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ABSTRACT

Cloud systems have become the backbone of many applications such as multimedia

streaming, e-commerce, and cluster computing. At the foundation of any cloud archi-

tecture lies a large-scale, distributed, data storage system. To accommodate the massive

amount of data being stored on the cloud, these distributed storage systems (DSS) have

been scaled to contain hundreds to thousands of nodes that are connected through a net-

working infrastructure. Such data-centers are usually built out of commodity components,

which make failures the norm rather than the exception.

In order to combat node failures, data is typically stored in a redundant fashion. Due to

the exponential data growth rate, many DSS are beginning to resort to error control coding

over conventional replication methods, as coding offers high storage space efficiency. This

paradigm shift from replication to coding, along with the need to guarantee reliability, effi-

ciency, and security in DSS, has created a new set of challenges and opportunities, opening

up a new area of research. This thesis addresses several of these challenges and opportu-

nities by broadly making the following contributions. (i) We design practically amenable,

low-complexity coding schemes that guarantee security of cloud systems, ensure quick

recovery from failures, and provide high availability for retrieving partial information; and

(ii) We analyze fundamental performance limits and optimal trade-offs between the key

performance metrics of these coding schemes.

More specifically, we first consider the problem of achieving information-theoretic

security in DSS against an eavesdropper that can observe a limited number of nodes. We

present a framework that enables design of secure repair-efficient codes through a joint

construction of inner and outer codes. Then, we consider a practically appealing notion

of weakly secure coding, and construct coset codes that can weakly secure a wide class of
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regenerating codes that reduce the amount of data downloaded during node repair.

Second, we consider the problem of meeting repair locality constraints, which specify

the number of nodes participating in the repair process. We propose a notion of unequal

locality, which enables different locality values for different nodes, ensuring quick recov-

ery for nodes storing important data. We establish tight upper bounds on the minimum

distance of linear codes with unequal locality, and present optimal code constructions.

Next, we extend the notion of locality from the Hamming metric to the rank and subspace

metrics, with the goal of designing codes for efficient data recovery from special types of

correlated failures in DSS. We construct a family of locally recoverable rank-metric codes

with optimal data recovery properties.

Finally, we consider the problem of providing high availability, which is ensured by

enabling node repair from multiple disjoint subsets of nodes of small size. We study

codes with availability from a queuing-theoretical perspective by analyzing the average

time necessary to download a block of data under the Poisson request arrival model when

each node takes a random amount of time to fetch its contents. We compare the delay

performance of the availability codes with several alternatives such as conventional erasure

codes and replication schemes.
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NOMENCLATURE

DSS Distributed Storage System

MDS Maximum Distance Separable

MRD Maximum Rank Distance

LRC Locally Recoverable/Repairable Code

RC Regenerating Code

HDFS Hadoop Distributed File System

MBR Minimum Bandwidth Regenerating

MSR Minimum Storage Regenerating

MR Maximally Recoverable

PM-RC Product-Matrix Regenerating Code

LP Linear Program

Fq Finite field of order q

Fnq Vector space of n-tuples over Fq

H(·) q-ary Entropy

I (·; ·) Mutual Information

[m] Set of integers {1, 2, . . . ,m}

[m,n] Set of integers {m,m+ 1, . . . , n}

wt (x) Hamming weight of a vector x

C Linear code

C⊥ Dual code of a code C

d(C) Minimum Hamming distance of a code C
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dR (C) Minimum rank distance of a rank-metric code C

dS (C) Minimum subspace distance of a subspace code C

(n, k, d) Linear code of dimension k, block-length n, and dis-
tance d

B Number of symbols stored in a DSS

Bs Number of symbols stored with security constraints

α Number of symbols per node

β Number of symbols downloaded per node during repair

d Repair degree or minimum distance

G Generator matrix of a code

H Parity-check matrix of a code

Rank (H) Rank of a matrix H

dim (U) Dimension of a subspace U

r Locality of a code

ri Locality of the i-th coordinate

k = {k1, . . . , kr} Information locality profile of a code; kj information
symbols have locality j

n = {n1, . . . , nra} All-symbol locality profile of a code; nj symbols have
locality j

k̃ = {k̃1, . . . , k̃r} Information locality requirement of a code; k̃j informa-
tion symbols have locality at most j

C |S Restriction of a code to the coordinates in a set S

R(i)
l l-th repair group of the i-th node

(r, t)-Availability Property of having at least t disjoint repair groups, each
of size at most r

RV Random Variable
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PDF Probability Density Function

CDF Cumulative Distribution Function

fS(s) Probability Density Function of S

FS(s) Cumulative Distribution Function of S

FJ Fork-Join (queuing) model

Si Service time at node i

S(r,t) Service time required to download a file using a code
with (r, t)-availability

T (r,t) Total time required to download a file using a code with
(r, t)-availability

T (tr) Time required to download a file using a tr-replication
code

T (n,k) Time required to download a file using an (n, k)-MDS
code
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1. INTRODUCTION

1.1 Background and Motivation

The amount of data being stored and computed on cloud systems is increasing at an

enormous rate. The global cloud storage market is expected to reach $74.94 billion by

2021, with a compound annual growth rate of 25.8% [1]. Cloud services are implemented

on top of a distributed storage layer that acts as a middleware to the applications, and also

provides the desired content to the users. As a result, the performance of a cloud system

and the quality of user experience rely on the efficiency of underlying distributed stor-

age system. On the other hand, as the amount of information being generated is growing

exponentially, the storage space is becoming a scarce resource. In addition, ensuring secu-

rity of the stored information is a major concern as demonstrated by recent cyber security

incidences such as Sony and Target attacks [2]. Therefore, building large-scale data cen-

ters storing exabytes of data in a secure as well as reliable manner poses a multitude of

challenges.

A distributed storage system (DSS) typically stores data across a cluster consisting

of hundreds of nodes connected through a networking infrastructure. Such clusters are

usually built out of commodity components, which makes failures the norm rather than

the exception [3, 4]. In addition, there are several systems-related issues such as server

reboots, software glitches, maintenance operations, power failures etc. that cause storage

nodes to be unavailable from time to time.

In order to enable resilience against failures, a DSS introduces some form of redun-

dancy. Traditionally, data is replicated across multiple nodes. For instance, the Google

File System [5] and the Hadoop Distributed File System (HDFS) [6] store three copies of

all data by default. However, the replication strategy is expensive in terms of storage cost,
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especially considering the exponential growth rate of data being generated and stored. As

a result, several large-scale distributed storage systems have started to resort to error cor-

recting codes, which provide higher reliability at significantly lower storage overheads, see

e.g., [5, 7]. Even though classical erasure codes such as Reed-Solomon codes achieve high

storage efficiency, they are inefficient in handling disk (or node) failures as they usually

require to download large amount of data while repairing a failed node.

In the following, we briefly outline the challenges arising in efficiently repairing a

failed storage node in a distributed storage system while maintaining high reliability and

storage efficiency. Further, we briefly mention the challenges arising in guaranteeing the

security of the stored data in a reliable, storage efficient, and repair efficient distributed

storage system. Along the way, we give a high level overview of the related work and

motivate the questions, which we are interested in tackling.

1.1.1 Node Repair Problem

Let us consider a scenario where a storage node has failed, and needs to be recovered

in order to maintain the system. Fig. 1.1 compares a replication-based DSS to a maximum

distance separable (MDS) coded DSS. Both the systems encode k = 3 blocks of data and

store one (coded) block on each storage node in such a way that the system can tolerate

any two node failures without any loss of the information. Notice that replication requires

storing n = 9 blocks, whereas MDS-coded DSS stores only n = 5 blocks.

Now, consider a situation where one storage node, say the first node, in a DSS has

failed. In the case of replication, the data on a failed node can be recovered by downloading

from its replica. On the other hand, for MDS-coded DSS, it is required to contact any

k = 3 nodes and download the entire data stored on each of them. Thus, recovering

a failed node in an MDS-coded DSS is inefficient as compared to the replication, as it

requires contacting k-fold more nodes and downloading k-fold more data than replication.

2



f1 f1 f1

f2 f2 f2

f3 f3 f3

(a) (9, 3) Replica-
tion Code

f1 f2 f3 f1 + f2 + f3 f1 + 2f2 + 3f3

(b) (5, 3) MDS code

Figure 1.1: Comparison between replication and a maximum distance separable (MDS)
code (over a finite field of order 5)

.

This problem of efficiently repairing a failed storage node, termed as the node repair

problem, has recently attracted significant research attention from the coding theorists. In

particular, the following two metrics of repair efficiency have received particular research

attention: (a) Repair bandwidth – the total number of symbols (or bits) communicated

while repairing a failed node. The corresponding family of codes is called regenerating

codes [8]. (b) Repair locality – the number of nodes participating in the repair process.

The corresponding family of codes is called locally repairable codes [9].

1.1.2 Regenerating Codes

The class of storage codes that reduce the amount of data downloaded (i.e., repair

bandwidth) while repairing a node are referred to as regenerating codes. In their seminal

work, Dimakis et al. [10, 8] showed that there exists a trade-off between storage space per

node and repair bandwidth for a single node failure. Regenerating codes are the class of

codes that optimally achieve this trade-off.

Most of the results in the literature focus on the two extreme points of the optimal

storage-repair bandwidth trade-off curve. The codes on one extreme point that minimize

the repair bandwidth first and then the storage per node are referred to as Minimum Band-

width Regenerating (MBR) codes; whereas, the codes on the other extreme point that first

minimize the storage per node and then the repair bandwidth are referred to as Minimum
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f11 f21 f31 f11 + f21 + f31 f11 + 2f23 + f32

f12 f22 f32 f12 + f22 + f32 f12 + 2f24 + f31

f13 f23 f33 f13 + f23 + f33 f13 + f21 + f34

f14 f24 f34 f14 + f24 + f34 f14 + 2f22 + 2f33

Figure 1.2: A (5, 2) regenerating code example.

Storage Regenerating (MSR) codes. Several explicit code constructions have been pro-

posed for these extreme points considering the exact repair model, wherein the repaired

node is an exact replica of the failed node (see e.g., [11, 12, 13, 14, 15, 16] and references

therein).

Fig. 1.2 gives an example of a (5, 3) MSR code from [17]. The encoding is over a

finite field of order 3, denoted as F3. Each of the three information blocks f1, f2, and f3 is

divided into four sub-blocks. When any of the systematic nodes fails, it can be repaired by

downloading only eight sub-blocks. For instance, suppose the first node has failed. Then,

its contents can be recovered by downloading sub-blocks from the first and the fourth

row from nodes 2 through 4 and sub-blocks from the second and third row from node 5.

Even though this code can tolerate any two node failures similar to a (5, 3) MDS code, the

repair bandwidth for repairing any (systematic) node is only two third as compared to the

MDS code. This is proven to be information-theoretically optimal in [8]. The drawback,

however, is that it is required to contact all the four remaining nodes during the repair.

1.1.3 Codes with Locality and Availability

The class of storage codes that reduce the number of nodes participating in the repair

process (i.e., repair locality) are known as locally repairable (recoverable) codes (LRCs).

The set of nodes participating in the repair are called repair group of the node being

recovered. Codes with small locality were introduced in [18, 19] (see also [20]). The

study of the locality property was galvanized with the pioneering work of Gopalan et
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f1 f2 f3 f1 + f2 f1 + f3 f2 + f3

Figure 1.3: A (6, 3) locally repairable code (LRC) example.

al. [9]. One of their key contributions was to establish a trade-off between the minimum

distance of a code and its locality, analogous to the classical Singleton bound. Since then,

a series of results have extended the code distance bound for various types of codes along

with corresponding optimal code constructions achieving the minimum distance bound

(see, e.g., [21, 22, 23, 24, 25, 26], and references therein).

Fig. 1.3 depicts an example of a (6, 3) LRC with locality of two for every node. In

other words, any node can be repaired by contacting two other nodes. For instance, f1 can

be recovered from f2 and f1 + f2. Note that this is only two third of the nodes required

to be contacted for any MDS code that stores three data blocks. The minimum distance

of this code is 3, which is proven to be optimal amongst all linear codes with dimension 3

and locality 2 (see [9]).

In this thesis, we strive to seek answers to the following questions regarding LRCs.

1. In conventional LRCs, every node usually has the same locality. Can one design

codes that enable smaller locality for nodes storing important symbols? How would

such a property affect the trade-off between locality and minimum distance (fault

tolerance)?

2. In the literature, locality requirements are considered under the Hamming metric.

Can we generalize the notion of locality to the rank metric, wherein codewords are

matrices and the distance between two codewords is the rank of their difference?

How to design codes that can optimally achieve the trade-off between locality and

minimum distance in the rank metric?

If a node can be repaired from multiple, disjoint repair groups of small size, then it is
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said to have the availability property. Availability is particularly attractive for downloading

frequently accessed data, called hot data, as it enables a number of ways to parallelly

download the data. For example, the code depicted in Fig. 1.3 has availability of two, i.e.,

any node can be repaired from two disjoint repair groups, each of size two. For instance,

f1 can be repaired from either f2 and f1 + f2, or f3 and f1 + f3. It has been shown that

there is a trade-off between the availability and the minimum distance of the code, and also

between the availability and the rate of the code (see e.g., [27, 28, 29, 30], and references

therein).

We are interested in finding answers to the following questions regarding LRCs with

availability.

1. Does coding theoretic availability guarantee fast access when service time at a node

is random?

2. How do the codes with availability perform in terms of download delay in compari-

son with conventional schemes?

1.1.4 Information-Theoretic Security in DSS

Another important issue that is crucial for successful implementation of a DSS is its

resilience to adversarial attacks. Due to their decentralized nature, DSS are susceptible

to adversarial attacks by malicious users and/or network operators. In such attacks, an

adversary may attempt to gain access to the valuable information stored on the system or

may want to modify the stored information in order to disrupt the system. We restrict our

attention to passive eavesdroppers that can observe the data stored on limited number of

storage nodes.

Conventional secret-key-based encryption techniques require sophisticated secret-key

management mechanisms, which incur significant computational and communication over-

heads in distributed settings. This has motivated us to focus on the paradigm of information-
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theoretic security. Intuitively, perfect information-theoretic security requires that the eaves-

dropper gains absolutely no information about the stored data from its observations. Fol-

lowing the work of [31, 32], a number of investigations have been carried out on information-

theoretically securing the regenerating codes (see, e.g., [33, 34, 22]).

For many practical storage systems, the perfect secrecy condition might be too strong.

Moreover, coding schemes that provide perfect secrecy involve mixing data symbols with

random keys to confuse the eavesdropper, which incurs loss in the storage capacity. In

view of this, an interesting model of security, called weak security, was introduced by

Bhattad and Narayanan in [35]. The intuition behind the weak security is to protect indi-

vidual and small groups of symbols from the eavesdropper. Due to its practical benefits,

the weak security model has started receiving attention for distributed storage applications,

see for instance, [36, 37, 38].

We ask the following questions regarding secure DSS.

1. Secure constructions of repair efficient codes in the literature typically require the

size of the underlying field to be large. How can we design information theoretically

secure regenerating and locally repairable codes over small field size?

2. How can we construct small field size schemes for weak security?

1.2 Contributions and Organization

In a nutshell, designing DSS that guarantees security of cloud systems, ensures re-

liability against failures, and provides high availability for retrieving partial information

poses numerous challenges. These conflicting requirements of security, reliability, storage

efficiency, and repair efficiency in data centers have created a new set of problems for

coding and information theorists. In this thesis, we address several of the challenges as

elaborated in the following.
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In Chapter 2, we consider the problem of designing repair efficient distributed storage

systems, which are information-theoretically secure against a passive eavesdropper that

can gain access to a limited number of storage nodes. We present a framework that enables

design of a broad range of secure storage codes through a joint construction of inner and

outer codes. As case studies, we focus on two specific families of storage codes: (i)

minimum storage regenerating (MSR) codes, and (ii) maximally recoverable (MR) codes,

which are a sub-class of locally repairable codes (LRCs). The main idea of this framework

is to utilize the existing constructions of storage codes to jointly design an outer coset code

and inner storage code. Finally, we present a construction of an outer coset code over

small field size to secure locally repairable codes presented by Tamo and Barg [25] for the

special case of an eavesdropper that can observe any subset of nodes of maximum possible

size. This scheme can be considered as a secret sharing scheme with local recoverability

for shares, wherein a lost share can be recovered from a small set of other shares.

In Chapter 3, our focus is on designing outer codes to achieve weak security in a DSS

that employs regenerating codes. First, we focus on a well-known family of regenerating

codes called Product-Matrix (PM) codes [13], and present coset coding based outer code

constructions to weakly secure PM codes when eavesdropper can observe any single stor-

age node. The key benefit of the proposed precoding schemes is that they require smaller

alphabet size (in particular, linear in number of storage nodes) as compared to the existing

code constructions for weak security [39, 38] (which require alphabet size that is exponen-

tial in number of storage nodes). Next, we construct universal outer codes that can weakly

secure any MSR code against an eavesdropper observing any single node. Our schemes

allow the independent design of the storage code and the outer code. The key benefit of

the proposed schemes is their smaller field size than that of the existing universal outer

codes.

In Chapter 4, inspired by the notion of unequal error protection, we investigate linear
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codes, in which, different nodes possess different values of locality. We refer to such

codes as codes with unequal locality. First, we consider a class of codes with unequal

information locality, i.e., systematic codes with unequal locality constraints imposed only

on the information symbols. For this class of codes, we compute a tight upper bound

on the minimum distance as a function of locality constraints. We demonstrate that the

construction of Pyramid codes by Huang et al. [18] can be adapted to design optimal

codes with unequal information locality that achieve the minimum distance bound.

Next, we consider codes with unequal all-symbol locality, i.e., codes in which the

locality constraints are imposed on all symbols. We establish an upper bound on the

minimum distance as a function of number of symbols of each locality value. We show

that the construction based on rank-metric codes by Silberstein et al. [24] can be adapted

to obtain optimal codes with unequal all-symbol locality.

Finally, we introduce the concept of locality requirement of a code, which can be

viewed as a recoverability requirement on symbols. Information locality requirement of

a code essentially specifies the minimum number of information symbols of each locality

value that must be present in the code. For a given locality requirement, we present a

greedy algorithm to construct codes that have maximum minimum distance among all

codes that satisfy the locality requirement.

In Chapter 5, we construct codes with locality constraints in the rank and subspace

metrics (instead of the conventional Hamming metric). Our motivation stems from de-

signing codes for efficient data recovery from correlated and/or mixed (i.e., complete and

partial) failures in distributed storage systems. Specifically, the proposed local rank-metric

codes can recover locally from crisscross erasures and errors, which affect a limited num-

ber of rows and/or columns of the storage system. We prove a Singleton-like upper bound

on the minimum rank-distance of linear codes with rank-locality constraints. Then, we

construct a family of locally recoverable rank-metric codes that achieve this bound for
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a broad range of parameters. The proposed construction builds upon Tamo and Barg’s

method for constructing locally repairable codes with optimal minimum Hamming dis-

tance [25]. Finally, we construct a class of subspace codes (also known as codes in pro-

jective space) with locality constraints in the subspace metric. The key idea is to show

that a subspace code with locality can be easily constructed from a rank-metric code with

locality by using the lifting method proposed by Silva et al. One potential application of

such codes is for distributed storage systems, wherein nodes are connected over a network

that can introduce errors and erasures.

