151,079 research outputs found

    Alpha Entanglement Codes: Practical Erasure Codes to Archive Data in Unreliable Environments

    Full text link
    Data centres that use consumer-grade disks drives and distributed peer-to-peer systems are unreliable environments to archive data without enough redundancy. Most redundancy schemes are not completely effective for providing high availability, durability and integrity in the long-term. We propose alpha entanglement codes, a mechanism that creates a virtual layer of highly interconnected storage devices to propagate redundant information across a large scale storage system. Our motivation is to design flexible and practical erasure codes with high fault-tolerance to improve data durability and availability even in catastrophic scenarios. By flexible and practical, we mean code settings that can be adapted to future requirements and practical implementations with reasonable trade-offs between security, resource usage and performance. The codes have three parameters. Alpha increases storage overhead linearly but increases the possible paths to recover data exponentially. Two other parameters increase fault-tolerance even further without the need of additional storage. As a result, an entangled storage system can provide high availability, durability and offer additional integrity: it is more difficult to modify data undetectably. We evaluate how several redundancy schemes perform in unreliable environments and show that alpha entanglement codes are flexible and practical codes. Remarkably, they excel at code locality, hence, they reduce repair costs and become less dependent on storage locations with poor availability. Our solution outperforms Reed-Solomon codes in many disaster recovery scenarios.Comment: The publication has 12 pages and 13 figures. This work was partially supported by Swiss National Science Foundation SNSF Doc.Mobility 162014, 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN

    CORE: Augmenting Regenerating-Coding-Based Recovery for Single and Concurrent Failures in Distributed Storage Systems

    Full text link
    Data availability is critical in distributed storage systems, especially when node failures are prevalent in real life. A key requirement is to minimize the amount of data transferred among nodes when recovering the lost or unavailable data of failed nodes. This paper explores recovery solutions based on regenerating codes, which are shown to provide fault-tolerant storage and minimum recovery bandwidth. Existing optimal regenerating codes are designed for single node failures. We build a system called CORE, which augments existing optimal regenerating codes to support a general number of failures including single and concurrent failures. We theoretically show that CORE achieves the minimum possible recovery bandwidth for most cases. We implement CORE and evaluate our prototype atop a Hadoop HDFS cluster testbed with up to 20 storage nodes. We demonstrate that our CORE prototype conforms to our theoretical findings and achieves recovery bandwidth saving when compared to the conventional recovery approach based on erasure codes.Comment: 25 page

    Locality and Availability in Distributed Storage

    Full text link
    This paper studies the problem of code symbol availability: a code symbol is said to have (r,t)(r, t)-availability if it can be reconstructed from tt disjoint groups of other symbols, each of size at most rr. For example, 33-replication supports (1,2)(1, 2)-availability as each symbol can be read from its t=2t= 2 other (disjoint) replicas, i.e., r=1r=1. However, the rate of replication must vanish like 1t+1\frac{1}{t+1} as the availability increases. This paper shows that it is possible to construct codes that can support a scaling number of parallel reads while keeping the rate to be an arbitrarily high constant. It further shows that this is possible with the minimum distance arbitrarily close to the Singleton bound. This paper also presents a bound demonstrating a trade-off between minimum distance, availability and locality. Our codes match the aforementioned bound and their construction relies on combinatorial objects called resolvable designs. From a practical standpoint, our codes seem useful for distributed storage applications involving hot data, i.e., the information which is frequently accessed by multiple processes in parallel.Comment: Submitted to ISIT 201

    Computing in the RAIN: a reliable array of independent nodes

    Get PDF
    The RAIN project is a research collaboration between Caltech and NASA-JPL on distributed computing and data-storage systems for future spaceborne missions. The goal of the project is to identify and develop key building blocks for reliable distributed systems built with inexpensive off-the-shelf components. The RAIN platform consists of a heterogeneous cluster of computing and/or storage nodes connected via multiple interfaces to networks configured in fault-tolerant topologies. The RAIN software components run in conjunction with operating system services and standard network protocols. Through software-implemented fault tolerance, the system tolerates multiple node, link, and switch failures, with no single point of failure. The RAIN-technology has been transferred to Rainfinity, a start-up company focusing on creating clustered solutions for improving the performance and availability of Internet data centers. In this paper, we describe the following contributions: 1) fault-tolerant interconnect topologies and communication protocols providing consistent error reporting of link failures, 2) fault management techniques based on group membership, and 3) data storage schemes based on computationally efficient error-control codes. We present several proof-of-concept applications: a highly-available video server, a highly-available Web server, and a distributed checkpointing system. Also, we describe a commercial product, Rainwall, built with the RAIN technology

