9 research outputs found

    On compressed sensing in parallel MRI of cardiac perfusion using temporal wavelet and TV regularization

    No full text

    Efficient Model-Based Reconstruction for Dynamic MRI

    Full text link
    Dynamic magnetic resonance imaging (MRI) has important clinical and neuro- science applications (e.g., cardiac disease diagnosis, neurological behavior studies). It captures an object in motion by acquiring data across time, then reconstructing a sequence of images from them. This dissertation considers efficient dynamic MRI reconstruction using handcrafted models, to achieve fast imaging with high spatial and temporal resolution. Our modeling framework considers data acquisition process, image properties, and artifact correction. The reconstruction model expressed as a large-scale inverse problem requires optimization algorithms to solve, and we consider efficient implementations that make use of underlying problem structures. In the context of dynamic MRI reconstruction, we investigate efficient updates in two frameworks of algorithms for solving a nonsmooth composite convex optimization problem for the low-rank plus sparse (L+S) model. In the proximal gradient framework, current algorithms for the L+S model involve the classical iterative soft thresholding algorithm (ISTA); we consider two accelerated alternatives, one based on the fast iterative shrinkage-thresholding algorithm (FISTA), and the other with the recent proximal optimized gradient method (POGM). In the augmented Lagrangian (AL) framework, we propose an efficient variable splitting scheme based on the form of the data acquisition operator, leading to simpler computation than the conjugate gradient (CG) approach required by existing AL methods. Numerical results suggest faster convergence of our efficient implementations in both frameworks, with POGM providing the fastest convergence overall and the practical benefit of being free of algorithm tuning parameters. In the context of magnetic field inhomogeneity correction, we present an efficient algorithm for a regularized field inhomogeneity estimation problem. Most existing minimization techniques are computationally or memory intensive for 3D datasets, and are designed for single-coil MRI. We consider 3D MRI with optional consideration of coil sensitivity and a generalized expression that addresses both multi-echo field map estimation and water-fat imaging. Our efficient algorithm uses a preconditioned nonlinear conjugate gradient method based on an incomplete Cholesky factorization of the Hessian of the cost function, along with a monotonic line search. Numerical experiments show the computational advantage of the proposed algorithm over state- of-the-art methods with similar memory requirements. In the context of task-based functional MRI (fMRI) reconstruction, we introduce a space-time model that represents an fMRI timeseries as a sum of task-correlated signal and non-task background. Our model consists of a spatiotemporal decomposition based on assumptions of the activation waveform shape, with spatial and temporal smoothness regularization on the magnitude and phase of the timeseries. Compared with two contemporary task fMRI decomposition models, our proposed model yields better timeseries and activation maps on simulated and human subject fMRI datasets with multiple tasks. The above examples are part of a larger framework for model-based dynamic MRI reconstruction. This dissertation concludes by presenting a general framework with flexibility on model assumptions and artifact compensation options (e.g., field inhomogeneity, head motion), and proposing future work ideas on both the framework and its connection to data acquisition.PHDApplied and Interdisciplinary MathematicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/168081/1/yilinlin_1.pd

