states7.

With the simple model of uniform process noise, the only knob available

for tuning is the noise ratio α2, which should be large enough to reject most

of the measurement noise from the reconstructed states, without introducing

significant distortion. In order to determine the optimal setting of this pa-

rameter, we inject a sine wave of appropriate frequency at the input of the

plant, like Test Sine in figure 5. By looking at the Bode plots of this high-

elongation equilibrium, we find that the phase margin is ∼ 7.4 deg at 100Hz,

which sets the maximum phase lag tolerable at this frequency, corresponding

to α2 ≤ 4.
The generalization to cases with non-uniform process fluctuations is pos-

sible by using a vector α2 with components α2i for the various (uncorrelated)

modes.

In order to have a reference of how much error is tolerable, a simple argu-

ment can be made. The coefficients of the vector cz ≡ AZCURCd represent

the contribution of individual states to the vertical observer. The ratio of the
7The RMS values are only coarse zeroth-order estimates of the errors in state recon-

struction, lumping together deterministic errors, such as amplitude and phase errors, and
random fluctuations. A careful inspection of the time traces is always needed to separate
these two cases.
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vertical resolution σZCUR and any coefficient of cz represents an error that,

by itself, would produce vertical fluctuations equal to the vertical resolution:

σε,i = σZCUR/ |cz,i| , i = 1, ...6 (16)

If the state fluctuations are uncorrelated, then the state observer does

not allow a more accurate representation of the vertical position than the

C-Mod vertical observer if any of the errors is larger than the corresponding

value σε,i. In other words, the errors of all reconstructed states should be

well below the corresponding σε,i.

Figure 6 shows the superposition of real and reconstructed states with

the pseudo-inverse observer and the Kalman filter. The 54Hz pick-up is

initially off for a test with broadband gaussian noise only (consistent with

the synthesis of the Kalman filter). Figure 7 shows the RMS values of the

error signals together with "Max Error", i.e. the vector σε normalized by

the RMS values of the states.

All of the errors are well below the dashed line: both state observers allow

a representation of the vertical position with lower noise than the standard

C-Mod vertical observer, as it can be seen from direct inspection. However,

in the case of the pseudo-inverse observer, this is due to the optimized low-

pass filter at its input. In all the cases investigated the Kalman filter was

consistently out-performing the pseudo-inverse observer, especially with non-

uniform noise models.
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Next, the 54Hz pick-up is introduced in simulations. Figures 8, 9 show

results in this case. There are significant amplitude and phase errors in the

reconstructed states by both the pseudo-inverse observer and the Kalman fil-

ter. In the latter case, a large set of values of α2 was tried without significant

improvements. This result is not surprising: the pseudo-inverse observer is

the pseudo-inverse of the measurement matrix of a reduced-order model of

the SIMO system, and therefore ignores the presence of a large additional

input; similarly, the Kalman filter is simulating a reduced-order model of the

SIMO plant; moreover, it assumes broadband gaussian noise only. In order to

correctly reproduce the effects of the large pick-up a full MIMO formulation

and a comprehensive model of noise and pick-ups are needed.

One important issue is how state reconstruction depends on the accuracy

of the model of the plant. In order to answer this question, we tried two

different simulations with broadband noise only:

1. the Kalman filter and the pseudo-inverse observer are built from an

equilibrium with growth rate λ = 314rad/s, about 15% smaller than

the unstable eigenvalue of the plant;

2. the Kalman filter and the pseudo-inverse observer are built from an

equilibrium with growth rate λ = 282rad/s, about 24% smaller than

the unstable eigenvalue of the plant.

In both cases the numbers are similar to those in figure 7, proving a robust

behavior of the filter with respect to (small) errors in the model of the plant.
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4 Model-based Filter for the Vertical Observer

Based on a Kalman Filter

One special application of the Kalman filter looks at the Single-Input Single-

Output (SISO) problem:

d (δIcv)

dt
= AδIcv + bδVvs (17)

ZCUR = czδIcv (18)

where ZCUR is the vertical position times the plasma current. Based on the

predictions of the model in equations 17, 18, it is possible to design a filter

for the vertical observer.

The procedure for model reduction, compounding and digitization are

similar to those discussed for the SIMO system, with final result:

x(k) = Adx(k − 1) + bdu(k − 1) +w (k) (19)

ZCUR(k) = czdx(k) + r (k) (20)

In the SISO case R ≡ σ2R = σ2ZCUR ∼ (1mm MA)2 is readily available

from the analysis of noise. Equation 15 becomes:
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bx(k) = A0
dbx(k − 1) + b0du(k − 1) + kZCURexp(k) (21)

where the Kalman gain k is evaluated by solving equations 11, 12, 14 until

convergence, and the output of the filter is given by:

ZCUR(k) = czdbx(k) (22)

The filter frequency response is obtained by calculating the z-transform

[20] of equations 21 and 22:

bX(z) = A0
d

bX(z)
z

+
b
0
d

z
U(z) + kZCURexp(z) (23)

ZCUR(z)

ZCURexp(z)
= czd

³
zI−A0

d

´−1
b
0
d

U(z)

ZCURexp(z)
+zczd

³
zI−A0

d

´−1
k (24)

FKF = FSY SFCTRL + zFK (25)

where FKF ≡ ZCUR(z)/ZCURexp(z), FSY S ≡ czd
¡
zI−A0

d

¢−1
b
0
d, FCTRL ≡

U(z)/ZCURexp(z), FK ≡ czd
¡
zI−A0

d

¢−1
k.