In Chapter 6, we study codes with availability (referred to as availability codes) from

a queuing-theoretical perspective. We first analyze the impact of availability parameters

under the assumption that the download requests arrive at a low rate. In particular, we

investigate how the size and the number of repair groups affect the download latency by

computing the mean download time when using multiple repair groups and the probabil-

ity that repair groups perform slower download than the systematic node. Next, for high

arrival rate regime, we analyze the average time necessary to download a block of data un-

der the Poisson request arrival model in two service/scheduling scenarios. We compare the

availability codes with several alternatives such as MDS codes and replication schemes.

Our results indicate that availability codes can minimize the download time for certain

request arrival patterns, but are not always optimal in terms of minimizing the download

time.

Then, we explore the case when the cumulative service capacity of the system is lim-

ited, and determine the optimal allocation of the service capacity across nodes such that

mean download delay of a single request is minimized. We consider this resource alloca-

tion problem under three traffic splitting models, which differ in what fraction of requests

are routed to the node storing the desired data block and to one or more of its repair groups.

Here, we assume that the download requests arrive at a low rate. We find that although, in
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principle, higher availability should help in reducing download delays, this is not the case

in our scenario.

Finally, in Chapter 7, we summarize our results, and present further directions.
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2. PERFECT SECURITY IN DISTRIBUTED STORAGE∗

2.1 Introduction

Distributed storage systems (DSS) are required to provide reliability in the face of

machine failures, and security in the presence of malicious users. Reliability is typically

obtained by adding some form of redundancy via replication or erasure coding. The enor-

mous growth of the amount of data being stored and computed online has motivated prac-

tical systems to use erasure codes for handling failures. This has galvanized a significant

amount of work in the past few years on novel erasure codes that efficiently handle node

failures in DSS (see, e.g., [8, 13, 9, 25]).

Another important challenge for a DSS is the security of the stored data. Due to their

decentralized nature, DSS are susceptible to eavesdropping attacks by malicious users, in

which an eavesdropper may attempt to gain access to the valuable information stored.

In this chapter, we are interested in information-theoretic security of DSS against pas-

sive eavesdroppers that can gain access to a limited number of storage nodes. We restrict

our attention to DSS that employ repair efficient erasure codes, focusing on the following

two families of codes: (a) regenerating codes (RC) that minimize repair bandwidth, i.e.,

the amount of data downloaded while repairing a failed node (see, e.g., [8]); and (b) locally

repairable codes (LRC) that minimize locality, i.e., the number of nodes participating in

the repair process (see, e.g., [9]).

Information-theoretic security requires that an eavesdropper accessing a limited num-

ber of storage nodes cannot gain any information about the stored data. Specifically, sup-

pose a DSS encodes a set S of Bs symbols (over a finite field Fq) using an RC or an LRC

∗Reprinted with permission from [40] “Security for minimum storage regenerating codes and locally re-
pairable codes,” by S. Kadhe and A. Sprintson, 2017. In Proceedings of 2017 IEEE International Symposium
on Information Theory (ISIT), pp. 1028-1032, June 2017. Copyright c© by IEEE.
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into a set of symbols C, stored across n nodes. Consider an eavesdropper, Eve, who can

observe data stored on any `1 nodes, and in addition, can observe data downloaded during

the repair of any `2 nodes. We refer to Eve as an (`1, `2)-eavesdropper. Let C(E) denote

the set of (encoded) symbols that Eve observes. A DSS is said to achieve information-

theoretic security against Eve if the mutual information between the information symbols

S and the eavesdropped symbols C(E) is zero, i.e., I (S;C(E)) = 0.

Information-theoretic security for RCs and LRCs has recently received a significant at-

tention from the research community, see e.g., [32, 33, 41, 22, 42, 43]. The focus has been

on designing secure coding schemes, and on characterizing outer bounds on the amount of

data Bs that can be securely stored.

A secure coding scheme usually mixes the information symbols to be stored with ran-

dom symbols, which are independent of the information symbols. In the secure distributed

storage literature, one can find two ways of mixing random symbols: (i) first precode in-

formation symbols and random symbols using a maximum rank distance (MRD) code

such as a Gabidulin code [44], and then use a storage code to encode the precoded sym-

bols [22, 42, 43]; or (ii) directly mix information and random symbols using a storage

code [33, 42]. In the latter case, information symbols are usually appended to random

symbols (more generally, information and random symbols are interleaved), and then en-

coded together using a storage code.

Even though precoding by an MRD code can be used to secure a large class of storage

codes, its main drawback is that the required field size is exponential in the number of

storage nodes. On the other hand, when directly mixing information and random symbols,

field size is governed by the storage code. However, it is not clear if it is always possible

to achieve security by directly mixing information and random symbols.

In this chapter, we are interested in designing secure coding schemes by using an outer
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code based on coset coding [45] to mix information and random symbols2, and then use

an RC or LRC as an inner code. Our goal is to design coding schemes over small field.

Towards this, our approach is to design a coset code by leveraging the structure of the

underlying storage code. We outline our contributions in the following.

Our contributions: First, we focus on a class of RCs, namely, minimum storage regen-

erating (MSR) codes, and present a framework to design a coset code for security against

an (`1, 0)-eavesdropper by utilizing a non-secure MSR code of smaller rate and low re-

pair degree. Next, we consider security for LRCs, and extend our framework to construct

coset codes for security against an (`1, `2)-eavesdropper by utilizing a class of LRCs called

maximally recoverable (MR) codes [46]. As we demonstrate in Remarks 3 and 5, the pro-

posed framework enables us to leverage existing constructions of MSR and MR codes

with little additional cost to construct secure codes. Finally, we present a construction of

a coset code over field size of O(nk/r) to secure LRCs with locality r and block-length n

presented in [25] against a (k − 1, 0)-eavesdropper.

2.2 Preliminaries

Notation: For an integer m, let [m] = {1, 2, . . . ,m}, and for a pair of integers m < n,

let [m,n] = {m,m+ 1, . . . , n}. For an n×m matrix G and a set A ⊂ [n], let GA denote

a |A| ×m sub-matrix of G containing the rows of G that are indexed by A.

2.2.1 System Model

Consider a DSS that encodes a set of B symbols X ∈ FBq into nα symbols C ∈ Fnαq

as C = GX , where G ∈ Fnα×Bq is a generator matrix of an erasure code, which we refer

to as a storage code. These nα symbols are stored across n nodes, with each node storing

α symbols. We denote the symbols stored on node i as Ci = GiX , where Gi is an α × B
2We note that directly mixing information and random symbols can also be considered as coset coding.

We elaborate the connections in Sec. 2.2.2.
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sub-matrix of G. When a node fails, its contents are recovered by downloading symbols

from a subset of the remaining n− 1 nodes. The specifics of this repair process depend

on the storage code.

We focus on two families of codes that facilitate efficient repair process, namely, re-

generating codes (RCs) and locally repairable codes (LRCs). Our objective is to design

outer coset codes for RCs and LRCs, which ensure security against an eavesdropper that

can gain access to a limited number of storage nodes. We will briefly describe RCs and

LRCs in subsequent sections before discussing their secure designs. We begin with the

eavesdropper model in the following.

2.2.1.1 Eavesdropper Model

We consider an (`1, `2)-eavesdropper model introduced in [33] (see also [22]). An

(`1, `2)-eavesdropper, Eve, can access the contents of any set E1 of nodes of size up to `1.

In addition, Eve can also observe the data downloaded during the repair of any set E2 of

nodes of size up to `2. Note that Eve can potentially gain more information by observing

the data downloaded during node repair than merely observing the data stored on the node,

since the stored data is a function of the data downloaded during the repair.

2.2.1.2 Information-Theoretic Security

Our goal is to guarantee that no information about the stored data is leaked to Eve. In

particular, let S be the set of information symbols, Ci be the set of symbols stored on the

i-th node, and Ci be the set of symbols downloaded during the repair of node i. Further,

for a set A ⊆ [n], let CA = {Ci : i ∈ A}, and CA = {Ci : i ∈ A}.

Definition 1. A DSS is said to achieve information-theoretic security against an (`1, `2)-

eavesdropper if we have

I
(
S;CE1 , C

E2
)

= 0, (2.1)
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for all E1, E2 ⊂ [n] such that |E1| ≤ `1 and |E2| ≤ `2.

The maximum number of symbols Bs that a DSS can store with information-theoretic

security against an (`1, `2)-eavesdropper is called the secrecy capacity of the DSS.

2.2.2 Secure Code Design Using a Coset Code

Our goal is to store a set S ofBs symbols securely in a DSS, which can storeB symbols

without any security requirements. This is typically done by mixing the Bs symbols of S

with B − Bs random symbols R = {R1, . . . , RB−Bs}, where every random symbol Ri is

drawn uniformly at random over Fq, independently of S and other random symbols. We

use a coset coding based outer code to first mix the random and information symbols, and

then use an RC or LRC to encode the precoded symbols.

Outer Code Based on Coset Coding: A coset code is constructed using a (B,B−Bs)

linear code C over Fq with parity-check matrix H ∈ FBs×Bq [45]. Specifically, information

symbols S ∈ FBsq are first encoded by selecting X ∈ FBq uniformly at random such that

S = HX . In other words, the vector S can be considered as a syndrome specifying a coset

of C, and the codeword X is a randomly chosen element of that coset.

Next, the codeword X is encoded using a storage code (as an inner code) to obtain

C ∈ Fnαq , i.e., C = GX , where G ∈ Fnα×Bq is a generator matrix of the storage code. To

obtain the information symbols S, a user needs to first decode the storage code to get X ,

and then, decode the outer coset code to get S. The decoding operation of a coset code

consists of simply computing the syndrome S = HX . The node repair process is inherited

from the storage code (which is an RC or an LRC).

To design the matrix H appropriately, we need to write the information-theoretic se-

curity condition (2.1) in terms of coding matrices H and G. Towards this, we consider the

following result from [47, Lemma 6], [48, Theorem 1].
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Lemma 1. ([47]) Suppose a set of information symbols S is encoded using a coset code

with parity-check matrixH ∈ FBs×Bq and a storage code with generator matrixG ∈ Fnα×Bq .

Let C(E) = TX be a set of µ (≤ B − Bs) symbols observed by an eavesdropper, where

T is a µ×B sub-matrix of G. Then, we have

rank H + rank T = rank

H
T

 =⇒ I (S;C(E)) = 0. (2.2)

Our central approach is to design a coset coding matrix H by leveraging the properties

of G in order to ensure the rank condition in (3.7).

Remark 1. Note that appending information symbols to random symbols (in general, in-

terleaving information and random symbols), and directly encoding them using a storage

code C can be considered as performing coset coding using a subcode of C. In the ter-

minology above, this corresponds to the case where H is a sub-matrix of an identity (in

general, permutation) matrix. On the other hand, for a given S, choosing X ∈ FBq uni-

formly at random such that S = HX is equivalent to mixing S with uniform random

symbols R as X =

H ′
H


−1 R

S

, where H ′ ∈ FB−Bs×Bq is a matrix such that

H ′
H

 is

non-singular.

2.3 Secure Minimum Storage Regenerating (MSR) Codes

2.3.1 Background

Regenerating codes (RCs) are a class of codes that minimize the amount of data down-

loaded to repair a failed storage node [8]. A regenerating code encodes a set of B symbols

X ∈ FBq into nα symbols C ∈ Fnαq , and stores them over n nodes with each node storing

α symbols such that the system satisfies the following two properties: (i) Reconstruction

property – connecting to any k out of n nodes is sufficient to reconstruct the entire stored
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data; (ii) regeneration property – when a storage node fails, its content can be exactly re-

generated by downloading β symbols each from any d out of the remaining n− 1 nodes.

The parameter d is referred to as the repair degree, and the dβ number of symbols down-

loaded is referred to as the repair bandwidth. An RC with these parameters is referred to

as an (n, k, α, d, β) RC.

Dimakis et al. [8] showed that there exists a trade-off between storage space per node

(α) and repair bandwidth (dβ). We restrict our attention to Minimum Storage Regenerating

(MSR) codes, which achieve an extreme point of the optimal storage-repair bandwidth

trade-off curve corresponding to minimum storage per node.

The problem of analyzing secrecy capacity of DSS employing MSR codes, and de-

signing secure coding schemes has been considered in [33, 41, 22, 43], and references

therein. Shah et al. [33] presented secure codes that directly mix information and random

symbols using product-matrix based MSR constructions in [13], for which a field size of

q ≥ n(d− k + 1) is sufficient. However, these secure schemes are of low rate (in particu-

lar, rate lower than half), since product-matrix MSR codes are themselves low rate codes.

Secure MSR codes based on precoding by Gabidulin codes are presented in [22, 43]. Even

though these schemes cover a wide range of parameters, the required field size is expo-

nential in n due to Gabidulin precoding. We are interested in constructing secure high rate

codes over small field size.

2.3.2 Framework for Secure MSR Code Design

In this section, we restrict our attention to the case `2 = 0. For this case, the secrecy

capacity of MSR codes has been shown to be Bs = (k − `1)α (see [32, 33]). Given

positive integers n, k, α, d, β, and `1 such that k < n, k ≤ d < n, and `1 < k, we present

a framework to jointly design a (kα, (k − `1)α) coset code and an (n, k, α, d, β) MSR

code that can store Bs = (k − `1)α symbols securely against an (`1, 0)-eavesdropper. The
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framework relies on the existence of an (n′, k, α, d, β) MSR code such that n′ ≥ n+k−`1

and d ≤ n− 1.

Construction 1. Let C ′ be an (n′, k, α, d, β) MSR code over Fq such that n′ ≥ n+ k − `1

and d ≤ n−1. Let G ′ =
[
GT

1 G
T
2 · · · GT

n′

]T be an n′α×kα generator matrix of C ′, where

Gi, 1 ≤ i ≤ n′, denotes an α × kα sub-matrix of G′ corresponding to symbols stored on

node i. We call sub-matrix Gi, 1 ≤ i ≤ n′, as the i-th thick-row of G ′, and we refer to C ′

as a parent code. Let H be the first k− `1 thick-rows of G ′, and G be the next n thick-rows

of G ′, i.e., H = G ′[(k−`1)α], and G = G ′[(k−`1)α+1,(n+k−`1)α].

To encode a set of Bs = (k− `1)α symbols S ∈ FBsq , use a coset code based on H and

a storage code generated by G as described in Section 2.2.2.

It is easy to show that the above construction results in a secure MSR code as follows.

Theorem 1. Construction 1 yields an (n, k, α, d, β) MSR code C that is secure against an

(`1, 0)-eavesdropper.

Proof: Since C ′ is an MSR code and d ≤ n − 1, C is also an MSR code. To prove

security, note that an (`1, 0)-eavesdropper observes C(E) = TX , where T consists of `1

thick-rows of G corresponding to the eavesdropped nodes. Now, since C ′ is an (n′, k)-

MSR code,

H
T

 is non-singular. This is because any k thick-rows of a generator matrix

of an (n′, k) MSR code form an invertible matrix, since one can reconstruct the entire data

from any k nodes. Hence, the scheme is secure by Lemma 2 (see (3.7)).

Remark 2. Note that we can take any k − `1 thick-rows of G ′ as H and any n of the

remaining n′ − k + `1 thick-rows as G. Further, if G ′ is in systematic form, and if we

use a sub-matrix of the identity matrix as H , coset coding is equivalent to appending the

information symbols to random symbols.
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Remark 3. Construction 1 enables us to construct secure MSR codes by utilizing existing

MSR codes. For example, we can leverage a recent construction by Ye and Barg [16, Sec.

VII] for MSR codes over Fq for any n, k, and d such that k ≤ d ≤ n − 1 and q ≥ n + 1.

Using such an (n′, k) code as a parent code with n′ = n+ k − `1 and d ≤ n− 1, we can

construct an (n, k) MSR code that is secure against an (`1, 0)-eavesdropper for any n, k,

and d such that k ≤ d ≤ n − 1 and `1 < k over any field of size q ≥ n + k − `1 + 1. To

the best of our knowledge, this is the first construction of secure high rate MSR codes over

a field of size linear in n.

Remark 4. Construction 1 can be used to secure a larger class of codes, namely Maximum

Distance Separable (MDS) array codes. In fact, MSR codes are MDS array codes with

optimum repair bandwidth. We note that the idea of splitting a longer Reed-Solomon code

(which is a scalar MDS code) to jointly design H and G was used to construct secure

network codes for combination networks in [48].

2.4 Security for Locally Repairable Codes (LRCs)

2.4.1 Background

Locally repairable codes (LRCs) are a class of codes that minimize the number of

nodes participating in the repair of a failed storage node [9]. An LRC encodes a set of k

symbols X ∈ Fkq into n symbols C ∈ Fnq such that for any symbol Ci, there exists a set

Ri ⊂ [n] \ {i} with |Ri| ≤ r such that Ci can recovered from the symbols indexed byRi.

The parameter r is referred to as the locality of the code, and the set Ri is referred to as

a repair group of the i-th symbol Ci. An LRC with these parameters is referred to as an

(n, k, r) LRC.3 In [9], it is shown that the minimum distance dmin of an (n, k, r) LRC is

3Throughout this section, we consider scalar LRCs where each node stores α = 1 symbol. Our results
can be generalized for vector (array) LRCs with α > 1.
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upper bounded as

dmin ≤ n− k −
⌈
k

r

⌉
+ 2. (2.3)

In [22, 42], an upper bound on the number of symbols Bs that an (n, k, r) LRC can

securely store against an (`1, `2)-eavesdropper has been shown to be

Bs ≤ m−
⌊

m

r + 1

⌋
− `1 − r`2, (2.4)

where m = n−dmin + 1. Note that from any m out of n symbols the entire stored data can

be obtained. It is easy to verify that for codes achieving equality in (2.3), equation (2.4)

reduces to Bs ≤ k − `1 − r`2. The authors of [22] present an achievable scheme using

Gabidulin precoding, which makes the required field size to be exponential in n. The au-

thors of [42] present a secure coding scheme that directly mixes data and random symbols

using an LRC in [25]. Though the scheme operates over a small field size that is linear in

n, it ensures security only against an (`1, 0)-eavesdropper such that `1 ≤ r.

In the following section, we extend Construction 1 to obtain secure LRCs using a

parent maximally recoverable code [46].

2.4.2 Framework for Designing Secure LRCs Using Maximally Recoverable Codes

We begin with a definition of maximally recoverable codes [46]. We assume that

(r + 1) | n and r | k.

Definition 2. Consider an (n, k, r) LRC C. Let P = {P1, P2, · · · , Pn/(r+1)} be a partition

of [n] into n/(r+ 1) sets of size r+ 1 such that for any i ∈ Pj , the repair group of the i-th

symbol in C is Ri = Pj \ {i}, for every j ∈ [n/(r + 1)]. The code C is called maximally

recoverable (MR) if the code obtained by puncturing any one symbol from every Pj is an

(nr/(r + 1), k) MDS code. We refer to such a code as an (n, k, r,P) MR code. We refer

to each Pi as a local group.
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Next, we extend Construction 1 to obtain secure LRCs using a parent LRC that is

maximally recoverable. Specifically, given positive integers n, k, r, `1 and `2 such that

r < k < n and `1 + r`2 < k, we present a framework to jointly design a (k, k − `1 − r`2)

coset code and an (n, k, r) LRC that can store Bs = k− `1− r`2 symbols securely against

an (`1, `2)-eavesdropper. The framework relies on the existence of an (n′, k, r,P) MR

code such that n′ ≥ n+ d(k − `1 − r`2)/re(r + 1) and (r + 1) | n′.