    Advanced acquisition and reconstruction techniques in magnetic resonance imaging

    Get PDF
    Menci贸n Internacional en el t铆tulo de doctorMagnetic Resonance Imaging (MRI) is a biomedical imaging modality with outstanding features such as excellent soft tissue contrast and very high spatial resolution. Despite its great properties, MRI suffers from some drawbacks, such as low sensitivity and long acquisition times. This thesis focuses on providing solutions for the second MR drawback, through the use of compressed sensing methodologies. Compressed sensing is a novel technique that enables the reduction of acquisition times and can also improve spatiotemporal resolution and image quality. Compressed sensing surpasses the traditional limits of Nyquist sampling theories by enabling the reconstruction of images from an incomplete number of acquired samples, provided that 1) the images to reconstruct have a sparse representation in a certain domain, 2) the undersampling applied is random and 3) specific non-linear reconstruction algorithms are used. Cardiovascular MRI has to overcome many limitations derived from the respiratory and cardiac cycles, and has very strict requirements in terms of spatiotemporal resolution. Hence, any improvement in terms of reducing acquisition times or increasing image quality by means of compressed sensing will be highly beneficial. This thesis aims to investigate the benefits that compressed sensing may provide in two cardiovascular MR applications: The acquisition of small-animal cardiac cine images and the visualization of human coronary atherosclerotic plaques. Cardiac cine in small-animals is a widely used approach to assess cardiovascular function. In this work we proposed a new compressed sensing methodology to reduce acquisition times in self-gated cardiac cine sequences. This methodology was developed as a modification of the Split Bregman reconstruction algorithm to include the minimization of Total Variation across both spatial and temporal dimensions. We simulated compressed sensing acquisitions by retrospectively undersampling complete acquisitions. The accuracy of the results was evaluated with functional measurements in both healthy animals and animals with myocardial infarction. The method reached accelerations rates of 10-14 for healthy animals and acceleration rates of 10 in the case of unhealthy animals. We verified these theoretically-feasible acceleration factors in practice with the implementation of a real compressed sensing acquisition in a 7 T small-animal MR scanner. We demonstrated that acceleration factors around 10 are achievable in practice, close to those obtained in the previous simulations. However, we found some small differences in image quality between simulated and real undersampled compressed sensing reconstructions at high acceleration rates; this might be explained by differences in their sensitivity to motion contamination during acquisition. The second cardiovascular application explored in this thesis is the visualization of atherosclerotic plaques in coronary arteries in humans. Nowadays, in vivo visualization and classification of plaques by MRI is not yet technically feasible. Acceleration techniques such as compressed sensing may greatly contribute to the feasibility of the application in vivo. However, it is advisable to carry out a systematic study of the basic technical requirements for the coronary plaque visualization prior to designing specific acquisition techniques. On simulation studies we assessed spatial resolution, SNR and motion limits required for the proper visualization of coronary plaques and we proposed a new hybrid acquisition scheme that reduces sensitivity to motion. In order to evaluate the benefits that acceleration techniques might provide, we evaluated different parallel imaging algorithms and we also implemented a compressed sensing methodology that incorporates information from the coil sensitivity profile of the phased-array coil used. We found that, with the coil setup analyzed, acceleration benefits were greatly limited by the small size of the FOV of interest. Thus, dedicated phased-arrays need to be designed to enhance the benefits that accelerating techniques may provide on coronary artery plaque imaging in vivo.La Imagen por Resonancia Magn茅tica (IRM) es una modalidad de imagen biom茅dica con notables caracter铆sticas tales como un excelente contraste en tejidos blandos y una muy alta resoluci贸n espacial. Sin embargo, a pesar de estas importantes propiedades, la IRM tiene algunos inconvenientes, como una baja sensibilidad y tiempos de adquisici贸n muy largos. Esta tesis se centra en buscar soluciones