FCTRL is the transfer function of the PD controller in the vertical stabi-

lization loop:
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FCTRL = m

µ
D

T

z − 1
z

+ P

¶
(26)

where T is the sampling time and m is a scalar gain. The filter behavior is

therefore affected by internal parameters, i.e. the noise ratio α2 ≡ σ2R
kczdk2 σ2w

,

and by external parameters, i.e. the controller gains P and D. By applying

the transformation from z to s-domain, z =
2 + sT

2− sT
, it is possible to draw

the Bode plots for different parameter values.

Figure 10 shows the Bode plots of FKF for different orders of the reduced

model. When the order of the model is Nred ≥ 3 the slow modes are included
and the frequency response has a unitary DC gain, ForNred ≥ 6 the frequency
response is practically unchanged.

The broad minimum ∼ 60Hz and the broad maximum at ∼ 500Hz are

caused by the combination of the terms in equation 25, i.e. the low-pass

behavior of zFK , the high pass behavior of FCTRL and the cut-off of the

chopper at 800Hz. The location and width of these features change with the

value of the derivative and proportional gains. Figure 11 shows the Bode

plots of FKF for Nred = 6, the nominal control gains D = 6, P = 4, and

different values of the noise ratio.

The SISO Kalman filter was programmed in IDL and incorporated in the

C-Mod Plasma Control System (PCS) as a real-time procedure on the vertical

observer. It was initially tested with Alcasim simulations and off-line. Figure

12 shows the comparison of analytic and experimental transfer functions. At
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the vertical signal frequency of approximately 120Hz, the filter introduces

a phase lead that actually improves the stability of the closed loop and an

attenuation of approximately −4dB that changes the dynamic behavior of

the loop (the filter attenuation is equivalent to changing the control gains),

but did not destabilize plasmas up to κ = 1.84. Figure 13 shows results from

a shot where the filter was operating in the vertical stabilization loop.

It should be noted that in the SISO application of the Kalman filter only

the measurement of the vertical position is used to correct the prediction

of multiple states, therefore the problem is under-constrained and the inter-

nal states of the filter differ from the physical states of the plant: the main

property of the filter of being an accurate state observer is not exploited.

Moreover, as far as rejection of high-frequency noise, an optimized low-pass

filter can do better than the SISO Kalman filter8. Therefore the SISO appli-

cation of the Kalman filter is probably non-optimal.

5 Conclusions

The vertical resolution on C-Mod is σZCUR ∼ 1mm MA and σdZCUR/dt ∼
1m/s MA, limited by broadband noise. The main contribution comes di-

rectly from the plasma, therefore it seems unlikely that significant noise re-

duction could be achieved by improving the diagnostic circuitry. On the

8For example, the 5-th order FIR Equiripple discussed in section 3.2 achieves −40dB
stop-band attenuation with phase lag < 10 deg at 200Hz and negligible amplitude distor-
tion.
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other hand, an optimized filter on the vertical observer may help reduce

the broadband noise and improve plasma controllability at limit elongations

κ ∼ 1.85. At moderate elongations κ ≤ 1.80, noise does not seems to be a
major concern in C-Mod. However, if controllers with high-order derivatives

were implemented, control precision might decrease because of higher noise

levels: an accurate assessment of the trade-off between improvements of the-

oretical stability margins and loss of vertical resolution would then become

necessary. We also discussed a larger perturbation, represented by the pick-

ups at the output of the power supplies: this perturbation is particularly

dangerous because it drives directly vertical oscillations of high-elongation

plasmas, increases control power consumption and may cause loss of vertical

control.

Noise rejection is important to minimize control power consumption and

AC losses, especially in tokamaks with superconducting control coils. The

loop response to noise and disturbances may be optimized through full-state

feedback control. Our linear simulations prove that a Kalman filter performs

better than our benchmark, a simple pseudo-inverse observer, in reconstruct-

ing the states of a system from available observations, provided adequate

models of the system, the inputs and the process and measurement noise

are available. The filter is particularly useful when measurement noise levels

are at least comparable with process noise levels. We verified that omissions

of small interferences in the model of noise in the filter, such as the 60Hz

pick-up in the magnetic diagnostics, do not affect the filter’s performance.
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We also verified that small errors in the model of the plant do not reduce

the filter’s accuracy. However, omissions of large perturbations, such as the

power supplies’ pick-ups, cause unacceptable errors in the reconstruction of

the states.

We also discussed a model-based filter for the vertical observer based on

a SISO implementation of the Kalman filter. Simulations and experiments

show that the filter rejects high-frequency noise without destabilizing high-

elongation plasmas, however an optimized low-pass filter can achieve even

stronger rejection of high-frequency noise.
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