6,749 research outputs found

    A 64-point Fourier transform chip for high-speed wireless LAN application using OFDM

    No full text
    In this article, we present a novel fixed-point 16-bit word-width 64-point FFT/IFFT processor developed primarily for the application in the OFDM based IEEE 802.11a Wireless LAN (WLAN) baseband processor. The 64-point FFT is realized by decomposing it into a 2-D structure of 8-point FFTs. This approach reduces the number of required complex multiplications compared to the conventional radix-2 64-point FFT algorithm. The complex multiplication operations are realized using shift-and-add operations. Thus, the processor does not use any 2-input digital multiplier. It also does not need any RAM or ROM for internal storage of coefficients. The proposed 64-point FFT/IFFT processor has been fabricated and tested successfully using our in-house 0.25 ?m BiCMOS technology. The core area of this chip is 6.8 mm2. The average dynamic power consumption is 41 mW @ 20 MHz operating frequency and 1.8 V supply voltage. The processor completes one parallel-to-parallel (i. e., when all input data are available in parallel and all output data are generated in parallel) 64-point FFT computation in 23 cycles. These features show that though it has been developed primarily for application in the IEEE 802.11a standard, it can be used for any application that requires fast operation as well as low power consumption

    Radix-2n serial–serial multipliers

    Get PDF
    All serial–serial multiplication structures previously reported in the literature have been confined to bit serial–serial multipliers. An architecture for digit serial–serial multipliers is presented. A set of designs are derived from the radix-2n design procedure, which was first reported by the authors for the design of bit level pipelined digit serial–parallel structures. One significant aspect of the new designs is that they can be pipelined to the bit level and give the designer the flexibility to obtain the best trade-off between throughput rate and hardware cost by varying the digit size and the number of pipelining levels. Also, an area-efficient digit serial–serial multiplier is proposed which provides a 50% reduction in hardware without degrading the speed performance. This is achieved by exploiting the fact that some cells are idle for most of the multiplication operation. In the new design, the computations of these cells are remapped to other cells, which make them redundant. The new designs have been implemented on the S40BG256 device from the SPARTAN family to prove functionality and assess performance

    Bit-level pipelined digit-serial array processors

    Get PDF
    A new architecture for high performance digit-serial vector inner product (VIP) which can be pipelined to the bit-level is introduced. The design of the digit-serial vector inner product is based on a new systematic design methodology using radix-2n arithmetic. The proposed architecture allows a high level of bit-level pipelining to increase the throughput rate with minimum initial delay and minimum area. This will give designers greater flexibility in finding the best tradeoff between hardware cost and throughput rate. It is shown that sub-digit pipelined digit-serial structure can achieve a higher throughput rate with much less area consumption than an equivalent bit-parallel structure. A twin-pipe architecture to double the throughput rate of digit-serial multipliers and consequently that of the digit-serial vector inner product is also presented. The effect of the number of pipelining levels and the twin-pipe architecture on the throughput rate and hardware cost are discussed. A two's complement digit-serial architecture which can operate on both negative and positive numbers is also presented

    Performance Analysis of Montgomery Multiplier using 32nm CNTFET Technology

    Get PDF
    In VLSI design vacillating the parameters results in variation of critical factors like area, power and delay. The dominant sources of power dissipation in digital systems are the digital multipliers. A digital multiplier plays a major role in a mixture of arithmetic operations in digital signal processing applications hinge on add and shift algorithms. In order to accomplish high execution speed, parallel array multipliers are comprehensively put into application. The crucial drawback of these multipliers is that it exhausts more power than any other multiplier architectures. Montgomery Multiplication is the popularly used algorithm as it is the most efficient technique to perform arithmetic based calculations. A high-speed multiplier is greatly coveted for its extraordinary leverage. The primary blocks of a multiplier are basically comprised of adders. Thus, in order to attain a significant reduction in power consumption at the chip level the power utilization in adders can be decreased. To obtain desired results in performance parameters of the multiplier an efficient and dynamic adder is proposed and incorporated in the Montgomery multiplier. The Carbon Nanotube field effect transistor (CNTFET) is a promising new device that may supersede some of the fundamental limitations of a silicon based MOSFET. The architecture has been designed in 130nm and 32nm CMOS and CNTFET technology in Synopsys HSpice. The analysed parameters that are considered in determining the performance are power delay product, power and delay and comparison is made with both the technologies.The simulation results of this paper affirmed the CNTFET based Montgomery multiplier improved power consumption by 76.47% ,speed by 72.67% and overall energy by 67.76% as compared to MOSFET-based Montgomery multiplier

    Combined Integer and Floating Point Multiplication Architecture(CIFM) for FPGAs and Its Reversible Logic Implementation

    Full text link
    In this paper, the authors propose the idea of a combined integer and floating point multiplier(CIFM) for FPGAs. The authors propose the replacement of existing 18x18 dedicated multipliers in FPGAs with dedicated 24x24 multipliers designed with small 4x4 bit multipliers. It is also proposed that for every dedicated 24x24 bit multiplier block designed with 4x4 bit multipliers, four redundant 4x4 multiplier should be provided to enforce the feature of self repairability (to recover from the faults). In the proposed CIFM reconfigurability at run time is also provided resulting in low power. The major source of motivation for providing the dedicated 24x24 bit multiplier stems from the fact that single precision floating point multiplier requires 24x24 bit integer multiplier for mantissa multiplication. A reconfigurable, self-repairable 24x24 bit multiplier (implemented with 4x4 bit multiply modules) will ideally suit this purpose, making FPGAs more suitable for integer as well floating point operations. A dedicated 4x4 bit multiplier is also proposed in this paper. Moreover, in the recent years, reversible logic has emerged as a promising technology having its applications in low power CMOS, quantum computing, nanotechnology, and optical computing. It is not possible to realize quantum computing without reversible logic. Thus, this paper also paper provides the reversible logic implementation of the proposed CIFM. The reversible CIFM designed and proposed here will form the basis of the completely reversible FPGAs.Comment: Published in the proceedings of the The 49th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS 2006), Puerto Rico, August 2006. Nominated for the Student Paper Award(12 papers are nominated for Student paper Award among all submissions
    corecore