54,720 research outputs found

    Perfect Reconstruction Two-Channel Wavelet Filter-Banks for Graph Structured Data

    Full text link
    In this work we propose the construction of two-channel wavelet filterbanks for analyzing functions defined on the vertices of any arbitrary finite weighted undirected graph. These graph based functions are referred to as graph-signals as we build a framework in which many concepts from the classical signal processing domain, such as Fourier decomposition, signal filtering and downsampling can be extended to graph domain. Especially, we observe a spectral folding phenomenon in bipartite graphs which occurs during downsampling of these graphs and produces aliasing in graph signals. This property of bipartite graphs, allows us to design critically sampled two-channel filterbanks, and we propose quadrature mirror filters (referred to as graph-QMF) for bipartite graph which cancel aliasing and lead to perfect reconstruction. For arbitrary graphs we present a bipartite subgraph decomposition which produces an edge-disjoint collection of bipartite subgraphs. Graph-QMFs are then constructed on each bipartite subgraph leading to "multi-dimensional" separable wavelet filterbanks on graphs. Our proposed filterbanks are critically sampled and we state necessary and sufficient conditions for orthogonality, aliasing cancellation and perfect reconstruction. The filterbanks are realized by Chebychev polynomial approximations.Comment: 32 pages double spaced 12 Figures, to appear in IEEE Transactions of Signal Processin

    A conjecture on critical graphs and connections to the persistence of associated primes

    Get PDF
    We introduce a conjecture about constructing critically (s+1)-chromatic graphs from critically s-chromatic graphs. We then show how this conjecture implies that any unmixed height two square-free monomial ideal I, i.e., the cover ideal of a finite simple graph, has the persistence property, that is, Ass(R/I^s) \subseteq Ass(R/I^{s+1}) for all s >= 1. To support our conjecture, we prove that the statement is true if we also assume that \chi_f(G), the fractional chromatic number of the graph G, satisfies \chi(G) -1 < \chi_f(G) <= \chi(G). We give an algebraic proof of this result.Comment: 11 pages; Minor changes throughout the paper; to appear in Discrete Math

    Graphs that do not contain a cycle with a node that has at least two neighbors on it

    Get PDF
    We recall several known results about minimally 2-connected graphs, and show that they all follow from a decomposition theorem. Starting from an analogy with critically 2-connected graphs, we give structural characterizations of the classes of graphs that do not contain as a subgraph and as an induced subgraph, a cycle with a node that has at least two neighbors on the cycle. From these characterizations we get polynomial time recognition algorithms for these classes, as well as polynomial time algorithms for vertex-coloring and edge-coloring

    Discrete Dirac Operators, Critical Embeddings and Ihara-Selberg Functions

    Full text link
    The aim of the paper is to formulate a discrete analogue of the claim made by Alvarez-Gaume et al., realizing the partition function of the free fermion on a closed Riemann surface of genus g as a linear combination of 2^{2g} Pfaffians of Dirac operators. Let G=(V,E) be a finite graph embedded in a closed Riemann surface X of genus g, x_e the collection of independent variables associated with each edge e of G (collected in one vector variable x) and S the set of all 2^{2g} Spin-structures on X. We introduce 2^{2g} rotations rot_s and (2|E| times 2|E|) matrices D(s)(x), s in S, of the transitions between the oriented edges of G determined by rotations rot_s. We show that the generating function for the even subsets of edges of G, i.e., the Ising partition function, is a linear combination of the square roots of 2^{2g} Ihara-Selberg functions I(D(s)(x)) also called Feynman functions. By a result of Foata--Zeilberger holds I(D(s)(x))= det(I-D'(s)(x)), where D'(s)(x) is obtained from D(s)(x) by replacing some entries by 0. Thus each Feynman function is computable in polynomial time. We suggest that in the case of critical embedding of a bipartite graph G, the Feynman functions provide suitable discrete analogues for the Pfaffians of discrete Dirac operators

    A Multiscale Pyramid Transform for Graph Signals

    Get PDF
    Multiscale transforms designed to process analog and discrete-time signals and images cannot be directly applied to analyze high-dimensional data residing on the vertices of a weighted graph, as they do not capture the intrinsic geometric structure of the underlying graph data domain. In this paper, we adapt the Laplacian pyramid transform for signals on Euclidean domains so that it can be used to analyze high-dimensional data residing on the vertices of a weighted graph. Our approach is to study existing methods and develop new methods for the four fundamental operations of graph downsampling, graph reduction, and filtering and interpolation of signals on graphs. Equipped with appropriate notions of these operations, we leverage the basic multiscale constructs and intuitions from classical signal processing to generate a transform that yields both a multiresolution of graphs and an associated multiresolution of a graph signal on the underlying sequence of graphs.Comment: 16 pages, 13 figure

    Finitely ramified iterated extensions

    Get PDF
    Let K be a number field, t a parameter, F=K(t) and f in K[x] a polynomial of degree d. The polynomial P_n(x,t)= f^n(x) - t in F[x] where f^n is the n-fold iterate of f, is absolutely irreducible over F; we compute a recursion for its discriminant. Let L=L(f) be the field obtained by adjoining to F all roots, in a fixed algebraic closure, of P_n for all n; its Galois group Gal(L/F) is the iterated monodromy group of f. The iterated extension L/F is finitely ramified if and only if f is post-critically finite (pcf). We show that, moreover, for pcf polynomials f, every specialization of L/F at t=t_0 in K is finitely ramified over K, pointing to the possibility of studying Galois groups with restricted ramification via tree representations associated to iterated monodromy groups of pcf polynomials. We discuss the wildness of ramification in some of these representations, describe prime decomposition in terms of certain finite graphs, and also give some examples of monogene number fields.Comment: 19 page
    • …
    corecore