Construction 2. Let C ′ be an (n′, k, r,P) MR code over Fq such that n′ ≥ n+ d(k− `1−

r`2)/re(r + 1) and (r + 1) | n′. Let G ′ be an n′ × k generator matrix of C ′. Partition G ′

into n′/(r+ 1) sub-matrices G′1, G
′
2, . . . , G

′
n′/(r+1) such that G′i = G ′Pi . We denote the j-th

row in G′i as G′i,j . We refer to C ′ as a parent code.

Let u = d(k − `1 − r`2)/re, and v = (k − `1 − r`2) mod r. Let H = G ′A, where

A = {i, j : j ∈ [r] when i ∈ [u − 1] and j ∈ [v] when i = u}, and G = G ′B, where

B = [u(r + 1) + 1, (u+ n)(r + 1)].

To encode a set of Bs = k − `1 − r`2 symbols S ∈ FBsq , use a coset code based on H

and a storage code generated by G as described in Section 2.2.2.

Note that H is essentially obtained by taking the rows from G ′ corresponding to the

first u local groups, and deleting one row each from the first u − 1 local groups, while

deleting r + 1− v rows from the last one.

Theorem 2. Construction 2 yields an (n, k) MR code C with locality r that is secure

against an (`1, `2)-eavesdropper.

Proof: Since G ′ generates an MR code with locality r, the code generated by G is

also MR with locality r. Moreover, security of C also follows from the fact that the parent

code C ′ is MR. Specifically, let E ⊂ [n] be the set of indices of symbols observed by Eve.

Note that if Eve observes a node i during its repair, it effectively observes all the nodes in
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the repair group of i. Thus, we have |E| ≤ `1 + r`2. Now, label the rows of G from 1 to

n, and let GE be the sub-matrix of G containing the rows indexed by E. Let E ′ ⊆ E such

that GE′ is a full-rank sub-matrix of GE . Then, as G ′ generates an MR code,

 H

GE′

 must

have full row rank. This guarantees security using Lemma 2 (see (3.7)).

Remark 5. Construction 2 enables us to construct secure MR codes by leveraging existing

constructions of MR codes. A number of constructions of MR codes for a wide range of

parameters are presented in [46, 49]. For instance, reference [49, Construction A.2]

presents constructions of (n, k, r) MR codes over a field of size q = nm+h−dh/ne−1, where

m = n/(r + 1) and h = nr/(r + 1)− k, when m and r + 1 are powers of a prime. By

using such an (n′, k) MR code as a parent code with smallest n′ such that n′ ≥ n+ d(k −

`1 − r`2)/re(r + 1), (r + 1) | n′, and n′/(r + 1) is a power of a prime, we can construct

a secure (n, k, r) MR code over a field of size (n′)m
′+h′−dh′/n′e−1, where m′ = n′/(r + 1)

and h′ = n′r/(r+ 1)− k. One can verify that, for a broad range of parameters, this gives

a smaller field size than nk, required by Gabidulin precoding of LRCs operating over a

field of size n.

Remark 6. In [42], it is shown that it is possible to achieve security against an (`1, 0)-

eavesdropper by directly mixing information and random symbols using an LRC C, if there

exists a subcode of C of dimension `1 that is maximally recoverable. Note that, in general

an LRC C may not contain a subcode of dimension `1 that is MR, even if C itself is an MR

code.

2.4.3 Construction of a Secure LRC Against a (k − 1, 0)-Eavesdropper

In this section, we construct a coset code to secure LRCs presented in [25] for the

special case of a (k − 1, 0)-eavesdropper. Note that for a code of dimension k, we should

have `1 ≤ k − 1 in order to achieve non-zero secrecy capacity. For `1 = k − 1, we
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get Bs = 1 from (2.4), as LRCs in [25] achieve equality in (2.3). This special case of

`1 = k − 1 can be useful in secret sharing setup as we mention in Remark 9. As in the

previous section, we assume (r + 1) | n and r | k.

First, we briefly summarize the LRC construction from [25], which we refer to as

Tamo-Barg (TB) codes. LetA = {αi : i ∈ [n]} ⊂ Fq be a set of n points, called evaluation

points. LetA = {A1, A2, . . . , An/(r+1)} be a partition of A such that |Ai| = r+ 1 for each

i ∈ [n/(r+ 1)]. Let h(x) be a polynomial of degree r+ 1, called a good polynomial, such

that it is constant on Ai for every i ∈ [n/(r + 1)]. For a given set of information symbols

M ∈ Fkq , a codeword is obtained by evaluating gM(x) =
∑k−1

i=0 Mix
i mod rh(x)bi/rc on

the points of A. It is shown that, if Ai’s are cosets of a multiplicative subgroup of F∗q =

Fq \ {0}, then h(x) = xr+1 can be used as a good polynomial. In this case, we can write

the (i, j)-th entry of the generator matrix G of C as

Gi,j = α
[(j−1) mod r] + (r+1)b(j−1)/rc
i , (2.5)

where i ∈ [n] and j ∈ [k].

Next, we present a construction of a coset code for securing TB codes against a (k −

1, 0)-eavesdroppper.

Construction 3. Let C be an (n, k, r) TB code obtained by choosing evaluations points

A ⊂ Fq, q ≥ n, such that Ai’s are cosets of a multiplicative subgroup of F∗q , with good

polynomial h(x) = xr+1. Let H be a 1× k matrix with j-th entry as

H1,j = β[(j−1) mod r] + (r+1)b(j−1)/rc, (2.6)

where β is a primitive element of FQ with Q = qk/r. Note that FQ is an extension field of

Fq.
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To encode an information symbol S ∈ FQ, use a coset code based on H and a TB code

C as described in Section 2.2.2.

Theorem 3. Construction 3 yields an (n, k, r)-LRC C that is secure against an (k− 1, 0)-

eavesdropper.

Proof: Since the inner storage code is an (n, k, r) TB code, the resulting code is an

(n, k, r) LRC. To prove its security, assume without loss of generality that Eve observes

` = k − 1 linearly independent symbols of C. Let E = {i1, . . . , i`} be the indices of the

symbols observed by Eve, i.e., CE = GEX . Let N = [N1 · · ·Nk]
T ∈ Fkq be a vector

orthogonal to GE , i.e., GEN = 0. Due to the structure of GE , we have that {αi1 , · · · , αi`}

are roots of the polynomial

N(x) =
k∑
j=1

Njx
[(j−1) mod r] + (r+1)b(j−1)/rc.

Note thatN(x) ∈ Fq[x], and it is easy to verify that the degree ofN(x) is at most k+k/r−

2. Thus, we can write N(x) =
∏`

t=1(x− αit)N ′(x), for some polynomial N ′(x) ∈ Fq[x]

with degree at most k/r − 1. Since β is a primitive element of Fqk/r , the degree of its

minimal polynomial over Fq is k/r, and thus, β cannot be a root of N ′(x). Therefore, N

cannot be in the null-space of H , i.e., HN 6= 0. This guarantees that

H
GE

 has full row

rank, ensuring the security by Lemma 2 (see (3.7)).

Remark 7. Our idea in Construction 3 is to design the coset coding matrix H such that

it has the same structure as G. Note that, if we append G with H , it can be considered as

extending the TB code by adding an evaluation point β.

Remark 8. Since TB codes can be constructed over a field of size q = O(n), Construc-

tion 3 gives secure LRCs over a field of size Q = O
(
nk/r

)
. This demonstrates that the
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proposed construction is significantly better in terms of field size as compared to O(nk)

when using Gabidulin precoding over an (n, k, r) TB code.

Remark 9. The authors of [42] bring out several connections between secure LRCs and

secret sharing schemes that enable local recoverability for shares. In the perspective of

secret sharing, Construction 3 presents a scheme that encodes a secret S ∈ FQ into n

shares over FQ with the following properties. (i) Any m = k + k/r − 1 shares are

sufficient to determine the secret S, which guaranties that the secret is recoverable even

with the loss of any n−m shares. (ii) Any ` = k− 1 shares do not reveal any information

about the secret. (iii) Any share can be locally recovered from at most r other shares.

2.5 Conclusion

In this chapter, we have proposed a framework for design of MSR and MR codes that

are secure against a passive eavesdropper. Our approach is to design a concatenated code

that leverages existing non-secure storage code constructions to construct both inner and

outer codes. The key idea is to utilize the structure of the generator matrix of a parent

storage code to construct the parity check matrix of the outer coset code. This enabled us

to reduce the required field size compared to the standard approaches such as precoding

via Gabidulin codes.
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3. WEAK SECURITY IN DISTRIBUTED STORAGE∗

3.1 Introduction

Due to their decentralized nature, DSS are susceptible to adversarial attacks by mali-

cious users and/or network operators. In such attacks, an adversary may attempt to gain

access to the valuable information stored on the system or may want to modify the stored

information in order to disrupt the system. Here, we focus on passive eavesdroppers that

can observe the data stored on limited number of storage nodes.

We are interested in information-theoretic security models. Information-theoretic per-

fect secrecy requires that the eavesdropper gains absolutely no information about the stored

data from its observations. To be precise, suppose that a DSS is storing Bs data files

S = {S1, . . . , SBs}, where each file can be considered as a symbol in a finite field Fq. Let

E denote the set of (encoded) files that an eavesdropper Eve can observe. A DSS is said to

be perfectly secure if the mutual information between the set of message symbols S and

the eavesdropped symbols E is zero, i.e., I (S;E) = 0.

For many practical storage systems, perfect secrecy condition might be too strong.

Moreover, coding schemes that provide perfect secrecy involve mixing data symbols with

random keys to confuse the eavesdropper, which incurs loss in the storage capacity. Con-

sidering these drawbacks of the perfect secrecy notion, we focus on the notion of weak

security proposed by Bhattad and Narayanan [35].

Based on the premise that individual files carry meaningful information, the notion

of weak security requires that Eve gains no information about any individual file, i.e.,

I (Si;E) = 0 ∀i. For example, let the number of files be Bs = 4, and the size of the

∗Parts of this chapter are reprinted with permission from [50] “Weakly secure regenerating codes for
distributed storage,” by S. Kadhe and A. Sprintson, 2014. In Proceedings of 2014 International Symposium
on Network Coding (NetCod), pp. 1-6, June 2014. Copyright c© by IEEE.
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underlying finite field be q = 7. Further, suppose that Eve observes the following two en-

coded symbols E = {S1 + S2 + S3 + S4, S1 + 2S2 + 3S3 + 4S4}. Then, Eve cannot get

any information about any individual file, when the files are chosen uniformly at random

and are independent. In other words, weakly secure coding schemes use files as keys, and

thus, do not incur loss in storage capacity.

In addition, weak security requires that Eve cannot gain any information about any

small group of files of size (g + 1) for some positive integer g. In this case, even if Eve

obtains any g files as a side information, she cannot decode for any other file. For instance,

in the example considered above, even if Eve has a side-information of any g = 1 file, she

cannot decode for any other file observing E.

Note that the notion of weak security that is introduced in [35] and considered through-

out this paper, is different from the conventional notion of information-theoretic weak se-

crecy, which is defined for asymptotically large block-lengths. The weak security notion

considered in this paper is applicable to finite block-lengths as well. The notion of weak

security has also been referred to as block security, as it requires protecting blocks of

information of different sizes (see, e.g. [37]).

In this chapter, we first consider a sub-class of regenerating codes, namely Product-

Matrix (PM) codes in [13]. We present explicit construction of a coset coding based outer

code to weakly secure PM codes against an eavesdropper observing any single storage

node. Next, we construct a universal outer coding scheme that can weakly secure any

systematic regenerating code operating at minimum storage point.

3.2 Preliminaries

3.2.1 Regenerating Codes

Consider a DSS that stores a set of B files given as S = {S1, . . . , SB}, where each

file can be considered as a uniformly and independently drawn symbol from a finite field
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Fq. The system contains n storage nodes, with each node capable of storing α files. An

(n, k, d, α, β) regenerating code encodes the B files into nα files in such a way that it

satisfies the following two properties. (i) Reconstruction property – a data collector (DC)

connecting to any k out of n nodes can reconstruct the entire set of files; (ii) regeneration

property – when a storage node fails, it can be regenerated by adding a new node which

downloads β symbols each from any d out of the remaining n − 1 nodes. The d nodes

participating in node repair are referred to as the helper nodes, and the dβ number of

symbols downloaded is referred to as the repair bandwidth.

Using the cut-set bounds, an upper bound on the capacity of an (n, k, d, α, β) regener-

ating code can be shown as [8]

B ≤
k−1∑
i=0

min{α, (d− i)β}. (3.1)

It can be seen that, if one wants to achieve equality in (3.1) for fixed values of n, k, d, and

B, it leads to a trade-off between storage per node α and repair bandwidth dβ. The two

extreme points on this trade-off curve are referred to as minimum storage regeneration

(MSR) point and minimum bandwidth regeneration (MBR) point. At the MSR point,

which is obtained by first minimizing α and then β, we have

αMSR =
B

k
, βMSR =

B

k(d− k + 1)
. (3.2)

Whereas, at the MBR point, for which first β is minimized and then α, we get

αMBR =
2dB

k(2d− k + 1)
, βMBR =

2B

k(2d− k + 1)
. (3.3)

If the regenerated node is an exact replica of the failed node, then the repair model is said

to be exact repair [12]. In the first half of this chapter, we focus on a special family of exact
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regenerating codes, namely, the product-matrix (PM) codes [13], which are described in

the next section.

3.2.2 Information-Theoretic Secrecy

Eavesdropper Model: We assume that an eavesdropper Eve can access the data stored

in any l (< k) storage nodes. Further, we assume that Eve is passive, has unbounded

computational power, and has the knowledge of the coding scheme being used. For the

first part of this chapter, we focus on the simple case of l = 1.

It is worth pointing out that, for an MSR code, the number of downloaded symbols

(dβ) is strictly greater than the number of stored symbols (α). Therefore, Eve can poten-

tially gain more information by observing the data downloaded during node repair than

merely observing the data stored on the node. This motivates a generalized eavesdropper

model for a DSS, called as the (l1, l2)-eavesdropper model, where, Eve can access the data

stored on any l1 nodes, and the data downloaded during the regeneration of any l2 nodes

(see [33, 22]). Our focus is on the case l1 = `, l2 = 0.

Perfect Seccurity: Suppose that we need to store a set S of Bs files securely, where

Bs ≤ B. Let E denote the set of (coded) files observed by Eve. A DSS is said to be

perfectly secure if I (S;E) = 0. Under this requirement, Pawar et al. [31] characterized

an upper bound on the secrecy capacity as:

Bs ≤
k−1∑
i=l

min{α, (d− i)β}, (3.4)

where l is the number of nodes observed by Eve. Comparing (3.1) and (3.4), we can

say that in a perfectly secure DSS, the l nodes that are compromised by the eavesdrop-

per cannot effectively contain any useful information. Consequently, the perfect secrecy

requirement results in a loss of storage capacity, i.e., Bs < B.
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For instance, in [33], the authors present a perfectly secure construction for product

matrix codes that achieves the above outer bound. The loss of capacity incurred due to

perfect secrecy requirement is B −Bs = αl.

Weak Security: Our focus is on a relaxed, yet practically appealing notion of weak

security [35]. A DSS is said to be weakly secure if I (Si;E) = 0, ∀i ∈ [Bs], where

[Bs] := {1, . . . , Bs}. Furthermore, suppose Eve is able to obtain, as a side information,

some g files denoted as SG := {Si : i ∈ G} for some G ⊂ [Bs] such that |G| = g. Then, a

DSS is said to be weakly secure against g guesses if we have

I (Si;E|SG) = 0 ∀i ∈ [Bs] \ G, ∀G ⊂ [Bs] : |G| ≤ g. (3.5)

Notice that when the system is weakly secure against g guesses, it means that the size of

the side-information that Eve can possess without being able to decode any new file is (at

most) g.

In [47], it was shown that the above condition is equivalent to

I (SG′ ;E) = 0 ∀G ′ ⊆ [Bs] : |G ′| ≤ g + 1. (3.6)

Essentially, this condition implies that in a scheme that is weakly secure against g guesses,

it is not possible for Eve to obtain any information about any subset of g+ 1 files from her

observations. We can consider the condition in (3.6) as the definition of weak security.

Coset-Coding-Based Outer Codes: A coset code [45] is constructed using a (B,B−

Bs) linear code Cs over Fq with parity-check matrix H ∈ FBs×Bq . Specifically, the set of

Bs files S is encoded by selecting uniformly at random some X ∈ FBq such that S = HX .

Therefore, the vector S can be considered as a syndrome specifying a coset of Cs, and

the codeword X is a randomly chosen element of that coset. Notice that the decoding
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operation of a coset code consists of simply computing the syndrome S = HX .

To design the matrix H appropriately, we need to evaluate the weak security condi-

tion (3.6) in terms of coding matrices H and Ge. For this, we consider the following result

from [47, Lemma 6]. (See also [51, Theorem 1].)

Lemma 2. Suppose a coset code based on a parity-check matrixH ∈ FBs×Bq is used as an

outer code over a given exact regenerating code to store the message S = {S1, · · · , SBs}.

Suppose each message symbol Si for i ∈ [Bs] is chosen uniformly and independently. Let

E = GX be the µ linearly independent symbols observed by an eavesdropper. Then, for

any G ′ ⊆ [Bs] : |G ′| ≤ B − µ, we have

I (SG′ ;E) = rank HG′ + rank G− rank

HG′
G

 , (3.7)

where HG′ is a sub-matrix of H formed by choosing the rows indexed by the set G ′.

Then, using (3.6) and (3.7), we can observe that the weak security is satisfied if H and

G are such that

rank

HG′
G

 = rank HG′ + rank Ge, ∀ |G ′| ≤ g + 1. (3.8)

Our goal is to construct the outer code H for Product Matrix codes (described in the

next section) such that (3.30) holds.

Remark 10. It is possible to choose entries of H uniformly at random over a sufficiently

large finite field, however it would require exponential field size. This is because the con-

dition (3.30) must be satisfied for all sub-matrices of H of size (g + 1), the number of

which is exponentially large. More specifically, using the standard network coding argu-

ments, one can show that if entries of H are chosen uniformly at random from a field of
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size q > n
(

B
B−α

)
, the scheme would be weakly secure against B − α number of guesses

with high probability. On the other hand, we explicitly construct H over small field size

(O (n)) that guarantees weak security up to a number of guesses.

3.3 Explicit Outer Codes for Weak Security of Product-Matrix (PM) Codes

3.3.1 Recap of PM Codes

The product-matrix code C is constructed as the product of an (n×d) encoding matrix

Ψ and a (d × α) message matrix M . The encoding matrix is chosen in such a way that it

satisfies certain properties and is independent of message symbols. The message matrix

contains the message symbols arranged in a particular fashion with possible repetitions.

The constructions are specified for β = 1, and can be generalized for higher values of β

by employing stripping of data (see [13]).

The PM-MBR code construction is specified for all feasible values of (n, k, d). The

encoding matrix Ψ and message matrix M have the following structure

Ψ︸︷︷︸
n×d

=

[
Φ︸︷︷︸
n×k

∆︸︷︷︸
n×(d−k)

]
, M︸︷︷︸

d×d

=


M1︸︷︷︸
k×k

M2︸︷︷︸
k×(d−k)

MT
2︸︷︷︸

(d−k)×k

0︸︷︷︸
(d−k)×(d−k)

 (3.9)

In the message matrixM , the component matrixM1 is a k×k symmetric matrix which

contains k(k+1)
2

data symbols in the upper triangular half; whereas, the other component

matrixM2 is a k×(d−k) matrix which contains the remaining k(d−k) message symbols.

Note that at MBR point, B =
∑k−1

i=0 (d− i) = k(k+1)
2

+ k(d− k) (see (3.1)).