para el segundo inconveniente mencionado a trav茅s del uso de metodolog铆as de compressed sensing. Compressed sensing es una t茅cnica novedosa que permite la reducci贸n de los tiempos de adquisici贸n y tambi茅n la mejora de la resoluci贸n espacio-temporal y la calidad de las im谩genes. La teor铆a de compressed sensing va m谩s all谩 los l铆mites tradicionales de la teor铆a de muestreo de Nyquist, permitiendo la reconstrucci贸n de im谩genes a partir de un n煤mero incompleto de muestras siempre que se cumpla que 1) las im谩genes a reconstruir tengan una representaci贸n dispersa (sparse) en un determinado dominio, 2) el submuestreo aplicado sea aleatorio y 3) se usen algoritmos de reconstrucci贸n no lineales espec铆ficos. La resonancia magn茅tica cardiovascular tiene que superar muchas limitaciones derivadas de los ciclos respiratorios y cardiacos, y adem谩s tiene que cumplir unos requisitos de resoluci贸n espacio-temporal muy estrictos. De ah铆 que cualquier mejora que se pueda conseguir bien reduciendo tiempos de adquisici贸n o bien aumentando la calidad de las im谩genes resultar铆a altamente beneficiosa. Esta tesis tiene como objetivo investigar los beneficios que la t茅cnica de compressed sensing puede proporcionar a dos aplicaciones punteras en RM cardiovascular, la adquisici贸n de cines cardiacos de peque帽o animal y la visualizaci贸n de placas ateroscler贸ticas en arterias coronarias en humano. La adquisici贸n de cines cardiacos en peque帽o animal es una aplicaci贸n ampliamente usada para evaluar funci贸n cardiovascular. En esta tesis, proponemos una metodolog铆a de compressed sensing para reducir los tiempos de adquisici贸n de secuencias de cine cardiaco denominadas self-gated. Desarrollamos esta metodolog铆a modificando el algoritmo de reconstrucci贸n de Split-Bregman para incluir la minimizaci贸n de la Variaci贸n Total a trav茅s de la dimensi贸n temporal adem谩s de la espacial. Para ello, simulamos adquisiciones de compressed sensing submuestreando retrospectivamente adquisiciones completas. La calidad de los resultados se evalu贸 con medidas funcionales tanto en animales sanos como en animales a los que se les produjo un infarto cardiaco. El m茅todo propuesto mostr贸 que factores de aceleraci贸n de 10-14 son posibles para animales sanos y en torno a 10 para animales infartados. Estos factores de aceleraci贸n te贸ricos se verificaron en la pr谩ctica mediante la implementaci贸n de una adquisici贸n submuestreada en un esc谩ner de IRM de peque帽o animal de 7 T. Se demostr贸 que aceleraciones en torno a 10 son factibles en la pr谩ctica, valor muy cercano a los obtenidos en las simulaciones previas. Sin embargo para factores de aceleraci贸n muy altos, se apreciaron algunas diferencias entre la calidad de las im谩genes con submuestreo simulado y las realmente submuestreadas; esto puede ser debido a una mayor sensibilidad a la contaminaci贸n por movimiento durante la adquisici贸n. La segunda aplicaci贸n cardiovascular explorada en esta tesis es la visualizaci贸n de placas ateroscler贸ticas en arterias coronarias en humanos. Hoy en d铆a, la visualizaci贸n y clasificaci贸n in vivo de es te tipo de placas mediante IRM a煤n no es t茅cnicamente posible. Pero no hay duda de que t茅cnicas de aceleraci贸n, como compressed sensing, pueden contribuir enormemente a la consecuci贸n de la aplicaci贸n in vivo. Sin embargo, como paso previo a la evaluaci贸n de las t茅cnicas de aceleraci贸n, es conveniente hacer un estudio sistem谩tico de los requerimientos t茅cnicos necesarios para la correcta visualizaci贸n y caracterizaci贸n de las placas coronarias. Mediante simulaciones establecimos los l铆mites de se帽al a ruido, resoluci贸n espacial y movimiento requeridos para la correcta visualizaci贸n de las placas y propusimos un nuevo esquema de adquisici贸n h铆brido que reduce la sensibilidad al movimiento. Para valorar los beneficios que las t茅cnicas de aceleraci贸n pueden aportar, evaluamos diferentes algoritmos de imagen en paralelo e implementamos una metodolog铆a de compresed sensing que tiene en cuenta la informaci贸n de los mapas de sensibilidad de las antenas utilizadas. En este estudio se encontr贸, que para la configuraci贸n de antenas analizadas, los beneficios de la aceleraci贸n est谩n muy limitados por el peque帽o campo de vis贸n utilizado. Por tanto, para incrementar los beneficios que estas t茅cnicas de aceleraci贸n pueden aportar la imagen de placas coronarias in vivo, es necesario dise帽ar antenas espec铆ficas para esta aplicaci贸n.Programa Oficial de Doctorado en Multimedia y ComunicacionesPresidente: Elfar Adalsteinsson.- Secretario: Juan Miguel Parra Robles.- Vocal: Pedro Ramos Cabre

    Improving the image quality in compressed sensing MRI by the exploitation of data properties

    Get PDF
    corecore