148 research outputs found

    On Box-Perfect Graphs

    Get PDF
    Let G=(V,E)G=(V,E) be a graph and let AGA_G be the clique-vertex incidence matrix of GG. It is well known that GG is perfect iff the system AGx≤1A_{_G}\mathbf x\le \mathbf 1, x≥0\mathbf x\ge\mathbf0 is totally dual integral (TDI). In 1982, Cameron and Edmonds proposed to call GG box-perfect if the system AGx≤1A_{_G}\mathbf x\le \mathbf 1, x≥0\mathbf x\ge\mathbf0 is box-totally dual integral (box-TDI), and posed the problem of characterizing such graphs. In this paper we prove the Cameron-Edmonds conjecture on box-perfectness of parity graphs, and identify several other classes of box-perfect graphs. We also develop a general and powerful method for establishing box-perfectness

    Vertex colouring and forbidden subgraphs - a survey

    Get PDF
    There is a great variety of colouring concepts and results in the literature. Here our focus is to survey results on vertex colourings of graphs defined in terms of forbidden induced subgraph conditions

    Total Domination, Separated Clusters, CD-Coloring: Algorithms and Hardness

    Full text link
    Domination and coloring are two classic problems in graph theory. The major focus of this paper is the CD-COLORING problem which combines the flavours of domination and colouring. Let GG be an undirected graph. A proper vertex coloring of GG is a cd−coloringcd-coloring if each color class has a dominating vertex in GG. The minimum integer kk for which there exists a cd−coloringcd-coloring of GG using kk colors is called the cd-chromatic number, χcd(G)\chi_{cd}(G). A set S⊆V(G)S\subseteq V(G) is a total dominating set if any vertex in GG has a neighbor in SS. The total domination number, γt(G)\gamma_t(G) of GG is the minimum integer kk such that GG has a total dominating set of size kk. A set S⊆V(G)S\subseteq V(G) is a separated−clusterseparated-cluster if no two vertices in SS lie at a distance 2 in GG. The separated-cluster number, ωs(G)\omega_s(G), of GG is the maximum integer kk such that GG has a separated-cluster of size kk. In this paper, first we explore the connection between CD-COLORING and TOTAL DOMINATION. We prove that CD-COLORING and TOTAL DOMINATION are NP-Complete on triangle-free dd-regular graphs for each fixed integer d≥3d\geq 3. We also study the relationship between the parameters χcd(G)\chi_{cd}(G) and ωs(G)\omega_s(G). Analogous to the well-known notion of `perfectness', here we introduce the notion of `cd-perfectness'. We prove a sufficient condition for a graph GG to be cd-perfect (i.e. χcd(H)=ωs(H)\chi_{cd}(H)= \omega_s(H), for any induced subgraph HH of GG) which is also necessary for certain graph classes (like triangle-free graphs). Here, we propose a generalized framework via which we obtain several exciting consequences in the algorithmic complexities of special graph classes. In addition, we settle an open problem by showing that the SEPARATED-CLUSTER is polynomially solvable for interval graphs

    Characterising and recognising game-perfect graphs

    Get PDF
    Consider a vertex colouring game played on a simple graph with kk permissible colours. Two players, a maker and a breaker, take turns to colour an uncoloured vertex such that adjacent vertices receive different colours. The game ends once the graph is fully coloured, in which case the maker wins, or the graph can no longer be fully coloured, in which case the breaker wins. In the game gBg_B, the breaker makes the first move. Our main focus is on the class of gBg_B-perfect graphs: graphs such that for every induced subgraph HH, the game gBg_B played on HH admits a winning strategy for the maker with only ω(H)\omega(H) colours, where ω(H)\omega(H) denotes the clique number of HH. Complementing analogous results for other variations of the game, we characterise gBg_B-perfect graphs in two ways, by forbidden induced subgraphs and by explicit structural descriptions. We also present a clique module decomposition, which may be of independent interest, that allows us to efficiently recognise gBg_B-perfect graphs.Comment: 39 pages, 8 figures. An extended abstract was accepted at the International Colloquium on Graph Theory (ICGT) 201

    Digraph Coloring Games and Game-Perfectness

    Get PDF
    In this thesis the game chromatic number of a digraph is introduced as a game-theoretic variant of the dichromatic number. This notion generalizes the well-known game chromatic number of a graph. An extended model also takes into account relaxed colorings and asymmetric move sequences. Game-perfectness is defined as a game-theoretic variant of perfectness of a graph, and is generalized to digraphs. We examine upper and lower bounds for the game chromatic number of several classes of digraphs. In the last part of the thesis, we characterize game-perfect digraphs with small clique number, and prove general results concerning game-perfectness. Some results are verified with the help of a computer program that is discussed in the appendix
    • …
    corecore