The matrices Φ and ∆ are chosen in such a way that any k rows of Φ are linearly

independent, and any d rows of Ψ are linearly independent. If Ψ is chosen to be a Van-

dermonde or a Cauchy matrix, these requirements are satisfied. Note that the field size

q depends on the choice of the encoding matrix Ψ. For instance, if Ψ is a Vandermonde
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matrix, then field size of q ≥ n is necessary.

The α symbols stored on the i-th node are given by Ci = ΨiM , where Ψi denotes the

i-th row of Ψ. The regeneration and the reconstruction processes can be found in [13].

Example 1. Consider a (n = 5, k = 3, d = 4, α = 4, β = 1) PM-MBR code. Then,

from (3.3), we have B = 9. Let the data to be stored is given as X = {x1, · · · , x9}, where

xi ∈ Fq ∀i. Suppose the encoding matrix Ψ is a Cauchy matrix. Then, in parametric form,

we have

Ψ =

[
1

ai + bj

]5,4

i=1,j=1

, M =



x1 x2 x3 x4

x2 x5 x6 x7

x3 x6 x8 x9

x4 x7 x9 0


, (3.10)

where ai, bj ∈ Fq such that ai 6= bj and ai + bj 6= 0 for all i, j. Note that, to satisfy these

requirements, we need at least n+ d = 9 distinct elements, and thus, we require q ≥ 9.

3.3.2 Conventional Representation of PM Codes

Let us begin with describing a conventional way to represent the PM codes in terms of

a generator matrix and a message vector. This will be useful later in specifying the outer

codes.

Let Ce denote the α files stored on a node e. Then, recall that Ce = ψeM , where ψe

is the e-th row of Ψ. We can represent this encoding vector times message matrix form in

a more conventional generator matrix times message vector form. This is carried out by

finding an α× B matrix Ge that guarantees Ce = ψeM = (GeX)T , where X is a column

vector containing all the B files.

Example: For the previous example of (n = 6, k = 4, d = 5, α = 5, β = 1) PM-MBR

code (Example 1), if Eve observes the first node then we can write G1 as (3.11) as follows.
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G1 =



Ψ(1, 1) Ψ(1, 2) Ψ(1, 3) Ψ(1, 4) 0 0 0 0 0

0 Ψ(1, 1) 0 0 Ψ(1, 2) Ψ(1, 3) Ψ(1, 4) 0 0

0 0 Ψ(1, 1) 0 0 Ψ(1, 2) 0 Ψ(1, 3) Ψ(1, 4)

0 0 0 Ψ(1, 1) 0 0 Ψ(1, 2) 0 Ψ(1, 3)


(3.11)

Remark 11. Observe that matrix Ge for each node e ∈ [n] is sparse. In particular, Ge

for each node e ∈ [n] contains at least one row vector with Hamming weight k. Thus,

PM-MBR codes are not secure against g ≥ k − 1 guesses, when Eve can observe one

storage node. This shows the necessity to employ an outer code to improve the level of

weak secrecy.

3.3.3 Main Idea and Definitions

The idea is to construct H such that it has the same structure as that of the generator

matrix Ge of a node for the PM code. The same structure of Ge and H would enable us to

ensure the condition (3.30).

Recall from section 3.3.2 that the values of the non-zero entries in Ge are specified by

the elements of ψe and their locations depend on the indices of the elements ofM . Further,

the locations of non-zero entries in Ge are the same for each node e ∈ [n]. To formally

specify this structure present in Ge, we first introduce the notion of type.

Definition 3. A row vector hj , of length B is said to be of type i, 1 ≤ i ≤ α, if the

location of the non-zero entries of hj are the same as that of i-th row of Ge, where Ge is

the generator matrix of the underlying PM code. We call the corresponding set of indices

of non-zero entries as the index set of type i, denoted as I (i).

Essentially, the type of a vector specifies the locations of the non-zero entries of the
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vector. Notice that the total number of types is equal to the number of rows of Ge, which

is α. Note that the underlying PM code to be secured determines the number of types and

structure of each type.

Example 2. Continuing the example of an (n = 6, k = 4, d = 5, α = 5, β = 1) PM-MBR

code (Example 1), a vector of type 1 has the form

h(1) =

[
γ1 γ2 γ3 γ4 0 0 0 0 0

]

for any non-zero elements {γ1, · · · , γ4} in Fq. Note that its structure resembles that of the

first row of G1 in (3.11). The corresponding index set of type 1 is I (1) = {1, 2, 3, 4},

which corresponds to the indices of elements of first column of M (see (3.10)).

As we show in the next section, for a given PM code, we propose to construct H such

that each of its rows corresponds to one of the α types. This motivates us to introduce the

notion of type cardinality vector.

Definition 4. For a Bs × B matrix H , we define its type cardinality vector θ as θ :=

[θ1 · · · θα], where θi denotes the number of rows of type i, 1 ≤ i ≤ α, that are present in

H .

Once the type of a row vector is fixed, it is sufficient to give the set of values of its

non-zero entries to fully specify the row vector. For example, the values of non-zero

entries of all the vectors in G1 in (3.11) are specified by the elements of vector ψ2 =

[Ψ(1, 1) Ψ(1, 2) Ψ(1, 3) Ψ(1, 4)]. If all the rows of H are of one of the α types, we can

succinctly represent all the non-zero entries H using what we call as a coefficient matrix

defined below.

Definition 5. For aBs×B matrixH , its coefficient matrix Ψ̂ is defined as the d×d matrix
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such that the j-th row of Ψ̂ specifies the non-zero entries of the j-th vector of type i that is

present in H for i ∈ [α], j ∈ [d].

Observe that the type cardinality vector θ along with the coefficient matrix Ψ̂ com-

pletely specify the parity-check matrix H .

Example 3. Consider the example of an (n = 6, k = 4, d = 5, α = 5, β = 1) PM-MBR

code . Notice that we have α = 5 number of types, whose structures are given by the rows

of a generator matrix of a node, say G1 (see (3.11)). Consider the H matrix as follows.

H =



15 2 12 5 0 0 0 0 0

2 12 14 8 0 0 0 0 0

0 15 0 0 2 12 5 0 0

0 0 0 15 0 0 2 0 12

0 0 0 2 0 0 12 0 14


. (3.12)

Then, we can represent H using the following type cardinality vector and coefficient ma-

trix.

θ = {2, 1, 0, 2}, Ψ̂ =

15 2 12 5

2 12 14 8

 . (3.13)

3.3.4 Outer Code Construction for PM-MBR Codes

For PM-MBR codes, an explicit joint construction of H and Ψ is given below.
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Construction 4. First, choose the type cardinality vector θ as follows.

θi =



0 if i = 1,

d− k + i if 2 ≤ i ≤ k − 1,

d− 1 if i = k,

1 if k + 1 ≤ i ≤ d.

(3.14)

Note that max1≤i≤d θi = d− 1.

Next, choose an n × d encoding matrix Ψ and a d × d coefficient matrix Ψ̂ in such a

way that Ψ̃ :=

Ψ

Ψ̂

 is a Cauchy matrix.

Finally, using Ψ̂ and θ, construct H as follows. For each θi, 2 ≤ i ≤ d, the θi × B

sub-matrix Hi of H is given as

Hi(p, b) =


Ψ̂(p,j) if M(i,j) = Xb for some j ∈ [d],

0 otherwise,
(3.15)

for 1 ≤ p ≤ θi and 1 ≤ b ≤ B. The parity-check matrix H is obtained by vertically

concatenating the sub-matrices Hi, i.e., H =
[
HT

2 HT
3 . . . HT

d

]T . Notice that Hi is the

sub-matrix of H formed by choosing all its rows corresponding to type i.

To construct Ψ̃ to be a Cauchy matrix, it suffices to have q ≥ n+ 2α.

Example 4. Consider the example of an (n = 5, k = 3, d = 4, α = 4, β = 1) PM-MBR

code (Example 1). Construction 4 yields θ = {0, 3, 3, 1}. Let the 5 × 4 encoding matrix

Ψ be a Cauchy matrix (cf. (3.10)). We choose Ψ̂ such that Ψ̂ =

Ψ

Ψ̂

 is also a Cauchy

matrix. Note that this requires q ≥ 13. Then, the resulting parity-check matrix H is given
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in (3.16).

H =



0 Ψ̂(1, 1) 0 0 Ψ̂(1, 2) Ψ̂(1, 3) Ψ̂(1, 4) 0 0

0 Ψ̂(2, 1) 0 0 Ψ̂(2, 2) Ψ̂(2, 3) Ψ̂(2, 4) 0 0

0 Ψ̂(3, 1) 0 0 Ψ̂(3, 2) Ψ̂(3, 3) Ψ̂(3, 4) 0 0

0 0 Ψ̂(1, 1) 0 0 Ψ̂(1, 2) 0 Ψ̂(1, 3) Ψ̂(1, 4)

0 0 Ψ̂(2, 1) 0 0 Ψ̂(2, 2) 0 Ψ̂(2, 3) Ψ̂(2, 4)

0 0 Ψ̂(3, 1) 0 0 Ψ̂(3, 2) 0 Ψ̂(3, 3) Ψ̂(3, 4)

0 0 0 Ψ̂(1, 1) 0 0 Ψ̂(1, 2) 0 Ψ̂(1, 3)



.

(3.16)

First, we characterize the weak security capacity of the proposed outer code for PM-

MBR codes.

Theorem 4. When an outer coset code based on the parity-check matrix H given in Con-

struction 4 is used along with a PM-MBR code, the weakly secure storage capacity is

Bs = B − 2.

Proof: Notice that the data file, which is securely stored, can be considered as the

syndrome of the coset code as S = HX . Thus, the weak-secrecy capacity is the dimension

of matrix H . First, we show that, if H is designed following construction 4, it contains

B − 2 rows. Next, we show that H is full-rank to prove the result.

Now, notice that the total number of rows in H is equal to
∑d

i=1 θi. From (3.14), we
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have

d∑
i=1

θi = 0 +

(
k−1∑
i=2

d− k + i

)
+ (d− 1) + (d− k)

=

(
k−2∑
i=1

d− i
)

+ (d− 1) + (d− k)

(a)
=

(
k−1∑
i=0

d− i
)
− 2

(b)
= B − 2 (3.17)

where (a) can be easily obtained by carrying out simple algebraic manipulations, and (b)

follows from (3.1) and from the fact that at MBR point α = d (we assume that β = 1).

To prove that H is full-rank, we show that it is possible to append two rows to H in

such a way that the resulting B × B matrix, denoted as H ′, is non-singular. Specifically,

append a type 1 row vector with non-zero coefficients corresponding to the first row of

Ψ̂, and append a type k row vector with non-zero coefficients corresponding to the d-th

row of Ψ̂. From (3.14), it is easy to see that H ′ contains d − (k − i) rows of type i for

k ≥ i ≥ 2, one row of type 1, and one row each of types k + 1 through d. Without loss

of generality, assume that the rows of H are ordered in such a way that first d rows are of

type k, next d− 1 rows are of type k − 1 and so on up to d− (k − 2) rows of type 2. The

last d− k + 1 rows are of types k + 1 through d and of type 1, respectively.

Now, for proving non-singularity of H ′, consider a system of linear equations Z =

H ′Y , where Y = [Y1 · · ·YB] and Z = [Z1 · · ·ZB] are length-B vectors of variables Y1

through YB and Z1 through ZB, respectively. We show that it is possible to successively

decode variables in Y in terms of variables in Z by leveraging the elegant structure of H ′.

To describe the process of successive decoding, we need to introduce some notation.

Recall that the type of a row vector specifies the locations of the non-zero coefficients of
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named 1 Successive decoding for Z = H ′Y

1: Set γ1 = d, γ2 = k
2: for p = k to 2 do
3: Consider set of equations corresponding to γ1 rows of type p as Z[I (p)] =

Ψ̂1:γ1Y [I (p)]
4: Using perviously decoded elements, decode for elements of Y located at

I (p) \
(⋃k−p

l=1 (I (p) ∩ I (p+ l))
)

5: γ1 = γ1 − 1, γ2 = γ2 − 1
6: end for
7: Decode for the remaining elements in index sets of types k + 1 through d
8: Decode for the remaining single element of type 1

the vector. The corresponding set of locations of non-zero coefficients of a type i vector is

referred to as the index set of type i, denoted as I (i). Define Y [I (i)] := {Yl : l ∈ I (i)},

i.e., Y [I (i)] is the vector of elements of Y that are indexed by the index set of type i.

Suppose we write vector Y in the format of matrix M (see (3.9)) in a lexicographic

order. Notice that the index set of type i is the set of indices of the elements in the i-th

column of M . Observing the structure of M , we divide the d types into two groups. The

types 1 through k are called as group I, while the types k+ 1 through d are called as group

II. For any group I type, the index set consists of d elements, i.e., |I (i) | = d, ∀i ∈ [k].

On the other hand, for any group II type, the corresponding index set has k elements,

i.e., |I (i) | = k ∀i ∈ {k + 1, . . . , d}. Further, index set corresponding to any group I

has one index common with the index sets of all other types, i.e., |I (i) ∩ I (j) | = 1

∀i < j : i ∈ [k]. Whereas, any pair of index sets of group II types has no common symbol,

i.e., |I (i) ∩ I (j) | = 0 ∀k < i < j ≤ d.

Let γ1 and γ2 denote the number of row vectors in H ′ of group I and group II types,

respectively. Algorithm 1 presented below decodes elements of Y [I (i)] for each i ∈ [d]

successively.

Claim 1. Algorithm 1 decodes all the B elements of Y in terms of Z.
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Proof: The algorithm begins with type k, of which there are d row vectors in H ′.

By the construction of H ′, the non-zero coefficient values are the elements of the d × d

Cauchy matrix Ψ̂. Thus, it is possible to solve for Y [I (k)] by inverting Ψ̂. Next, we prove

by induction that, for 2 ≤ i ≤ k, if the elements of I (i+ 1) through I (k) have been

decoded, then it is possible to decode the elements of I (i). By construction of H ′, there

are d − k + i rows of type i in H ′ for 2 ≤ i ≤ k with non-zero coefficients given by

Ψ̂1:(d−k+i), respectively. This forms a system of d − k + i linear equations in d variables

of I (i) as Z[I (i)] = Ψ̂1:(d−k+i)Y [I (i)]. Note that, since type i is a group I type, there

is one element common between I (i) and each of I (i+ 1) through I (k). Thus, there

are k − i elements in I (i) that have already been decoded. As any square sub-matrix of

Ψ̂ is non-singular by construction (it is a Cauchy matrix), it is possible to solve for the

un-decoded d− k + i variables using Z[I (i)] = Ψ̂1:(d−k+i)Y [I (i)].

At the end of the first for loop, k−1 elements from I (j) for each j ∈ [d] are decoded.

Thus, in each of the index sets of group II types, there is just one element to be decoded.

By construction, H ′ has one row in each of the group II types, and thus, it is possible to

decode all the elements in group II index sets. Note that, at this point, all the elements

from index sets of all types except type 1 are decoded.

Finally, since I (1) has one element common with all the remaining d − 1 index sets,

only single element from I (1) remains to be decoded, which can be decoded using a row

of type 1 that is appended to H .

Notice that, as each index set corresponds to a column of matrixM , we have
⋃d
j=1 I (j) =

{Y1, . . . , YB}. Therefore, algorithm 1 decodes all the B elements of Y .

From Claim 1, it follows that the matrix H ′ is invertible, which completes the proof.

Remark 12. Note that successively decoding for the variables of a particular type is equiv-
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alent to performing Gaussian elimination on the corresponding rows of that particular

type. Thus, in essence, the procedure for successive decoding gives the order in which

Gaussian elimination can be performed in H ′.

Example: Consider the following H given in (3.18), which follows from construc-

tion 4. To form H ′, first append a row vector of type 3 with non-zero coefficients specified

by Ψ̂4. Then, append a row vector of type 1 with non-zero coefficients specified by Ψ̂1. See

equation (3.19). To prove that H ′ is full-rank, observe that we can decode for variables in-

dexed by I (3) = {2, 5, 6, 7} using the four rows of type 3. Notice that I (3) ∩ I (2) = 6.

Then, using the three rows of type 2 and already decoded variable at index 6, solve for

variables indexed by I (2)\ (I (3)∩I (2)) = {3, 8, 9}. Then, using the row vector of type

4, decode for I (4) \ ((I (4) ∩ I (3)) ∪ (I (4) ∩ I (2))) = {4}. Finally, using the row of

type one, decode for I (1)\ ((I (1)∩I (4))∪ (I (1)∩I (3))∪ (I (1)∩I (2))) = {1}. The

successive decoding uses the property that any square sub-matrix of the Cauchy matrix Ψ̂

is non-singular.

H =



0 Ψ̂(1, 1) 0 0 Ψ̂(1, 2) Ψ̂(1, 3) Ψ̂(1, 4) 0 0

0 Ψ̂(2, 1) 0 0 Ψ̂(2, 2) Ψ̂(2, 3) Ψ̂(2, 4) 0 0

0 Ψ̂(3, 1) 0 0 Ψ̂(3, 2) Ψ̂(3, 3) Ψ̂(3, 4) 0 0

0 0 Ψ̂(1, 1) 0 0 Ψ̂(1, 2) 0 Ψ̂(1, 3) Ψ̂(1, 4)

0 0 Ψ̂(2, 1) 0 0 Ψ̂(2, 2) 0 Ψ̂(2, 3) Ψ̂(2, 4)

0 0 Ψ̂(3, 1) 0 0 Ψ̂(3, 2) 0 Ψ̂(3, 3) Ψ̂(3, 4)

0 0 0 Ψ̂(1, 1) 0 0 Ψ̂(1, 2) 0 Ψ̂(1, 3)


(3.18)
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H ′ =



0 Ψ̂(1, 1) 0 0 Ψ̂(1, 2) Ψ̂(1, 3) Ψ̂(1, 4) 0 0

0 Ψ̂(2, 1) 0 0 Ψ̂(2, 2) Ψ̂(2, 3) Ψ̂(2, 4) 0 0

0 Ψ̂(3, 1) 0 0 Ψ̂(3, 2) Ψ̂(3, 3) Ψ̂(3, 4) 0 0

0 0 Ψ̂(1, 1) 0 0 Ψ̂(1, 2) 0 Ψ̂(1, 3) Ψ̂(1, 4)

0 0 Ψ̂(2, 1) 0 0 Ψ̂(2, 2) 0 Ψ̂(2, 3) Ψ̂(2, 4)

0 0 Ψ̂(3, 1) 0 0 Ψ̂(3, 2) 0 Ψ̂(3, 3) Ψ̂(3, 4)

0 0 Ψ̂(4, 1) 0 0 Ψ̂(4, 2) 0 Ψ̂(4, 3) Ψ̂(4, 4)

0 0 0 Ψ̂(1, 1) 0 0 Ψ̂(1, 2) 0 Ψ̂(1, 3)

Ψ̂(1, 1) Ψ̂(1, 2) Ψ̂(1, 3) Ψ̂(1, 4) 0 0 0 0 0


(3.19)

Next, we compute the level of secrecy that can be attained using the proposed outer

code along with a PM-MBR code.

Theorem 5. An outer coset code based on the parity-check matrix H given in Construc-

tion 4 makes a PM-MBR code weakly secure against g ≤ d+ k − 4 guesses.

Proof: Essentially, we need to prove that condition (3.30) always holds for the

proposed coding scheme as long as |G ′| ≤ d + k − 3. For notational convenience, let

T :=

HG′
Ge

. Notice that there are
(
Bs
|G′|

)
number of ways to choose a particular |G ′|, and

we ensure (3.30) for each possible HG′ as long as |G ′| ≤ d+ k − 3.

