1,294 research outputs found

    An Emergent Space for Distributed Data with Hidden Internal Order through Manifold Learning

    Full text link
    Manifold-learning techniques are routinely used in mining complex spatiotemporal data to extract useful, parsimonious data representations/parametrizations; these are, in turn, useful in nonlinear model identification tasks. We focus here on the case of time series data that can ultimately be modelled as a spatially distributed system (e.g. a partial differential equation, PDE), but where we do not know the space in which this PDE should be formulated. Hence, even the spatial coordinates for the distributed system themselves need to be identified - to emerge from - the data mining process. We will first validate this emergent space reconstruction for time series sampled without space labels in known PDEs; this brings up the issue of observability of physical space from temporal observation data, and the transition from spatially resolved to lumped (order-parameter-based) representations by tuning the scale of the data mining kernels. We will then present actual emergent space discovery illustrations. Our illustrative examples include chimera states (states of coexisting coherent and incoherent dynamics), and chaotic as well as quasiperiodic spatiotemporal dynamics, arising in partial differential equations and/or in heterogeneous networks. We also discuss how data-driven spatial coordinates can be extracted in ways invariant to the nature of the measuring instrument. Such gauge-invariant data mining can go beyond the fusion of heterogeneous observations of the same system, to the possible matching of apparently different systems

    Deep Learning-based Vehicle Behaviour Prediction For Autonomous Driving Applications: A Review

    Full text link
    Behaviour prediction function of an autonomous vehicle predicts the future states of the nearby vehicles based on the current and past observations of the surrounding environment. This helps enhance their awareness of the imminent hazards. However, conventional behaviour prediction solutions are applicable in simple driving scenarios that require short prediction horizons. Most recently, deep learning-based approaches have become popular due to their superior performance in more complex environments compared to the conventional approaches. Motivated by this increased popularity, we provide a comprehensive review of the state-of-the-art of deep learning-based approaches for vehicle behaviour prediction in this paper. We firstly give an overview of the generic problem of vehicle behaviour prediction and discuss its challenges, followed by classification and review of the most recent deep learning-based solutions based on three criteria: input representation, output type, and prediction method. The paper also discusses the performance of several well-known solutions, identifies the research gaps in the literature and outlines potential new research directions

    Advanced Control of Complex Dynamical Systems with Applications

    Get PDF

    The Multimodal Tutor: Adaptive Feedback from Multimodal Experiences

    Get PDF
    This doctoral thesis describes the journey of ideation, prototyping and empirical testing of the Multimodal Tutor, a system designed for providing digital feedback that supports psychomotor skills acquisition using learning and multimodal data capturing. The feedback is given in real-time with machine-driven assessment of the learner's task execution. The predictions are tailored by supervised machine learning models trained with human annotated samples. The main contributions of this thesis are: a literature survey on multimodal data for learning, a conceptual model (the Multimodal Learning Analytics Model), a technological framework (the Multimodal Pipeline), a data annotation tool (the Visual Inspection Tool) and a case study in Cardiopulmonary Resuscitation training (CPR Tutor). The CPR Tutor generates real-time, adaptive feedback using kinematic and myographic data and neural networks

    AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities and Challenges

    Full text link
    Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes, particularly in cloud infrastructures, to provide actionable insights with the primary goal of maximizing availability. There are a wide variety of problems to address, and multiple use-cases, where AI capabilities can be leveraged to enhance operational efficiency. Here we provide a review of the AIOps vision, trends challenges and opportunities, specifically focusing on the underlying AI techniques. We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful. We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions. We discuss the problem formulation for each task, and then present a taxonomy of techniques to solve these problems. We also identify relatively under explored topics, especially those that could significantly benefit from advances in AI literature. We also provide insights into the trends in this field, and what are the key investment opportunities

    ACTIVE TENDON CONTROL OF CABLE-STAYED BRIDGES

    Get PDF
    corecore