3,679 research outputs found

    Estimates on the Size of Symbol Weight Codes

    Full text link
    The study of codes for powerlines communication has garnered much interest over the past decade. Various types of codes such as permutation codes, frequency permutation arrays, and constant composition codes have been proposed over the years. In this work we study a type of code called the bounded symbol weight codes which was first introduced by Versfeld et al. in 2005, and a related family of codes that we term constant symbol weight codes. We provide new upper and lower bounds on the size of bounded symbol weight and constant symbol weight codes. We also give direct and recursive constructions of codes for certain parameters.Comment: 14 pages, 4 figure

    Generalized List Decoding

    Get PDF
    This paper concerns itself with the question of list decoding for general adversarial channels, e.g., bit-flip (XOR\textsf{XOR}) channels, erasure channels, AND\textsf{AND} (ZZ-) channels, OR\textsf{OR} channels, real adder channels, noisy typewriter channels, etc. We precisely characterize when exponential-sized (or positive rate) (L−1)(L-1)-list decodable codes (where the list size LL is a universal constant) exist for such channels. Our criterion asserts that: "For any given general adversarial channel, it is possible to construct positive rate (L−1)(L-1)-list decodable codes if and only if the set of completely positive tensors of order-LL with admissible marginals is not entirely contained in the order-LL confusability set associated to the channel." The sufficiency is shown via random code construction (combined with expurgation or time-sharing). The necessity is shown by 1. extracting equicoupled subcodes (generalization of equidistant code) from any large code sequence using hypergraph Ramsey's theorem, and 2. significantly extending the classic Plotkin bound in coding theory to list decoding for general channels using duality between the completely positive tensor cone and the copositive tensor cone. In the proof, we also obtain a new fact regarding asymmetry of joint distributions, which be may of independent interest. Other results include 1. List decoding capacity with asymptotically large LL for general adversarial channels; 2. A tight list size bound for most constant composition codes (generalization of constant weight codes); 3. Rederivation and demystification of Blinovsky's [Bli86] characterization of the list decoding Plotkin points (threshold at which large codes are impossible); 4. Evaluation of general bounds ([WBBJ]) for unique decoding in the error correction code setting

    Query-Efficient Locally Decodable Codes of Subexponential Length

    Full text link
    We develop the algebraic theory behind the constructions of Yekhanin (2008) and Efremenko (2009), in an attempt to understand the ``algebraic niceness'' phenomenon in Zm\mathbb{Z}_m. We show that every integer m=pq=2t−1m = pq = 2^t -1, where pp, qq and tt are prime, possesses the same good algebraic property as m=511m=511 that allows savings in query complexity. We identify 50 numbers of this form by computer search, which together with 511, are then applied to gain improvements on query complexity via Itoh and Suzuki's composition method. More precisely, we construct a 3⌈r/2⌉3^{\lceil r/2\rceil}-query LDC for every positive integer r<104r<104 and a ⌊(3/4)51⋅2r⌋\left\lfloor (3/4)^{51}\cdot 2^{r}\right\rfloor-query LDC for every integer r≥104r\geq 104, both of length NrN_{r}, improving the 2r2^r queries used by Efremenko (2009) and 3⋅2r−23\cdot 2^{r-2} queries used by Itoh and Suzuki (2010). We also obtain new efficient private information retrieval (PIR) schemes from the new query-efficient LDCs.Comment: to appear in Computational Complexit

    Linear Size Optimal q-ary Constant-Weight Codes and Constant-Composition Codes

    Full text link
    An optimal constant-composition or constant-weight code of weight ww has linear size if and only if its distance dd is at least 2w−12w-1. When d≥2wd\geq 2w, the determination of the exact size of such a constant-composition or constant-weight code is trivial, but the case of d=2w−1d=2w-1 has been solved previously only for binary and ternary constant-composition and constant-weight codes, and for some sporadic instances. This paper provides a construction for quasicyclic optimal constant-composition and constant-weight codes of weight ww and distance 2w−12w-1 based on a new generalization of difference triangle sets. As a result, the sizes of optimal constant-composition codes and optimal constant-weight codes of weight ww and distance 2w−12w-1 are determined for all such codes of sufficiently large lengths. This solves an open problem of Etzion. The sizes of optimal constant-composition codes of weight ww and distance 2w−12w-1 are also determined for all w≤6w\leq 6, except in two cases.Comment: 12 page

    Frame difference families and resolvable balanced incomplete block designs

    Full text link
    Frame difference families, which can be obtained via a careful use of cyclotomic conditions attached to strong difference families, play an important role in direct constructions for resolvable balanced incomplete block designs. We establish asymptotic existences for several classes of frame difference families. As corollaries new infinite families of 1-rotational (pq+1,p+1,1)(pq+1,p+1,1)-RBIBDs over Fp+×Fq+\mathbb{F}_{p}^+ \times \mathbb{F}_{q}^+ are derived, and the existence of (125q+1,6,1)(125q+1,6,1)-RBIBDs is discussed. We construct (v,8,1)(v,8,1)-RBIBDs for v∈{624,1576,2976,5720,5776,10200,14176,24480}v\in\{624,1576,2976,5720,5776,10200,14176,24480\}, whose existence were previously in doubt. As applications, we establish asymptotic existences for an infinite family of optimal constant composition codes and an infinite family of strictly optimal frequency hopping sequences.Comment: arXiv admin note: text overlap with arXiv:1702.0750
    • …
    corecore