Since H is full-rank as shown in theorem 4, its sub-matrix HG′ will be full rank for any

G ′ ⊆ [Bs]. Further, it has been shown in [33] that for PM-MBR codes each storage node

stores α linearly independent symbols, thus, it follows that Ge is full-rank. Therefore, to

prove (3.30), we need to prove that the matrix T is full-rank. We divide the proof into

three cases: k ≥ 3, k = 2, and k = 1.

Case 1: k ≥ 3.

As in the proof of Theorem 4, we show that, if |G ′| ≤ d+k−3, it is always possible to
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append B−|G ′|−α rows of appropriate types to T in such a way that the resulting B×B

matrix is non-singular. In the following, we present an algorithm which, for any given HG′

and node index e ∈ [n], appends row vectors of appropriate types to T =

HG′
Ge

 in such

a way that successive decoding can be carried out.

We need some notation to describe the algorithm. Let λ′i be the number of encoding

vectors of type i, i ∈ [d], that are present in HG′ . Notice that λ′i ≤ θi ∀i ∈ [d]. Let λi

denote the number of row vectors of type i, i ∈ [d], that are present in T . Note that, for

any e ∈ [n], Ge contains one row vector of each of the d types. Thus, λi = λ′i+1, ∀i ∈ [d].

This implies that λi ≤ θi + 1 ∀i ∈ [d]. Further, from (3.14), we have that λi ∈ {1, 2} for

all group II types i for k + 1 ≤ i ≤ d. Let γ1 and γ2 denote the number of equations that

are required to decode the variables of group I and group II types, respectively, in a given

iteration. See algorithm 2 on next page.

First, we prove the correctness of the algorithm.

Claim 2. If algorithm 2 does not report a failure, it finds a solution to Z = T ′Y , where

the construction of T ′ is described in the algorithm.

Proof: In the same way as in the proof of claim 1, it is easy to prove by induction

that in the first for loop, the algorithm decodes for Y [I (ji)] for 3 ≤ i ≤ k. Since each

pair of group I types has one index in common, k − 2 elements of each of the remaining

types are decoded at the end of the first for loop. Note that there are two rows each of

types jd−L+1 through jd. Since k − 2 elements of each of them are already decoded, the

remaining two elements are decoded at line 17.

At line 25, all the remaining elements of I (j2) will be decoded. At this point, there is

only one un-decoded element each in types jk+1 through jd−L, which will be decoded at

line 28. Note that, at this point, all the types from 2 through d have been decoded. Thus,

there remains only one un-decoded element of type 1 which will be decoded as the final
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named 2 Appending rows to T to form T ′ and carrying out successive decoding for Z =
T ′Y (k ≥ 3)

1: Sort λj for j ∈ [k], Let λj1 ≤ · · · ≤ λjk
2: Sort λj for k + 1 ≤ j ≤ d, Let λjk+1

≤ · · · ≤ λjd
3: Find L such that λjd−L+1

= λjd−L+2
= · · · = λjd = 2

4: {Notice that 0 ≤ L ≤ d− k}
5: Set γ1 = d, γ2 = k
6: for p = k to 3 do
7: if λjp > γ1 then
8: Declare failure, Exit
9: else

10: Append T with γ1 − λjp additional rows of type jp with non-zero coefficients as
the rows of Ψ̂ that are not present in the λjp rows of type jp

11: Using the equations corresponding to the γ1 rows of type p, decode the un-
decoded variables from Y [I (jp)]

12: γ1 = γ1 − 1, γ2 = γ2 − 1
13: end if
14: end for
15: {At this point, γ1 = d− (k − 2) and γ2 = k − (k − 2) = 2}
16: if L > 0 then
17: Successively decode the remaining variables from Y [I (jd−L+i)] for i ∈ [L]
18: γ1 = γ1 − L
19: end if
20: {At this point, γ1 = d− (k − 2)− L and γ2 = 2}
21: if λj2 > γ1 then
22: Declare failure, exit
23: else
24: Append T with γ1−λj2 additional rows of type j2 with non-zero coefficients as the

rows of Ψ̂ that are not present in the λj2 rows of type j2

25: Decode the un-decoded variables from Y [I (2)]
26: γ1 = γ1 − 1, γ2 = γ2 − 1
27: {At this point, γ1 = d− (k − 2)− L− 1 and γ2 = 2− 1 = 1}
28: Decode for the remaining symbols from Y [I (jk+1)], Y [I (jk+2)], . . . , Y [I (jd−L)]
29: Append T with a row of type 1 with non-zero coefficients as the first row of Ψ̂
30: Decode the un-decoded variable from Y [I (1)]
31: end if

step. For successive decoding, we rely on the fact that for matrix Ψ̃e =

 Ψ̂

Ψe

, any square
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sub-matrix is non-singular. Note that this condition holds by construction 1; e.g., when

the matrix Ψ̃ is a Cauchy matrix.

Essentially, algorithm decodes the elements in all the d types in the following order (jk,

jk−1, . . ., j3), (jd−L+1, . . ., jd), (jk+1, . . ., jd−L), j2, j1, which covers all the B elements.

Next, we prove that the algorithm 2 does not declare a failure if the number rows in

HG′ is bounded below a threshold.

Claim 3. If |G ′| ≤ d+ k − 3, then algorithm 2 always succeeds.

Proof: The proof is by contradiction. Suppose |G ′| ≤ d+ k− 3, and the algorithm

fails.

Case 1: Algorithm fails on line 6, i.e., in the first iteration when p = k. This implies

that λjk > γ1 = d. However, we have

λjk = max
1≤l≤k

λl

(a)

≤ max
1≤l≤k

θl + 1

(b)
= d

where (a) follows from the fact that the number of rows of any type i in T is at most θi+1,

i.e., λi ≤ θi+1 ∀i ∈ [d], and (b) is due to (3.14). This is a contradiction, and the algorithm

cannot fail in the first iteration when p = k.

Case 2: Algorithm fails in the first for loop during i-th iteration such that 2 ≤ i ≤ k−2.

Note that this implies k ≥ 4. Also, at the i-th iteration, we have p = k − (i− 1).

Now, as γ1 is reduced by 1 in each iteration, in i-th iteration we have γ1 = d− (i− 1).
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Since the algorithm failed, it should be that λjk−i+1
> d− (i− 1). Then, we can write

i∑
l=1

λjk−l+1

(c)

≥ iλjk−i+1

(d)

≥ i(d− i+ 2)

∴ i+
i∑
l=1

λ′jk−l+1
≥ i(d− i+ 2) (3.20)

∴
i∑
l=1

λ′jk−l+1
≥ i(d− i+ 1), (3.21)

where (c) is due to λjk ≥ λjk−1
≥ · · · ≥ λjk−i+1

and (d) is due to λjk−i+1
> d− (i− 1). To

get (3.20), we use λl = λ′l + 1 ∀l ∈ [d].

First, note that |G ′| =
∑d

l=1 λ
′
l. Thus, |G ′| ≥ ∑i

l=1 λ
′
jk−l+1

. Next, notice that f(i) =

i(d− i+ 2) is a concave function in i and thus it will attain minimum over 2 ≤ i ≤ k − 2

at one of its boundary points. Using these two observations along with (3.21), we have

|G ′| ≥ min{2(d− 1), (d− k + 3)(k − 2)}. (3.22)

Now, we show that both of these boundary points result in contradiction. First, since

d ≥ k for any regenerating code, clearly, 2(d − 1) − (d + k − 3) = d − k + 1 > 0, i.e.,

2(d− 1) > d− k + 3. Next, consider the second boundary point,

(d− k + 3)(k − 2)− (d+ k − 3)
(e)
= (k − 3)d− (k − 2)2 + 1

(f)

≥ (k − 3)k − (k − 2)2 + 1

= k − 3,

where (e) follows from algebraic manipulations, and (f) follows because for any regener-

ating code d ≥ k. Finally, since k ≥ 4 in this case, we have (d−k+2)(k−2) > d+k−3.
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Therefore, we have |G ′| ≥ min{2(d − 1), (d − k + 3)(k − 2)} > d + k − 3, which is a

contradiction.

Case 3: Algorithm fails at line 22, while considering type j2. It is easy to see that at

this point γ1 = d−(k−2)−L and γ2 = 1. The failure implies that λj2 ≥ d−(k−2)−L+1.

Now, let us consider the total number of rows in T corresponding to types that have been

considered so far, as follows.

k∑
l=2

λjl +
d∑

m=d−L+1

λjm
(g)

≥
k∑
l=2

λj2 + 2L

(h)

≥ (k − 1)(d− k − L+ 3) + 2L, (3.23)

where (g) follows from λj2 ≤ λj3 ≤ · · · ≤ λjk and λjd−L+1
= λjd−L+2

= · · · = λjd = 2,

and (h) follows from λj2 ≥ d − (k − 2) − L + 1. However, since λl = λ′l + 1 for each

l ∈ [d], from (3.23), we can write

k∑
l=2

λ′jl +
d∑

m=d−L+1

λ′jm ≥ (k − 1)(d− k − L+ 3)− (k − 1) + L

= (k − 1)(d− k − L+ 2) + L. (3.24)

After some manipulations, it is straightforward to show that (k− 1)(d− k−L+ 2) +L−

(d + k − 3) = (d − k − L)(k − 2) + 1, which is strictly positive for k ≥ 3 as d ≥ k and

0 ≤ L ≤ d− k. Therefore, we have

|G ′| =
d∑
l=1

λ′jl ≥
k∑
l=2

λ′jl+
d∑

m=d−L+1

λ′jm
(o)

≥ (k−1)(d−k−L+2)+L
(r)
> d+k−3, (3.25)

where (o) follows from (3.24) and (r) is proved in the previous point. However, this is a

contradiction, which completes the proof for k ≥ 3.
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named 3 Appending T and carrying out successive decoding for k = 2

1: Sort λj for k + 1 ≤ j ≤ d, Let λjk+1
≤ · · · ≤ λjd

2: Find L such that λjd−L+1
= λjd−L+2

= · · · = λjd = 2
3: {Notice that 0 ≤ L ≤ d− k}
4: Set γ1 = d, γ2 = k = 2
5: if L > 0 then
6: for p = 1 to L do
7: Using the equations corresponding to the γ2 rows of type d − L + p, decode the

variables indexed by I (d− L+ p)
8: Set γ1 = γ1 − 1
9: end for

10: end if
11: {At this point, γ1 = d− L}
12: if λjk > γ1 then
13: Declare failure, exit
14: else
15: Append T with γ1 − λjk additional rows of type k = 2 with non-zero coefficients

as the rows of Ψ̂ that are not present in the λj2 rows of type 2
16: Decode the un-decoded variables from Y [I (2)]
17: γ1 = γ1 − 1, γ2 = γ2 − 1
18: {At this point, γ1 = d− L− 1 and γ2 = 2− 1 = 1}
19: Decode for the remaining symbols from Y [I (jk+1)], Y [I (jk+2)], . . . , Y [I (jd−L)]
20: Append T with a row of type 1 with non-zero coefficients as the first row of Ψ̂
21: Decode the un-decoded variables from Y [I (1)]
22: end if

Case 2: k = 2.

We present the algorithm for successive decoding as algorithm 3.

First, we prove the correctness of the algorithm.

Claim 4. If algorithm 3 does not report a failure, it finds a solution to Z = T ′Y , where

the construction of T ′ is described in the algorithm.

Proof: Notice that there are k = 2 elements each in sets I (l) for k + 1 ≤ l ≤ d.

For the L types, jd−L+1 through jd, there are two rows present in T . Thus, all the variables

from I (jl) for d− L+ 1 ≤ l ≤ d are decoded at the end of first for loop.
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The number of un-decoded variables in each of group I types is d − L. Algorithm

will append L rows of type k = 2 and decode all the un-decoded variables indexed by

I (k = 2) at line 16. Thus, there remains only one un-decoded element each of types jk+1

through jd−L, which will be decoded in line 19. At this point, there remains only single

un-decoded variable from type 1, ant it is decoded as the final step.

Essentially, algorithm successively decodes all the d types in the following order (jd−L+1,

. . ., jd), (j(k=2)), (jk+1, . . ., jd−L+1), j1, which covers all the B variables.

Claim 5. If |G ′| ≤ d+ k − 3, algorithm 3 always succeeds.

Proof: The proof is by contradiction. Suppose |G ′| ≤ d + k − 3 = d − 1 and the

algorithm fails. The only possibility of failure is on line 13. The total number of rows in

T that have been considered till this point is as follows.

d∑
m=d−L+1

λjm + λj2
(a)

≥ 2L+ (d− L+ 1)

∴
d∑

m=d−L+1

λ′jm + L+ λj2 + 1 ≥ d+ L+ 1, (3.26)

∴
d∑

m=d−L+1

λ′jm + λj2 ≥ d, (3.27)

where (a) follows because failure implies λj2 > d−L. To get (3.26), we use λjl = λ′jl + 1

for each l ∈ [d]. Now, we can write

|G ′| =
d∑
l=1

λ′jl

≥
d∑

m=d−L+1

λ′jm + λj2

(b)

≥ d, (3.28)
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where (b) is due to (3.27). However, |G ′| ≥ d is a contradiction and the proof follows.

Case 3: k = 1.

Notice that for k = 1, Eve gets the same degrees of freedom as a data collector (which

accesses to k nodes to recover the file). Therefore, it is not possible to achieve any form

of security since, similar to the data collector, Eve can also decode the complete file

This completes the proof of Theorem 5.

Example: For our running example, consider one possible matrix T as shown in (3.29).

To prove that T is full-rank, we show that it is possible to append some rows to T in such

a way that successive decoding is possible. First, append two rows of type 3 and de-

code for the variables indexed by I (3) = {3, 6, 8, 9}. Then, using the two rows of type

4, decode for the variables indexed by I (4) \ ((I (3) ∩ I (4))) = {4, 7}. Next, using

the two rows of type 2, decode for the variables indexed by I (2) \ ((I (2) ∩ I (3)) ∪

(I (2) ∩ I (4))) = {2, 5}. Finally, using a row of type 1, decode for the variable indexed

by I (1) \ ((I (1)∩I (3))∪ (I (1)∩I (4))∪ (I (1)∩I (2))) = {1}. The non-zero coeffi-

cients of the appended rows are specified by the appropriate rows of Ψ̂, and the successive

decoding is feasible due to the property that any square sub-matrix of the Cauchy matrix

Ψ̃ =

Ψ

Ψ̂

 is non-singular.

Remark 13. In [37], it is shown that, when Eve observes l nodes, the PM-MBR codes

using Cauchy matrix as their encoding matrix are weakly secure against k− l− 1 guesses

without any outer code. Thus, for l = 1, it is shown that PM-MBR codes are secure against

k− 2 guesses. Our proposed encoding enhances the level of security to d+ k− 4 guesses,

which is an improvement of d− 2 for all set of parameters (except for d = k = 2). Notice

that, for any regenerating code, d ≥ k. Thus, for large k, the enhancement achieved by the

proposed scheme is roughly twofold in terms of the number of guesses that Eve can make

and still cannot learn anything about any single message symbol.
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T =



0 Ψ̂(2, 1) 0 0 Ψ̂(2, 2) Ψ̂(2, 3) Ψ̂(2, 4) 0 0

0 0 Ψ̂(3, 1) 0 0 Ψ̂(3, 2) 0 Ψ̂(3, 3) Ψ̂(3, 4)

0 0 0 Ψ̂(1, 1) 0 0 Ψ̂(1, 2) 0 Ψ̂(1, 3)

Ψ(e, 1) Ψ(e, 2) Ψ(e, 3) Ψ(e, 4) 0 0 0 0 0

0 Ψ(e, 1) 0 0 Ψ(e, 2) Ψ(e, 3) Ψ(e, 4) 0 0

0 0 Ψ(e, 1) 0 0 Ψ(e, 2) 0 Ψ(e, 3) Ψ(e, 4)

0 0 0 Ψ(e, 1) 0 0 Ψ(e, 2) 0 Ψ(e, 3)


(3.29)

For the MBR case, we carefully designed the outer code taking into account a given

family of regenerating codes, namely, product-matrix codes. Essentially, we presented a

joint design of the (inner) storage code and the (outer) coset code to achieve weak security.

However, jointly designing the codes requires that the user, who preprocess and stores

the files, should know the underlying storage code in order to design the (outer) linear

transformation for achieving weak security. In many practical scenarios, such as storing

the files on third party cloud storage system, it may not be possible for the user to know

the underlying storage code. This motivates us to investigate universal outer codes as

described in the following section.

3.4 Universally Weakly Secure Coset Codes for MSR Codes

We seek to answer the following question: while designing a weakly secure storage

system, is it possible to separate the outer code design from the storage code design? In

other words, we would like to develop a universal approach to weak security that allows

independent design of the storage code and the coset code. We say that an outer code is

universal if it can weakly secure any (inner) regenerating code.

Note that the notion of universal security was proposed in [39, 47] for secure network
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coding. An outer code is said to be universal if it can be designed completely indepen-

dently of the network code. Silva and Kschischang [39] proved existence of universal outer

codes for weakly securing any network code. Focussing on the paradigm of strong secrecy

in [47], they presented explicit universal outer codes based on Maximum Rank-Distance

(MRD) codes [44]. Kurihara et al. [52] extended the techniques of [47] to construct uni-

versal outer codes for weakly securing any network code. The outer code construction

in [52] was adapted to the distributed storage setting by Kurihara and Miyake in [38].

However, the main drawback of using a rank-metric code is that the required field size is

significantly large. In particular, the universal outer code of [38] requires the field size of

q2B, where q is the field size of the underlying storage code and B is the total number of

information symbols stored.

Our goal is to construct universal outer coding schemes that require smaller field size.

Towards that, we ask the following question. Suppose we know the operating point of an

underlying regenerating codes, say MSR or MBR, is it possible to design an outer code

that universally achieves weak security for any regenerating code operating at that point

such that the field size is lower? We answer this question affirmatively, and present a

smaller field size universal outer code that can weakly secure any MSR code.

Our Contributions: First, we present a construction of universal outer code that can

achieve weak security of individual symbols in any (n, k) MSR code against an eaves-

dropper that can observe any k − 1 storage nodes. The required field size of the scheme

is O(Bk), where B is the number of stored information symbols. Next, we present a con-

struction of universal outer code that can achieve weak security with maximum possible

g in any MSR code against an eavesdropper that can observe any single storage node.

The required field size of the scheme is O(Bα), where B is the total number of stored

information symbols and α is the number of symbols stored on each node.
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Remark 14. As noted in [39], g-weak security is equivalent to perfect security of a mes-

sage S ′ = SG ⊂ S for any G of size up to g (see (3.6)). In particular, if we treat SG as

a message and the rest of the symbols as random keys (for any G of size up to g), then

(3.6) is equivalent to the perfect secrecy of SG . Therefore, it is possible to store B sym-

bols with g-weak security against an eavesdropper observing any µ coded symbols, only

if g + 1 ≤ B − µ.

Note that, using (3.6) and (3.7), it follows that a universal coset code H ensures that

rank

HG
G′

 = rank HG + rank G′, (3.30)

for every G ⊂ [Bs] such that |G| ≤ g and for every storage code G. (Recall that G′ is a

µ×B sub-matrix of G corresponding to µ eavesdropped symbols.)

