2 research outputs found

    Enhanced IPFIX flow monitoring for VXLAN based cloud overlay networks

    Get PDF
    The demands for cloud computing services is rapidly growing due to its fast adoption and the migration of workloads from private data centers to cloud data centers. Many companies, small and large, prefer switching their data to the enterprise cloud environment rather than expanding their own data centers. As a result, the network traffic in cloud data centers is increasing rapidly. However, due to the dynamic resource provisioning and high-speed virtualized cloud networks, the traditional flow-monitoring systems is unable to provide detail visibility and information of traffic traversing the cloud overlay network environment. Hence, it does not fulfill the monitoring requirement of cloud overlay traffic. As the growth of cloud network traffic causes difficulties for the service providers and end-users to manage the traffic efficiently, an enhanced IPFIX flow monitoring mechanism for cloud overlay networks was proposed to address this problem. The monitoring mechanism provided detail visibility and information of overlay network traffic that traversed the cloud environment, which is not available in the current network monitoring systems. The experimental results showed that the proposed monitoring system able to capture overlay network traffic and segregated the tenant traffic based on virtual machines as compare to the standard monitoring system

    Enhanced IPFIX flow processing mechanism for overlay network monitoring

    Get PDF
    Cloud computing is an emerging technology. People are adopting cloud at a faster rate, due to this cloud network traffic is increasing at a pace which is challenging to manage. Monitoring tool is an essential aspect of cloud computing and becomes more apparent with the acquired of cloud services. Overlay network provides new path to converge network and run as an independent virtual network on top of physical network. Currently, cloud overlay network technologies in cloud infrastructure have visibility gaps, which mean cloud provider and consumers miss out the major performance issues for troubleshooting of overlay network traffic. Hence, to keep a close watch on network and catch potential problems, a network monitoring tool required, to track and report more in-depth for not only see the hidden traffic but also presents the related information of cloud overlay network technologies specifically suited to the modern cloud-scale data center. Therefore, this study proposes an enhanced IP Flow Information Export (IPFIX) mechanism for cloud overlay network monitoring by adopting flexible flow based technique. Furthermore, the solution provided in this research consist of diverse mechanisms: enhanced packet filtering mechanisms using property match filtering technique and hash-based filtering technique. Virtual Extensible Local Area Network (VXLAN) based flow classification mechanisms using 6-tuple flow pattern and adoptable flow patterns. IPFIX message template mechanisms, which is comprise set of fields for data records within the IPFIX flow processing system. The findings demonstrate that the proposed mechanism can capture multi-tenant overlay network traffic to identify, track, analyze and continuously monitor the performance of cloud overlay network services. The proposed mechanisms are resource efficient where the combination of VFMFM+6tuple+VXLAN Message consume 4.63% less CPU, while the combination of VHFM+AFCM+AFCM Message consume 11.45% less CPU than Standard IPFIX. The contributions of this study would help cloud network operators and end-users to quickly and proactively resolve any overlay network based on performance issues with end-to end visibility and actionable insights
    corecore