16,585 research outputs found

    Dynamics and control of a class of underactuated mechanical systems

    Get PDF
    This paper presents a theoretical framework for the dynamics and control of underactuated mechanical systems, defined as systems with fewer inputs than degrees of freedom. Control system formulation of underactuated mechanical systems is addressed and a class of underactuated systems characterized by nonintegrable dynamics relations is identified. Controllability and stabilizability results are derived for this class of underactuated systems. Examples are included to illustrate the results; these examples are of underactuated mechanical systems that are not linearly controllable or smoothly stabilizable

    On dynamic decoupling and dynamic path controllability in economic systems

    Get PDF
    In this paper the dynamic decouplability and dynamic path controllability of nonlinear discrete-time economic systems in state space form are discussed. Based on the observation that both properties are equivalent, a (theoretical) efficient way of target path controllability is proposed. This is illustrated for a fairly general example of a closed economy

    Local controllability of 1D linear and nonlinear Schr\"odinger equations with bilinear control

    Get PDF
    We consider a linear Schr\"odinger equation, on a bounded interval, with bilinear control, that represents a quantum particle in an electric field (the control). We prove the controllability of this system, in any positive time, locally around the ground state. Similar results were proved for particular models (by the first author and with J.M. Coron), in non optimal spaces, in long time and the proof relied on the Nash-Moser implicit function theorem in order to deal with an a priori loss of regularity. In this article, the model is more general, the spaces are optimal, there is no restriction on the time and the proof relies on the classical inverse mapping theorem. A hidden regularizing effect is emphasized, showing there is actually no loss of regularity. Then, the same strategy is applied to nonlinear Schr\"odinger equations and nonlinear wave equations, showing that the method works for a wide range of bilinear control systems
    corecore