Such a coset code H was first constructed in [39] for g ≤ 2 using a rank-metric code

over FqB to secure any G over Fq with application to network coding. This construction

was extended for g ≤ Bs − µ in [52] again using rank-metric codes, requiring the field

size of q2B, where q is the field size for the entries of G. The authors of [38] adapted

the construction of [52] to weakly secure any regenerating code. The main drawback of

such an outer code based on a rank-metric code is its high field size. Instead of securing

any regenerating code, we restrict our attention to the class of MSR codes, and present

universal outer code constructions over small field size in the next section.

In the following, we present constructions for universal outer codes to achieve g-weak

security in any (n, k, d, α, β)-MSR code. For simplicity, we follow (3.6) as the definition

of g-weak security. We consider the following two scenarios: (i) maximum ` and minium

g, i.e., ` = k−1 and g = 1, and (ii) minimum ` and maximum g, i.e., ` = 1 and g = B−α.

We assume that the user only knows the code parameters n, k, d, α, β, and q. In addition,
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we assume that the encoding of the MSR code is systematic. We begin with setting up

necessary notation for MSR codes.

Notation for MSR Codes: Consider an (n, k, d, α, β)-MSR code C over Fq, storing

B = kα information symbols (see Sec. 3.2.1). Let G =
[
GT

1 GT
2 · · · GT

n

]T be an nα ×

B generator matrix of C, where Gi is an α × B matrix corresponding to the symbols

stored on node i. We refer to Gi as a generator matrix of node i. Let us denote Gi as

Gi = [Gi,1 Gi,2 · · · Gi,α], where Gi,j is an α× α matrix.

We assume that G is in systematic form, and the first k nodes are systematic. In other

words, we have Gi,i = Iα and Gi,j = 0α for 1 ≤ i, j ≤ k such that i 6= j, where Iα is an

α× α identity matrix and 0α is an α× α zero matrix.

For any matrix (or vector) W with B = kα columns, we refer to the α columns of W

indexed from (j − 1)α + 1 through jα, as the j-th thick-column of W (1 ≤ j ≤ k).

3.4.1 Construction for ` = k − 1 and g = 1

Note that ` = k − 1 is the maximum possible strength that Eve can have for an (n, k)-

MSR code, as any k nodes recover the entire stored data. The motivation behind g = 1

is to protect every individual file, which usually carry meaningful information. The idea

for constructing H is to begin with a Vandermonde matrix over some base field and then

scale some of its appropriately chosen columns by elements lying in an extension field.

The details are given in the following.

Construction 5. Consider the parameters of an MSR code as n, k, d, α, β and q. Choose

qr as the smallest power of q greater than equal to B = kα. For 1 ≤ i, j ≤ B, choose the

entries hi,j of H as follows:

hi,j =

 ω
j
αβi−1

j if α | j,

βi−1
j otherwise,

(3.31)
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where β1, · · · , βB are B distinct elements of Fqr , and ω is a primitive element of Fqk+1
r

.

Next, we show that the above construction can universally achieve 1-weak security for

any MSR code for ` = k − 1.

Theorem 6. The outer coset code of Construction 5 can be used universally with any

(n, k)-MSR code to store Bs = kα symbols over Fqk+1
r

with 1-weak security against an

eavesdropper observing any ` = k − 1 nodes, each storing α coded symbols.

Proof. First, note that, since H is a B×B Vandermonde matrix with some of its columns

scaled, it is non-singular, resulting in Bs = B = kα.

Next, we prove the 1-weak security. Let Hi denote the i-th row of H . Let the set of

nodes accessed by Eve be L = {i1, · · · , i`} and let CL = {Ci : i ∈ L}. For g = 1, we

want to prove I (Si;CL) = 0 for every i ∈ [B] (see (3.6)). From (3.7), this is equivalent to

showing that, for every i ∈ [B], the following matrix is full-rank:

T =

Hi

G′

 =



Hi

Gi1

Gi2

...

Gi`


(3.32)

Towards proving this, we consider the following two cases.

Case 1: L ⊂ [k]. In other words, all the nodes Eve observes are systematic. Let

j = [k] \ L. Then, the j-th thick-column of G′ is zero. Clearly, Hi cannot be in the row

space of G′.

Case 2: L 6⊂ [k]. In this case, at least one parity node is eavesdropped. Arbitrarily

choose an index j such that j ∈ [k] \ L. Note that there are at least two such systematic
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nodes not in L. Due to the reconstruction property of MSR codes,

G′
Gj

 should be invert-

ible. As the j-th thick-column of Gj is an identity matrix and all its other thick-columns

are zero, this implies that the (k− 1)α× (k− 1)α matrix, say G′′, formed by all the thick-

columns of G′ except the j-th one is invertible. Thus, we can perform row operations on

T to obtain the following matrix:

T1 =

 Hi

(G′′)−1G′

 .
It is easy to see that, after reordering the rows and columns of T1, we can get

T2 =



Hi,1 Hi,2 · · · Hi,k−1 Hi,k

Iα 0α · · · 0α P1,α

0α Iα · · · 0α P2,α

...
... . . . ...

...

0α 0α · · · Iα Pk−1,α


, (3.33)

where Hi,j = [βi−1
(j−1)α+1 β

i−1
(j−1)α+2 · · · βi−1

jα−1 ω
jβi−1
jα ], and Pi,j ∈ Fα×αqr . Now, we obtain a

square matrix T3 by appending T2 with the (α−1)×B matrix T ′2 =
[
0(α−1)×(k−1)α Iα−1 0(α−1)×1

]
,

where 0t×m is a t×m all-zero matrix and Iα−1 is an (α− 1)× (α− 1) identity matrix.

Using the identity matrix Iα−1 in T ′2, we eliminate all but the last entry in the k-th
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thick-column of T2 to obtain the following matrix:

T4 =



Hi,1 · · · Hi,k−1 0α×(α−1) ωjβi−1
jα

Iα · · · 0α 0α×(α−1) p1,α

... . . . ...
...

...

0α · · · Iα 0α×(α−1) pk−1,α

0(α−1)×α · · · 0(α−1)×α Iα−1 0(α−1)×1


, (3.34)

for some pi,α ∈ Fα×1
qr , 1 ≤ i ≤ k − 1.

Now, the determinant of T4 can be written as a polynomial in ω as follows:

det(T4) = ωjβi−1
jα + · · · . (3.35)

Note that det(T4) is a non-zero polynomial in ω with coefficients in Fqr , i.e., det(T4) ∈

Fqr [ω]. Further, the degree of this polynomial is at most k. Since ω is a primitive element

of Fqk+1
r

, the degree of its minimal polynomial is k + 1. Thus, ω cannot be a root of any

polynomial in Fqr of degree at most k. Hence, we have det(T4) 6= 0. Therefore, T4 is

non-singular, and it follows that T must be full-rank.

Field Size Comparison: It was shown in [39] a parity-check matrix H of a rank-metric

code, in particular a Gabidulin code [44], can be used to achieve g-weak security for g ≤ 2.

The field size requirement of such a code is qB, where q is the field of the underlying

storage code and B = kα is the total number of information symbols. Since q ≥ n for

any known MSR code (see e.g., [53, 54], and references therein), the required field size is

O(nkα).

The proposed construction operates over the field size of qk+1
r , where qr is the smallest

power of q greater than or equal to B. Assuming that q = O(n) and B = kα > q, the
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proposed construction requires the field size of at most O
(
(nkα)k+1

)
. Note that for high-

rate MSR codes, the best known codes have α to be exponential in k, and it is shown that

α needs to be at least exponential in
√
k [55]. Thus, a rank-metric code based outer code

would require significantly larger field size as compared to the proposed scheme.

3.4.2 Construction for ` = 1 and g = B − α

Note that B − α is the maximum value of g, as Eve observes α symbols when ` = 1

(see Remark 14). The idea of constructing H is similar to Construction 5. In this case,

we begin with a Cauchy matrix over some base field and scale its first α columns by a

primitive element of an extension field. The details are as follows.

Construction 6. Consider the parameters of an MSR code as n, k, d, α, β and q. Choose

qr as the smallest power of q greater than or equal to 2B, where B = kα. Construct H as

the product of two matrices as

H = H ′W ′, (3.36)

where H ′ is a B ×B Cauchy matrix with each entry chosen from Fqr , and W ′ is a B ×B

identity matrix with its first α columns scaled by 1/ω. Here, ω is a primitive element of the

extension field Fqα+1
r

. We can view H as follows.

H =



h1,1
ω
· · · h1,α

ω
h1,α+1 · · · h1,B

h2,1
ω
· · · h2,α

ω
h2,α+1 · · · h2,B

... . . . ...
... . . . ...

hB,1
ω
· · · hB,α

ω
hB,α+1 · · · hB,B


, (3.37)

where [hi,j], 1 ≤ i, j ≤ B, is a Cauchy matrix.

Next, we show that the above construction can universally achieve (B − α)-weak

security for MSR codes when ` = 1.
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Theorem 7. The outer coset code of Construction 6 can be used universally with any

(n, k) MSR code to store Bs = kα symbols over Fqα+1
r

with g-weak security for g = B−α

against an eavesdropper observing any ` = 1 node storing α coded symbols.

Proof. First, it is easy to see that H is non-singular, as it is a B × B Cauchy matrix with

some of its columns scaled by ω. Thus, we have Bs = B.

Next, we want to show that matrix T =

HG
Ge

 is full-rank, where Ge is the generator

matrix of the observed node andHG consists ofB−α rows ofH (see Lemma 2). Consider

the case when Eve observes one of the systematic nodes. Since H ′ is a Cauchy matrix,

any of its square sub-matrices is full-rank. Using this property, it is easy to show that T

will be full-rank.

Suppose Eve observes a parity node j, k + 1 ≤ j ≤ n. Note that, for any parity

node k+ 1 ≤ j ≤ n, one can easily show that the α×α block Gj,1 is full-rank as follows.

Suppose that a data collector downloads from parity node j, k+1 ≤ j ≤ n, and systematic

nodes 2 through k. Since any k out of n nodes allow reconstructing the set of B files, Gj,1

must be full-rank.

Since Gj,1 is full-rank, we pre-multiply Gj in T by G−1
j,1 . Then, by multiplying each of

the first α columns by ω, we can transform T to the matrix T ′ shown in (3.38), for some

pi,j ∈ Fqr , 1 ≤ i ≤ α, 1 ≤ j ≤ B − α.
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T ′ =

 HG

G−1
j,1Gj

 (W ′)−1 =



hj1,1 hj1,2 · · · hj1,α hj1,α+1 hj1,α+2 · · · hj1,B
... . . . ... . . . ...

hjg ,1 hjg ,2 · · · hjg ,α hjg ,α+1 hjg ,α+2 · · · hjg ,B

ω 0 · · · 0 p1,1 p1,2 · · · p1,B−α

0 ω · · · 0 p2,1 p2,2 · · · p2,B−α

... . . . ... . . . ...

0 0 · · · ω pα,1 pα,2 · · · pα,B−α


(3.38)

Now, the determinant of T ′ can be written as a polynomial in ω as follows:

det(T ′) =
[
det
(
H ′G(α + 1 : B)

)]
ωα + · · · , (3.39)

where H ′G(α + 1 : B) is the (B − α) × (B − α) sub-matrix of H ′G formed by its last

B − α columns. Since H ′ is a Cauchy matrix, det
(
H ′G(α + 1 : B)

)
6= 0. Hence, det(T ′)

is a non-zero polynomial in ω with coefficients in Fqr , i.e., det(T ′′) ∈ Fq[ω]. Further,

deg(det(T ′′)) = α. Since, ω is a primitive element of Fqα+1
r

, it cannot be a root of a degree

α polynomial in Fqr [ω]. Therefore, det(T ′) 6= 0, and it follows that T is full-rank.

Field Size Comparison: The universal outer code in [38] based on rank-metric codes

achieves g-weak security for any ` and maximum possible g. The field size requirement is

q2B, where q is the field of the underlying storage code and B = kα is the total number

of information symbols. Since q ≥ n for any known MSR code (see e.g., [53, 54], and

references therein), the required field size is O(n2kα).

The field size required for the proposed construction is qα+1
r , where qr is the smallest

power of q greater than or equal to 2B. Assuming that q = O(n) and 2B = 2kα > q,
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the proposed construction requires the field size of at most O ((nkα)α+1). Note that for

high-rate MSR codes, the best known codes have α to be exponential in k, and it is shown

that α needs to be at least exponential in
√
k [55]. When α is exponential in k, one can

verify that the proposed scheme requires a smaller field size than the rank-metric code

based scheme of [38] for a wide range of parameters.

3.5 Conclusion

In the first half, we constructed outer codes to achieve weak security in product-matrix

MBR codes. Our proposed outer code requires a field size linear in number of nodes (n),

and at the same time, enhances the weak security level g by roughly twofold.

In the second half, we focused on the weak security paradigm in which Eve gains

no information about any group of g symbols. We proposed a universal outer code that

can weakly secure any MSR code. In particular, we considered two scenarios: (i) the

eavesdropper has the maximum strength of ` = k − 1, and the weak security level is the

minimum g = 1; and (ii) the eavesdropper has the minimum strength of ` = 1, but the

weak security level is the maximum possible g = B − α. Our key idea is to utilize the

structure present in the (systematic) generator matrix of an MSR code to construct the

outer code. This enabled us to reduce the required field size compared to the standard

approaches based on rank-metric codes.
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4. CODES WITH UNEQUAL LOCALITY∗

4.1 Introduction

Coding for distributed storage has recently attracted significant research attention with

a focus on the problem of recovery from storage node failures. The thrust has been on char-

acterizing fundamental limits and designing associated coding schemes for one or more of

the following metrics that are crucial in the node repair process: (a) repair bandwidth – the

amount of data downloaded during failed node repair [8, 57]; (b) disk I/O – the number of

bits read from the nodes participating in the repair process [14, 58]; and (c) repair locality

– the number of nodes participating in the repair process [9, 20].

In this chapter, we focus on the metric of repair locality and a class of codes designed

in the context of this metric, known as locally repairable codes (LRCs). Consider a block

code of length n that encodes k information symbols. A symbol i is said to have locality

ri if it can be recovered by accessing ri other symbols in the code. We say that a code has

information locality r if each of its k information symbols has locality at most r. Similarly,

we say that a code has all-symbol locality r if each of its n symbols has locality at most r.

Codes with small locality were introduced in [18, 19] (see also [20]). The study of

the locality property was galvanized with the pioneering work of Gopalan et al. [9]. One

of their key contributions was to establish a trade-off between the minimum distance of a

code and its information locality analogous to the classical Singleton bound. In particular,

the authors showed that for a (scalar) linear (n, k) code having information locality r, the

∗Parts of this chapter are reprinted with permission from [56] “Codes with unequal locality,” by S. Kadhe
and A. Sprintson, 2016. In Proceedings of 2016 IEEE International Symposium on Information Theory
(ISIT), pp. 435-439, July 2016. Copyright c© by IEEE.
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minimum distance d of the code is upper bounded as

d ≤ n− k −
⌈
k

r

⌉
+ 2. (4.1)

They also demonstrated that the Pyramid code construction in [18] achieves this bound.

Since then, a series of results have extended the code distance bound for a given locality

for various types of codes along with corresponding optimal code constructions achieving

the distance bound. We give a brief (far from complete) overview of some of these results

below.

Related work: The distance bound was generalized for codes with multiple local

parities in [59], universal (scalar/vector linear, nonlinear) codes in [21], universal codes

with multiple parities in [22, 60]. An integer programming based bound was established

in [23]. Almost all of these works also presented optimal code constructions. Furthermore,

a large number of other optimal code constructions have been presented, see e.g., [24, 61,

62, 25, 55, 63, 64, 26, 65, 66]. The notion of locality was extended to multiple recovery

groups (also known as, availability) in [67, 68], and for the case of multiple failures, to

sequential repair in [69] and hierarchical repair in [70]. The Singleton-like bound was

extended to accommodate the alphabet size in [71].

Our contributions: In previous works, the locality of a code is characterized by a

single parameter r. Inspired by the notion of unequal error protection, we are interested in

investigating linear codes, in which, different subsets of symbols possess different values

of locality. We refer to such codes as codes with unequal locality. For example, consider

a (18, 11) code whose 4 information symbols have locality 2, 3 information symbols have

locality 3, and 4 information symbols have locality 4 (with no constraint on the locality

of parity symbols). In previous works, such a code would be characterized as a code with

information locality 4, for which (4.1) gives d ≤ 6. However, the distance bound given
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in (4.1) is not always tight for the case of unequal locality. For instance, for the previous

code, we will show that d ≤ 5. Our main goal is to establish a tight upper bound on the

minimum distance for codes with unequal locality.

Codes with unequal locality are practically appealing in scenarios when important in-

formation symbols, e.g., symbols of hot data, need to be repaired quickly; whereas, recov-

ering less important symbols can involve more overhead. Moreover, these types of codes

can be useful in reducing download latency for hot data. For instance, references [72, 73]

study storage codes from queueing theoretic perspective to analyze download latency.

Our key contributions are summarized as follows. To characterize a code with unequal

information locality, we define a notion of information locality profile of a code. We say

that a code has an information locality profile k = {k1, . . . , kr} if it contains kj informa-

tion symbols of locality j for 1 ≤ j ≤ r. For example, a code having 5 information

symbols of locality 2, and 6 information symbols of locality 4 would have an informa-

tion locality profile {0, 5, 0, 6}. For scalar linear codes, we establish an upper bound on

the minimum distance as a function of information locality profile k = {k1, . . . , kr} as

follows (Theorem 8).

d ≤ n− k −
r∑
j=1

⌈
kj
j

⌉
+ 2. (4.2)

We demonstrate that the Pyramid code construction in [18] can be adapted to design un-

equal locality codes that are distance-wise optimal according to the bound above. This

result generalizes the classical result of Gopalan et al. [9] for codes with unequal locality.

When parity symbols also have locality constraints, we analogously define the all-

symbol locality profile of a code. We say that a code has all-symbol locality profile n =

(n1, . . . , nra) if it contains nj symbols of locality j for 1 ≤ j ≤ ra. For instance, consider

a (15, 11) code that has 6 symbols of locality 2, 4 symbols of locality 3, and 5 symbols of

locality 4. Its all-symbol locality profile would be (0, 6, 4, 5). We establish a tight upper
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bound on the minimum distance for scalar linear codes with unequal all-symbol locality

as (see Theorem 9)

d ≤ n− k −
r−1∑
j=1

⌈
nj
j + 1

⌉
−


k −∑r−1

j=1

(
nj −

⌈
nj
j+1

⌉)
r

+ 2,

where r := 1 + max
{

1 ≤ i ≤ ra :
∑i

j=1

(
nj −

⌈
nj
j+1

⌉)
< k
}

. We adapt the construction

in [24], which uses a maximum rank-distance (MRD) code as an outer code and a max-

imum distance separable (MDS) code as an inner code, to construct codes with unequal

all-symbol locality that are distance-wise optimal with respect to the above bound.

We note that in a parallel and independent work, Zeh and Yaakobi [74] also consider

the problem of computing a bound on minimum distance of codes with unequal all-symbol

locality, referred in their work as codes with multiple localities. Their bound [74, Theorem

8] holds for a slightly restrictive set of parameters as it assumes
∑ra−1

j=1 j
⌈
nj
j+1

⌉
< k − 1.