    In-Network Redundancy Generation for Opportunistic Speedup of Backup

    Full text link
    Erasure coding is a storage-efficient alternative to replication for achieving reliable data backup in distributed storage systems. During the storage process, traditional erasure codes require a unique source node to create and upload all the redundant data to the different storage nodes. However, such a source node may have limited communication and computation capabilities, which constrain the storage process throughput. Moreover, the source node and the different storage nodes might not be able to send and receive data simultaneously -- e.g., nodes might be busy in a datacenter setting, or simply be offline in a peer-to-peer setting -- which can further threaten the efficacy of the overall storage process. In this paper we propose an "in-network" redundancy generation process which distributes the data insertion load among the source and storage nodes by allowing the storage nodes to generate new redundant data by exchanging partial information among themselves, improving the throughput of the storage process. The process is carried out asynchronously, utilizing spare bandwidth and computing resources from the storage nodes. The proposed approach leverages on the local repairability property of newly proposed erasure codes tailor made for the needs of distributed storage systems. We analytically show that the performance of this technique relies on an efficient usage of the spare node resources, and we derive a set of scheduling algorithms to maximize the same. We experimentally show, using availability traces from real peer-to-peer applications as well as Google data center availability and workload traces, that our algorithms can, depending on the environment characteristics, increase the throughput of the storage process significantly (up to 90% in data centers, and 60% in peer-to-peer settings) with respect to the classical naive data insertion approach

    Sandooq: improving the communication cost and service latency for a multi-user erasure-coded geo-distributed cloud environment

    Get PDF
    Modern data centers have to accommodate the storage of an increasing amount of data with multiple users accessing that data from all over the world. Most of these data centers are geo-distributed to improve availability and protect against the loss of data in the case of outages and disasters. They are also increasingly using erasure codes to improve the reliability at a much lower storage cost. In addition to reliability, the clients and applications also demand storage solutions with better performance and cost-effectiveness. For a geo-distributed data center, a major part of the cost is associated with sending the data between the data centers. This paper builds on previous work to minimize the latency and cost in a data center and applies it to a multi-user geo-distributed environment. We develop a mathematical model for service latency and communication cost for a multi-user geo-distributed cloud environment. We also provide an algorithm to jointly optimize the service latency and communication cost by controlling the placement of the erasure-coded file chunks and scheduling the requests for these chunks. Through simulations, we show that our algorithm converges quickly and outperforms other heuristics in optimizing service latency and communication cost

    Coding for the Clouds: Coding Techniques for Enabling Security, Locality, and Availability in Distributed Storage Systems

    Get PDF
    Cloud systems have become the backbone of many applications such as multimedia streaming, e-commerce, and cluster computing. At the foundation of any cloud architecture lies a large-scale, distributed, data storage system. To accommodate the massive amount of data being stored on the cloud, these distributed storage systems (DSS) have been scaled to contain hundreds to thousands of nodes that are connected through a networking infrastructure. Such data-centers are usually built out of commodity components, which make failures the norm rather than the exception. In order to combat node failures, data is typically stored in a redundant fashion. Due to the exponential data growth rate, many DSS are beginning to resort to error control coding over conventional replication methods, as coding offers high storage space efficiency. This paradigm shift from replication to coding, along with the need to guarantee reliability, efficiency, and security in DSS, has created a new set of challenges and opportunities, opening up a new area of research. This thesis addresses several of these challenges and opportunities by broadly making the following contributions. (i) We design practically amenable, low-complexity coding schemes that guarantee security of cloud systems, ensure quick recovery from failures, and provide high availability for retrieving partial information; and (ii) We analyze fundamental performance limits and optimal trade-offs between the key performance metrics of these coding schemes. More specifically, we first consider the problem of achieving information-theoretic security in DSS against an eavesdropper that can observe a limited number of nodes. We present a framework that enables design of secure repair-efficient codes through a joint construction of inner and outer codes. Then, we consider a practically appealing notion of weakly secure coding, and construct coset codes that can weakly secure a wide class of regenerating codes that reduce the amount of data downloaded during node repair. Second, we consider the problem of meeting repair locality constraints, which specify the number of nodes participating in the repair process. We propose a notion of unequal locality, which enables different locality values for different nodes, ensuring quick recovery for nodes storing important data. We establish tight upper bounds on the minimum distance of linear codes with unequal locality, and present optimal code constructions. Next, we extend the notion of locality from the Hamming metric to the rank and subspace metrics, with the goal of designing codes for efficient data recovery from special types of correlated failures in DSS.We construct a family of locally recoverable rank-metric codes with optimal data recovery properties. Finally, we consider the problem of providing high availability, which is ensured by enabling node repair from multiple disjoint subsets of nodes of small size. We study codes with availability from a queuing-theoretical perspective by analyzing the average time necessary to download a block of data under the Poisson request arrival model when each node takes a random amount of time to fetch its contents. We compare the delay performance of the availability codes with several alternatives such as conventional erasure codes and replication schemes
    corecore