Finally, we introduce a concept of information locality requirement. To motivate this,

consider a scenario where we need to design a linear code of dimension k = 11 such

that k̃3 = 5 information symbols must have locality at most 3, and the remaining k̃4 = 6

information symbols must have locality at most 4. Collectively, we can specify this as a

locality requirement of k̃ = {0, 0, 5, 6}. Notice that this is equivalent to a requirement as a

code must contain at least 5 symbols of locality up to 3, and at least 11 symbols of locality

up to 4. In general, a locality requirement of k̃ = {k̃1, . . . , k̃r} means that a code should

contain at least
∑i

i=1 k̃j symbols of locality up to i for each 1 ≤ i ≤ r, or, in other words,

k̃j information symbols should have locality at most j.

One can design codes with various information locality profiles that would satisfy

this requirement. For example, the locality requirement of k̃ = (0, 0, 5, 6) is satisfied

by locality profiles (k1, k2) = (5, 6), (k1, k2, k3) = (0, 2, 9), (k1, . . . , k4) = (0, 0, 5, 6),
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(k1, . . . , k4) = (1, 0, 6, 4), etc. We ask the following question: Can we find an information

locality profile which achieves the maximum value of the minimum distance among all

codes which satisfy this locality requirement? We present a simple greedy algorithm to

compute such an information locality profile that maximizes the minimum distance for

a given information locality requirement. This allows us to construct codes that have

maximum minimum distance among all codes that satisfy the locality requirement.

4.2 Preliminaries

Notation: For an integer l, let [l] = {1, 2, . . . , l}. For a vector x, let x(i) be its i-th

coordinate, and wt (x) be its Hamming weight. For a matrix H , let Rank (H) denote the

rank of H .

Codes with Locality

Let C denote a linear [n, k, d]q code over Fq with block-length n, dimension k, and

minimum distance d. We assume that C has minimum distance at least two, i.e., d ≥ 2.

The code can be represented by n (column) vectors C = [c1, . . . , cn] ∈ Fkq . Note that the

dimension of the row space of C is k. The i-th vector ci is referred to as the i-th coordinate

of C. For any codeword c ∈ C, c(i) is said to be the i-th symbol of the codeword c.

Throughout this chapter, we use the terms symbol and coordinate interchangeably.

We say that the i-th coordinate of a code C has locality ri if its value can be recov-

ered from some other ri coordinates of C. The formal definition of locality is as follows

(see [9]).

Definition 6. [Locality and Repair Group] For ci ∈ C, we define the locality of ci as the

smallest integer ri such that there exists a set R (i) ⊂ [n] \ {i}, |R (i) | = ri, such that

ci =
∑

l∈R(i) λlcl, where λl ∈ Fq, λl 6= 0, ∀ l ∈ R (i). We say that R (i) is a repair group

of the coordinate ci, and define Γ (i) = {ci ∪R (i)}.
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Note that, if the minimum distance of the code is at least two, then every coordinate

has locality at most k.

We say that an [n, k, d]q systematic code has information locality r if each of its k

information symbols has locality at most r. Similarly, we say that an [n, k, d]q code has

all-symbol locality ra if each of its n symbols has locality at most ra.

4.3 Codes with Unequal Information Locality

In this section, we are interested in systematic codes, whose information symbols have

different locality values. More specifically, information symbols can be partitioned into

disjoint subsets in such a way that the symbols in one subset have different locality than

the symbols in the other subsets. We can characterize the locality of such codes by listing

the locality values for all information symbols. Alternatively, we can consider the list of

cardinalities of subsets of all locality values. We call such a list as the information locality

profile of the code. Formally, the definition is given below.

Definition 7. [Information Locality Profile] Given a systematic [n, k, d]q code C, the in-

formation locality profile of C is defined as a length-r vector k(C) = (k1, . . . , kr), where

kj is the number of information coordinates of locality j.

Note that r ≤ k, 0 ≤ kj ≤ k ∀j ∈ [r], kr ≥ 1 and
∑r

j=1 kj = k.

Remark 15. For a code C with representation C, we can choose any set of k linearly

independent coordinates of C to represent information symbols. Thus, in principle, in-

formation locality profile of a code depends upon the particular choice of coordinates for

representing information symbols. We always choose the coordinates having smallest lo-

cality as information coordinates. More specifically, for 1 ≤ j ≤ r, let Cj ⊂ C be the

subset of coordinates having locality j. Set C0 = ∅. Let

kj = Rank
(
∪ji=0Ci

)
− Rank

(
∪j−1
i=0Ci

)
. (4.3)
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In other words,
∑i

i=1 kj is the rank of the sub-matrix of C formed by the coordinates

having locality up to i. Starting with j = 1, we choose a subset Ij ⊂ Cj of kj linearly

independent coordinates to represent kj information symbols, and continue incrementing

j until the total rank is k.

Remark 16. We can alternatively specify the information locality profile of a systematic

code as a length-k vector r = {r1, . . . , rk}, where rj denotes the locality of the j-th

information symbol. In the classical notion of locality defined by Gopalan et al. [9],

technically, every symbol can have different locality. However, the (information) locality of

a code is parameterized by a single value r, which is the largest locality of an (information)

symbol. On the other hand, we parameterize the information locality using a length-k

vector that specifies the locality of each individual information symbol. We are interested

in characterizing a trade-off between the minimum distance of a code and its locality

profile vector.

4.3.1 Bound on the Minimum Distance

Consider a class of systematic linear codes having an information locality profile k =

{k1, . . . , kr}. In the following, we find an upper bound on the minimum distance as a

function of the code length, dimension, and information locality profile.

Theorem 8. For any linear code with block-length n, dimension k, and information local-

ity profile k = (k1, . . . , kr), the minimum distance is upper bounded as

d ≤ n− k −
r∑
j=1

⌈
kj
j

⌉
+ 2. (4.4)

Proof. We build on the proof technique proposed in [9]. The idea is to construct a large

set S ⊆ C such that Rank (S) ≤ k − 1, and then use the following well known result.
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named 4 Construct set S ⊆ C such that Rank (S) ≤ k − 1

1: Let S0 = ∅, i = 1
2: while Rank (Si−1) ≤ k − 2 do
3: Pick a coordinate ci ∈ C \ Si having smallest locality
4: if Rank

(
Si−1 ∪ cΓ(i)

)
< k then

5: Set Si = Si−1 ∪ cΓ(i)

6: else
7: Pick Γ (i)′ ⊂ Γ (i) such that Rank

(
Si−1 ∪ cΓ(i)′

)
= k − 1

8: Set Si = Si−1 ∪ cΓ(i)′

9: end if
10: Increment i
11: end while

Proposition 1. ([9]) The code C has minimum distance d if and only if for every S ⊆ C

such that Rank (S) ≤ k − 1, we have

|S| ≤ n− d. (4.5)

Recall that R (i) denotes a repair group of ci, and we have |R (i) | = Loc (ci). Define

Γ (i) := {i ∪R (i)}. Further, for any subset T ⊆ [n], define cT = {ci ∈ C : i ∈ T}.

We use Algorithm 4 to construct a set S such that Rank (S) < k. First, note that

in line 3, as Rank (Si−1) ≤ k − 2, and there are k (linearly independent) information

symbols, there exists a coordinate ci /∈ Si−1.

Our goal is to find a lower bound on |S|. Let l be the total number of iterations of

Algorithm 4. Observe that |S| = |Sl|. Further, the final set Sl has Rank (Sl) = k − 1. We

define the increment in the size and rank of set Si in the i-th iteration as follows.

si = |Si| − |Si−1|, ti = Rank (Si)− Rank (Si−1) . (4.6)
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Note that

|Sl| =
l∑

i=1

si, Rank (Sl) =
l∑

i=1

ti = k − 1. (4.7)

We consider two cases depending on whether Algorithm 4 reaches the condition in

line 4, i.e., Rank
(
Si−1 ∪ cΓ(i)

)
= k. We note that the condition can be reached only in

the last iteration.

Case 1: Suppose we have Rank
(
Si−1 ∪ cΓ(i)

)
≤ k − 1 throughout. Now, in the i-th

iteration, we add cΓ(i) to S. Thus, si ≤ Loc (ci) + 1. Further, vectors in cΓ(i) \ Si−1 are

such that they yield a (possibly zero) vector in 〈Si−1〉. Therefore,

ti ≤ si − 1 ≤ Loc (ci) . (4.8)

Using this, we can write

|S| =
l∑

i=1

si ≥
l∑

i=1

(ti + 1) = k − 1 + l, (4.9)

where the last equality follows from (4.7).

Lower bounding the number of iterations. Now, to find a lower bound on |S|, we find

a lower bound on l. Let m be the locality of the last symbol collected by Algorithm 4,

where m ∈ [r]. For 1 ≤ j ≤ m, let lj be the number of iterations in which Algorithm 4

picks coordinates of locality j. Note that, if C does not contain any symbol of a particular

locality j, we set lj = 0. Thus, for each j, 0 ≤ lj ≤ l, and l =
∑m

j=1 lj .

Recall that Cj ⊂ C is the set of coordinates of locality j (see Remark 15). Since the

algorithm collects all coordinates of locality up to j before collecting any coordinate of

locality j + 1 for 1 ≤ j ≤ m − 1, we have S∑j
p=1 lp

= ∪jp=1Cp. Therefore, from (4.3),

Rank (Sl1) = k1 and for 2 ≤ j ≤ m−1, Rank
(
S∑j

p=1 lp

)
−Rank

(
S∑j−1

p=1 lp

)
= kj . This
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results in

Rank
(
S∑j

p=1 lp

)
=

j∑
p=1

kp, for 1 ≤ j ≤ m− 1. (4.10)

The above two results can be interpreted as follows. The increment in the rank of S by

collecting all the coordinates of locality j is kj for 1 ≤ j ≤ m − 1. The rank of S, when

it contains all the coordinates of locality up to j, is
∑j

p=1 kp.

When the algorithm terminates, it may not have collected all the coordinates of locality

m. Let k′m be the increment in the rank of S by the coordinates of locality m that are

collected by the algorithm. Note that 1 ≤ k′m ≤ km.

Note that Rank (Sl) = Rank
(
S∑m−1

j=1 lj

)
+ k′m. Using the fact that Rank (Sl) = k− 1

and (4.10), we get k − 1 =
∑m−1

j=1 kj + k′m. On the other hand, by definition of locality

profile vector, we have
∑r

j=1 kj = k. We consider two cases.

Case (1a): kr ≥ 21. Then, it must be that m = r and k′m = kr− 1 since 1 ≤ k′m ≤ km.

Case (1b): kr = 1. Then, it follows thatm = r−1, and k′m = kr−1 since 1 ≤ k′m ≤ km.

In summary, for 1 ≤ j ≤ r − 1, the increment in the rank of S by collecting the

coordinates of locality j is kj . The increment in the rank of S by locality r coordinates is

kr − 1. (Note that this holds for Case (b) as well.) Moreover, for each 1 ≤ j ≤ r, when

the algorithm is collecting the coordinates of locality j, the rank can increase by at most j

in each step (see (4.8)). Therefore, lj ≥
⌈
kr−1
r

⌉
for 1 ≤ j ≤ r − 1 and lr ≥

⌈
kr−1
r

⌉
.

Combining this with l =
∑r

j=1 lj gives,

l ≥
r−1∑
j=1

⌈
kj
j

⌉
+

⌈
kr − 1

r

⌉
. (4.11)
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Substituting this into (4.9), we get

|S| ≥ k − 1 +
r−1∑
j=1

⌈
kj
j

⌉
+

⌈
kr − 1

r

⌉
(4.12)

≥ k − 2 +
r∑
j=1

⌈
kj
j

⌉
. (4.13)

Case 2: In the last step, we get Rank
(
Sl−1 ∪ cΓ(l)

)
= k. For 1 ≤ i ≤ l− 1, in the i-th

iteration, we add cΓ(i). Thus, si ≤ Loc (ci) + 1. Further, vectors in cΓ(i) \ Si−1 are such

that they yield a (possibly zero) vector in 〈Si−1〉. Therefore, for 1 ≤ i ≤ l − 1, we get

ti ≤ si − 1 ≤ Loc (ci). In the last step l, we add cΓ(l)′ ⊂ cΓ(l). This increments Rank (S)

by tl ≥ 1 (since Rank (Sl−1) ≤ k − 2), and |S| by sl ≥ tl. Therefore, we have

|S| =
l∑

i=1

si ≥
l−1∑
i=1

(ti + 1) + tl = k − 1 + l − 1, (4.14)

the last equality follows from (4.7).

Lower bounding the number of iterations. Similar to Case 1, in each iteration i (in-

cluding the last one), we have ti ≤ Loc (ci). The only difference from Case 1 is that S

accumulates total rank of k instead of k − 1. Therefore, to lower bound l, we can use the

same arguments as in Case 1 along with Rank (Sl) = k to obtain l ≥∑r−1
j=1

⌈
kj
j

⌉
+
⌈
kr
r

⌉
in place of (4.11). Substituting this into (4.14) yields |S| ≥ k − 2 +

∑r
j=1

⌈
kj
j

⌉
(which is

same as (4.13)).

Finally, noting that |S| ≤ n − d from Fact 1 and using this lower bound on |S|

gives (4.4).

4.3.2 Code Construction: Pyramid Codes

We show that the parity splitting construction of the Pyramid codes due to [18] can be

adapted to obtain unequal information locality codes that are optimal with respect to (4.4).
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Consider an information locality profile k. Let {j1, . . . , jm} with j1 < · · · < jm be

the m (≤ r) values of locality such that kjp > 0 for each p ∈ [m]. We begin with a

(k + d − 1, k, d) systematic maximum distance separable (MDS) code C ′ , such as Reed-

Solomon codes. Let the coordinates of C ′ be C ′ = [e1, . . . , ek,p0, . . . ,pd−2], where ej is

the j-th column of a k × k identity matrix, and pj for 0 ≤ j ≤ d − 2 are the columns

representing the parity symbols.

We partition the set [k] intom disjoint subsets S1, . . . , Sm such that |Sp| = kjp for each

p ∈ [m]. Next, we partition each subset Sp into lp =
⌈
kjp
jp

⌉
disjoint subsets, Sp,i, each of

size at most jp. That is, Sp = ∪lpi=1Sp,i. For a vector x of length k, and a set S ⊆ [k],

let x|S denote the |S|-dimensional restriction of x to the coordinates in set S. Then, we

define the systematic code C with the following representation.

C =
[
e1, . . . , ek,p0|S1,1 , . . . ,p0|S1,l1

,

p0|S2,1 , . . . ,p0|S2,l2
, . . . ,p0|Sm,1 , . . . ,p0|Sm,lm ,

p1, . . . ,pd−2] . (4.15)

Note that we have split the parity p0 into
∑m

p=1

⌈
kjp
jp

⌉
=
∑r

j=1

⌈
kj
j

⌉
parities. There-

fore, n = k + d − 2 +
∑r

j=1

⌈
kj
j

⌉
. It is easy to verify that parity splitting does not affect

the distance, and hence, the code C has distance d. Since C ′ is an MDS code, we have

wt (p0) = k. Therefore, for each p ∈ [m], the set of kjp information coordinates and
⌈
kjp
jp

⌉
parity coordinates have locality at most jp. Similar to the classical Pyramid codes in [18],

the last d− 2 parity symbols may have locality as large as k.

4.4 Codes with Unequal All Symbol Locality

In this section, we extend the notion of information locality profile to accommodate the

codes whose parity symbols also have locality constraints. In this case, all code symbols
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(information as well as parity) can be partitioned into disjoint subsets according to their

locality, with maximum locality ra < k. (In fact, a code need not be systematic.) We

define all-symbol locality profile of a code as follows.

Definition 8. [All-Symbol Locality Profile] Given an [n, k, d]q code C, the all-symbol lo-

cality profile of C is defined as a length-ra vector n(C) = (n1, . . . , nra), where nj is the

number of coordinates of locality j for 1 ≤ j ≤ ra.

Note that ra ≤ k, 0 ≤ nj ≤ n ∀j ∈ [ra], nra ≥ 1 and
∑ra

j=1 nj = n.

Remark 17. We can alternatively specify the all symbol locality profile of a C as a length-

n vector r(C) = {r1, . . . , rn}, where ri is the locality of the i-th coordinate of C. Note that

1 ≤ ri ≤ k for each i ∈ [n], assuming d ≥ 2.

Remark 18. For a code C with representation C, let Cj ⊂ C be the subset of coordinates

having locality j for j ∈ [ra]. If nj = 0 for some j, then we set Cj = ∅. For 1 ≤ j ≤ ra,

we define

kj := Rank
(
∪ji=0Ci

)
− Rank

(
∪j−1
i=0Ci

)
, (4.16)

where we set C0 = ∅. Define r = max{j : kj > 0}. Then, k = (k1, . . . , kr} gives

the information locality profile of C. Note that codes with different information locality

profiles can have the same all-symbol locality profile.

4.4.1 Bound on the Minimum Distance

Note that codes with unequal all-symbol locality are a special class of codes with un-

equal information locality. Therefore, the minimum distance upper bound in (4.4) holds

for an all-symbol locality code having information locality profile k. As noted in Re-

mark 18, codes can have different information locality profiles for a given all-symbol

locality profile. The upper bound in (4.4) obtained using information locality profile may
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not be tight for certain information localities. Therefore, we establish an upper bound on

the minimum distance as a function of the all-symbol locality profile.

Theorem 9. Consider a code C with all-symbol locality profile n = (n1, . . . , nra). Let

r′ = max
{

1 ≤ i ≤ ra :
∑i

j=1

(
nj −

⌈
nj
j+1

⌉)
< k
}

. Let r = min{r′+ 1 ≤ j ≤ ra : nj ≥

2}. Then, we have

d ≤ n− k −
r−1∑
j=1

⌈
nj
j + 1

⌉
−


k −∑r−1

i=1

(
nj −

⌈
nj
j+1

⌉)
r

+ 2 (4.17)

Proof. Similar to information locality case, we consider Algorithm 4 to find a set S ⊂ C

such that Rank (S) ≤ k − 1.

Recall that Cj ⊂ C is a subset of coordinates of locality j. Let kj = Rank
(
∪ji=0Ci

)
−

Rank
(
∪j−1
i=0Ci

)
, where we define C0 = ∅.

It is easy to show that kj ≤ k
′
j for each 1 ≤ j ≤ r. In particular, consider the following

greedy algorithm. Beginning with T0 = ∅ until Tp = Cj, in each iteration p, extend Tp−1

as by adding a coordinate cp ∈ Cj \Tp−1 and all its repair group coordinates cR(p) to Tp−1.

Specifically, Tp = Tp−1 ∪ (cΓ(p) \ Tp−1). Now, in each iteration there must be at least one

linear dependency between Tp−1 and cΓ(p) \Tp−1. Further, in each iteration, we extend the

size of T by at most j, and thus, the number of iterations are at least
⌈
nj
j+1

⌉
. Therefore, the

number of linear dependencies among the coordinates in Cj must be at least
⌈
nj
j+1

⌉
.

Case 1: Suppose we have Rank
(
Si−1 ∪ cΓ(i)

)
≤ k − 1 throughout. Let m be the

locality of the last symbol picked by the algorithm. For 1 ≤ j ≤ m − 1, the algorithm

collects all the coordinates of locality j. Let n̂m ≤ nm be the number of coordinates of

locality m that are collected by the algorithm. Then, we have

|S| = n1 + · · ·+ nm−1 + n̂m.
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Note that Rank (S) when S has accumulated all the coordinates of locality up to m − 1

is Rank
(
∪m−1
j=1 Cj

)
=
∑m−1

j=1 kj . Therefore, the rank accumulated from locality m coordi-

nates is (k− 1)−∑m−1
j=1 kj := k̂m. Now, using standard arguments similar to the proof of

Theorem 8, it is easy to show that n̂m ≥ k̂m +
⌈
k̂m
m

⌉
. Therefore,

|S| ≥
m−1∑
j=1

nj + k̂m +

⌈
k̂m
m

⌉
:= |S|LB. (4.18)

Next, we show that |S|LB is minimized when kj = k
′
j . Let S ′ be the set collected if

Rank
(
∪ji=0Ci

)
− Rank

(
∪j−1
i=0Ci

)
= k

′
j . In this case the locality of the last coordinate

must be r provided
∑r−1

j=1 k
′
j < k − 1. Let n̂′r be the number of coordinates of locality r

that are collected by the algorithm. (If
∑r−1

j=1 k
′
j = k − 1, then n̂′r = 0 and the following

analysis still holds.) Then, we have

|S ′| = n1 + . . .+ nr−1 + n̂r.

The rank accumulated in locality r coordinates is (k − 1) − ∑r−1
j=1 k

′
j := k̂′r. Again,

using standard arguments similar to the proof of Theorem 8, it is easy to show that n̂′r ≥

k̂′r +
⌈
k̂′r
r

⌉
. Therefore,

|S ′ | ≥
r−1∑
j=1

nj + k̂′r +

⌈
k̂′r
r

⌉
:= |S ′|LB. (4.19)

Next, we show that |S ′ |LB ≤ |S|LB. Suppose, for contradiction, |S ′|LB > |S|LB. First,

note that since k′j ≥ kjj for 1 ≤ j ≤ r, we have r ≤ m.

Case (1a): m = r. Then, we have

r−1∑
j=1

nj + k̂′r +

⌈
k̂′r
r

⌉
>

r−1∑
j=1

nj + k̂r +

⌈
k̂r
r

⌉
.
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However, this essentially implies
∑r−1

j=1 k
′
j <

∑r−1
j=1 kj , which is a contradiction.

Case (1b): m < r. Then, we have

r−1∑
j=1

nj + k̂′r +

⌈
k̂′r
r

⌉
>

r−1∑
j=1

nj + nr + · · ·+ k̂r +

⌈
k̂r
r

⌉
.

However, this implies k̂′r +
⌈
k̂′r
r

⌉
> nr + · · · + k̂r +

⌈
k̂r
r

⌉
, which is a contradiction as

k̂′r +
⌈
k̂′r
r

⌉
≤ n̂′r ≤ nr.

Hence, to get smallest lower bound on |S|, one can assign maximum incremental rank

k
′
j to each locality j. Let lj be the number of iterations during which Algorithm 4 collects

coordinates of locality j. Then, using the same arguments as in the proof of Theorem 8,

we have |S| ≥ k − 1 +
∑r

j=1 lj (see (4.9)). For 1 ≤ j ≤ r − 1, the algorithm collects all

the nj coordinates of locality j. When a coordinate of locality j is picked, the size of S

can be increased by at most j + 1 in that iteration. Thus, lj ≥
⌈
nj
j+1

⌉
for 1 ≤ j ≤ r − 1.

For locality r, we increment the rank of S by (k − 1) −∑r−1
j=1 k

′
j . At each step, tank is

increased by at most r, thus lr ≥
⌈

(k−1)−
∑r−1
j=1 k

′
j

r

⌉
. Hence,

|S| ≥ k−1+
r−1∑
j=1

⌈
nj
j + 1

⌉
+

⌈
(k − 1)−∑r−1

j=1 k
′
j

r

⌉
≥ k−2+

r−1∑
j=1

⌈
nj
j + 1

⌉
+

⌈
k −∑r−1

j=1 k
′
j

r

⌉
.

Case 2: In the last step, we get Rank
(
Sl−1 ∪ cΓ(l)

)
= k. Analysis to show that the

smallest lower bound on |S| is obtained assigning maximum incremental rank k′j to each

locality jis similar to Case 1.

Using the same arguments as in the proof of Theorem 8, we have |S| ≥ k−2+
∑r

j=1 lj

(see (4.14)). Following the same argument as Case 1, lj ≥
⌈
nj
j+1

⌉
for 1 ≤ j ≤ r − 1. For

locality r, we increment the rank of S by k −∑r−1
j=1 k

′
j . At each step, tank is increased by
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at most r, thus lr ≥
⌈
k−

∑r−1
j=1 k

′
j

r

⌉
. Hence,

|S| ≥ k − 2 +
r−1∑
j=1

⌈
nj
j + 1

⌉
+

⌈
k −∑r−1

j=1 k
′
j

r

⌉
.

Finally, the result follows from using the Fact 1.

4.4.2 Code Construction Based on Rank-Metric Codes

We adapt the rank-metric codes based LRC construction in [24] for the unequal all

symbol locality scenario. The idea is to first precode the information symbols with a

rank-metric code (in particular, with Gabidulin codes), and then use maximum distance

separable (MDS) codes to obtain local parities. We begin with a brief review of rank-

metric codes.

Rank-Metric Codes

Let FN×mq be the set of all N × m matrices over Fq. The rank distance is a distance

measure between elements A and B of FN×mq defined as dR (A)B = Rank (A−B).

It can be shown that the rank distance is indeed a metric [44]. A rank-metric code is a

non-empty subset of FN×mq under the context of the rank metric.

Typically, the rank-metric codes are considered by leveraging the correspondence be-

tween F1×m
q and an extension field Fqm . By fixing a basis for Fqm as an m-dimensional

vector space over Fq, any element of Fqm can be represented as an m-length vector over

Fq. Similarly, any N -length vector over Fqm can be represented as an N ×m matrix over

Fq. The rank of a vector A ∈ FNqm is the rank of A as an N ×m matrix over Fq, which also

works for the rank distance. This correspondence allows us to view a rank-metric code in

FN×mq as a block code of length N over Fqm .

Focussing on linear codes, an (N,K,D) rank-metric code C ⊆ FNqm is a linear block
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code over Fqm of length N , dimension K, and minimum rank distance D. For such codes,

the Singleton bound becomes d ≤ min
{

1, m
N

}
(N−K)+1 (see [44]). Codes that achieve

this bound are called as maximum-rank distance (MRD) codes. Note that, for m ≥ N ,

the Singleton bound for rank metric coincides with the classical Singleton bound for the

Hamming metric. Indeed, when m ≥ N , every MRD code is also MDS, and hence can

correct any d− 1 erasures. We call the erasures in a rank-metric code as rank erasures.

Gabidulin Codes: For N ≥ m, a class of MRD codes was presented in [44] by

Gabidulin. A Gabidulin code can be obtained by evaluation of linearized polynomials.

A linearized polynomial f(x) over Fqm of q-degree K has the form f(x) =
∑K

i=0 aix
qi ,

where ai ∈ Fqm such that aK 6= 0. Evaluation of a linearized polynomial is an Fq-linear

transform from Fqm to itself. In other words, for any a, b ∈ Fq and x, y ∈ Fqm , we have

f(ax+ by) = af(x) + bf(y).

For m ≥ N , a codeword in an [N,K,D]qm Gabidulin code CG is defined as cGab =

(f(g1), . . . , f(gN)) ∈ FNqm , where f(x) is a linearized polynomial over Fqm of q-degree

K−1 whose coefficients are information symbols, and evaluation points g1, . . . , gN ∈ Fqm

are linearly independent over Fq. Note that since Gabidulin code is also an MDS code, it

can correct any N −K erasures [44].

Proposed Code Construction

For the simplicity of presentation, we assume that j + 1 | nj for each j. One can

generalize the construction for the case when this is not the case.

Construction 1. Consider a length-k vector of information symbols m ∈ Fkqm . First,

we precode m using a Gabidulin code. Then, the codeword of the Gabidulin code is

partitioned into local groups, and the local parities are computed for each group using

MDS codes over Fq. The details are as follows.

Define Nj = nj

(
j
j+1

)
for each j ∈ [ra]. Let N =

∑ra
j=1 Nj . First, precode the k
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information symbols m ∈ Fkqm using an [N, k,N−k+1]qm Gabidulin code to obtain cGab ∈

FNqm . Partition cGab into ra disjoint groups cjGab each of size Nj , i.e., cGab = ∪raj=1c
j
Gab,

with cjGab = ∅ for each j such that Nj = 0. For each 1 ≤ j ≤ ra such that Nj > 0,

further partition cjGab symbols into Nj
j

disjoint local groups cj,iGab each of size j, i.e., cjGab =

∪
Nj
j

i=1c
j,i
Gab.

For each group cj,iGab of j symbols, generate a local parity using a (j + 1, j, 2) MDS

code over Fq. Denote the resulting code as CLRC. Note that the total number of symbols

are
∑ra

j=1
Nj
j

(j + 1) =
∑ra

j=1 nj = n. Moreover, note that, the partitioning for obtaining

local parities is performed in such a way that CLRC possesses all-symbol locality profile

(n1, . . . , nra). Next, we show that the above construction achieves the distance bound

mentioned in Theorem 9. Next, we show that the above construction achieves the distance

bound mentioned in Theorem 9.

Theorem 10. Let CLRC be an (n, k, d) LRC with all-symbol locality profile (n1, . . . , nra)

obtained by Construction 1. If j + 1 | nj for each j ∈ [ra], then CLRC over Fqm such that

m ≥∑ra
j=1 nj

(
j
j+1

)
and q ≥ ra + 1, attains the minimum distance bound in (4.17).

Proof. Let e := n − k + 1 −∑r−1
j=1

⌈
nj
j+1

⌉
−
⌈
k−

∑r−1
i=1 (nj−d njj+1e)

r

⌉
. Similar to [24], the

idea is show that any e symbol erasures correspond to N −K rank erasures, which can be

corrected by the Gabidulin code.

The Fq-linearity of the linearized polynomials plays a crucial role. In particular, since

the local parities are obtained using an MDS code over Fq, any symbol ci of locality j

can be written as ci =
∑j

p=1 apcip =
∑j

p=1 apf(gip) = f
(∑j

p=1 apgip

)
. Hence, for each

j ∈ [ra], in a local group of size j, any m ≤ j symbols are evaluations of f(x) in m points

that are linearly independent over Fq. Therefore, for each j ∈ [ra], in a local group of size

j+ 1, any i+ 1(≤ j+ 1) symbol erasures correspond to i rank erasures. Moreover, taking

any j points from all local groups of size j + 1 for each j ∈ [ra], we obtain the Gabidulin
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codeword, which has obtained by precoding m.

With above observation, the worst case erasure pattern is when the erasures occur in the

smallest possible number of local groups (of possibly different localities), and the number

of erasures in each local group are maximal.

Note that we can write n as n =
∑ra

j=1Nj +
Nj
j

. Let k =
∑r−1

j=1 Nj + N
′
r for some

N
′
r < Nr. Then, we can write

e = 1 +
ra∑
j=r

(
Nj +

Nj

j

)
−
(
N
′

r +

⌈
N
′
r

r

⌉)
. (4.20)

On the other hand, for the outer Gabidulin code, we have

N − k =
ra∑
j=r

Nj −N
′

r. (4.21)

Case 1: r | N ′r. Let N ′r = rβ. Then, from (4.20), we have e = 1 +
∑ra

j=r+1(j +

1)
(

nj
j+1

)
+ (r + 1)

(
nr
r+1
− β

)
. Thus, in the worst case, the number of local groups that

are completely erased are
∑ra

j=r+1

(
nj
j+1

)
+
(
nr
r+1
− β

)
with one erasure in an additional

group. Recall that, due to the Fq-linearity, any i+ 1 erasures in a local group of size j+ 1,

the number of rank erasures corresponding to the Gabidulin codeword are only j. Thus,

total number of rank erasures are
∑ra

j=r+1 j
(

nj
j+1

)
+ r

(
nr
r+1
− β

)
.

However, from (4.21), we get N − k =
∑ra

j=r+1 j
(

nj
j+1

)
+ r
(
nr
r+1
− β

)
. Therefore, all

the rank erasures can be corrected by the outer Gabidulin code.

Case 2: r - N ′r. Let N ′r = rβ + γ, where 1 ≤ γ ≤ r − 1. Then, from (4.20), we

have e = 1 +
∑ra

j=r+1(j + 1)
(

nj
j+1

)
+ (r + 1)

(
nr
r+1
− β − 1

)
+ (r − γ + 1). In other

words, in the in the worst case, the number of local groups that are completely erased are∑ra
j=r+1

(
nj
j+1

)
+
(
nr
r+1
− β − 1

)
with (r − γ + 1) erasures in an additional group. This

corresponds to
∑ra

j=r+1 j
(

nj
j+1

)
+ r

(
nr
r+1
− β − 1

)
+ (r − γ) rank erasures.
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From (4.21), we get N − k =
∑ra

j=r+1 j
(

nj
j+1

)
+ r

(
nr
r+1
− β − 1

)
+ (r − γ). Hence,

all the rank erasures can be corrected by the outer Gabidulin code.

4.5 Information Locality Requirement

Consider a code design scenario, wherein each information symbol has an upper limit

on its locality. For instance, suppose we need to design a code of dimension 6, in which,

the first 3 information symbols should have locality at most 2, and the remaining 3 in-

formation symbols should have locality at most 3. For this case, we say that we have

information locality requirement of k̃ = (0, 3, 3). Note that this requirement is equivalent

to the condition that the code should contain at least 3 information symbols of locality up

to 2, and at least 6 information symbols of locality up to 3. We use this later condition to

formally define the notion of locality requirement as follows.

Definition 9. Let k̃ = (k̃1, . . . , k̃r) be a length-r vector for some r < k such that for each

1 ≤ j ≤ r, we have 0 ≤ k̃j ≤ k and
∑r

j=1 k̃j = k. Consider a code C with information

locality profile k = (k1, . . . , kr′) for some r′ ≤ r. We say that C satisfies the information

locality requirement k̃, if, for each 1 ≤ i ≤ r, we have
∑i

j=1 kj ≥
∑i

j=1 k̃j , where we set

kj = 0 for r′ + 1 ≤ j ≤ r if r′ < r. In this case, we say that the locality profile k satisfies

the locality requirement k̃, which is denoted as k � k̃.

A number of locality profiles can satisfy the given locality requirement k̃. For example,

one can find a number of locality profiles that satisfy k̃ = (0, 3, 3), such as k1 = (2, 4, 0),

k2 = (3, 0, 3), k3 = (0, 6, 0), k4 = (1, 2, 3); while, for instance, k5 = (2, 0, 4) does not

satisfy k̃. Observe that, among those profiles satisfying k̃, the last two locality profiles

result in the largest minimum distance (see (4.4)). In general, a large number of locality

profiles can satisfy a given locality requirement. We are interested to find one of these

locality profiles that maximizes the minimum distance bound given by (4.4). We call such

an information locality profile as an optimal locality profile. We present Algorithm 5 that
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greedily finds an optimal locality profile for a given locality requirement. This allows us

to use Pyramid code construction to design codes that have maximum minimum distance

among all codes that satisfy the locality requirement

Give a locality requirement k̃, we are interested in finding a locality profile k � k̃

which results in largest upper bound on the minimum distance for fixed n. More formally,

we can define the problem as follows.

min
k∈Zr+

r∑
j=1

⌈
kj
j

⌉
(P1) (4.22)

s.t.
i∑

j=1

kj ≥
i∑

j=1

k̃j, for 1 ≤ i ≤ r, (4.23)

and
r∑
j=1

kj =
r∑
j=1

k̃j . (4.24)

A solution of the above optimization problem is said to be an optimal locality profile.

In the following we give a greedy algorithm which finds an optimal k∗. From
∑r−1

j=1 kj ≥∑r−1
j=1 k̃j and

∑r
j=1 kj =

∑r
j=1 k̃j , we get that kr ≤ k̃r. In similar way, we can see that

the inequality constraints above can be replaced by
∑r

j=i kj ≥
∑r

j=i k̃j and
∑r

j=1 kj =∑r
j=1 k̃j . The idea of the algorithm is to start with the largest locality r and set k∗r as the

largest multiple of r such that k∗r ≤ k̃r. Move the residue k̃r−k∗r to the next locality r−1,

and set k∗r−1 as the largest multiple of r such that k∗r−1 ≤ k̃r−1 + k̃r − k∗r . We continue this

until we reach locality 1.

Remark 19. Note that Algorithm 5 assigns k∗j = k̃j + γj+1 − γj for each locality j. This

gives
∑r

j=i k
∗
j =

∑r
j=i k̃j − γi for each r ≥ i ≥ 1.

Theorem 11. For a given information locality requirement k̃, let k∗ be the output of Algo-

rithm 5. Then, k∗ � k̃, and k∗ results in the largest value of the minimum distance bound
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named 5 Find an optimal locality profile k∗ for a given locality requirement k̃
1: Set γr+1 = 0, j = r
2: while j ≥ 1 do
3: Chose integers βj and γj such that k̃j + γj+1 = jβj + γj
4: Set k∗j = jβj
5: Decrement j
6: end while

in (4.4) among all k such that k � k̃.

Proof. The idea is to show that any optimal information locality profile can be transformed

into a form of k∗ without loosing optimality. We first prove that it is always possible to

obtain an optimal information locality profile k
′′ such that j | k′′j for each j ∈ [r].

Lemma 3. Given a locality requirement k̃, any optimal information locality profile k
′
can

be converted into another optimal information locality profile k
′′

such that j | k′′j ∀j ∈ [r].

Proof. By induction on the number of localities j such that j - k′j . Let |{j : j - k′j}| = m.

Basis step: m = 1. Let jm ∈ [r] be the only locality such that jm - k′jm . We can write

k
′
jm = jmβjm +γjm such that 1 ≤ βjm ≤ jm−1. Set k′′jm = k

′
jm−γjm , k′′γjm = k

′
γjm

+γjm ,

and k′′j = k
′
j for all j ∈ [r] such that j 6= jm, j 6= γjm .

First, observe that k′′ is such that j | kj for each j ∈ [r], since γjm | k
′
γjm

.

Second, note that k′′ is a feasible solution for (P1). This is because, for 1 ≤ i ≤ jm−1,

we have
∑i

j=1 k
′′
j =

∑i
j=1 k

′
j + γjm ≥

∑i
j=1 k̃j , and for jm ≤ i ≤ r, we have

∑i
j=1 k

′′
j =∑i

j=1 k
′
j ≥

∑i
j=1 k̃j . For both these cases, the inequality follows since k

′ satisfies the

constraints of (P1).

Finally, it is easy to see that k′′ is also optimal, since
⌈
k
′′
jm

jm

⌉
=

⌈
k
′
jm

jm

⌉
− 1,

⌈
k
′′
γjm

γjm

⌉
=⌈

k
′
γjm

γjm

⌉
+ 1, and

⌈
k
′′
j

j

⌉
=

⌈
k
′
j

j

⌉
for the rest of the localities.

Induction step: m ≥ 2. Suppose the hypothesis holds whenever |{j : j - k′j}| ≤ m−1.
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Consider the case when |{j : j - k′j}| = m. Denote such a set of localities as {j1, . . . , jm},

where j1 < · · · < jm. Now, we can write k′jm = jmβjm +γjm such that 1 ≤ βjm ≤ jm−1.

Set k′jm = k
′
jm − γjm , and k′γjm = k

′
γjm

+ γjm .

Similar to m = 1 case, we can verify that k′ remains to be an optimal solution to (P1)

after the transformation. Further, since jm | k′jm , we get |{j : j - k′j}| = m− 1. Then, the

proof follows by the induction hypothesis.

Let |{j : k
′′
j 6= k∗j}| = m. Denote such a set of localities as {j1, . . . , jm}, where

j1 < · · · < jm. We first prove some properties for the localities where the coordinate

values differ.

Proposition 2. k′′jm < k∗jm

Proof. Suppose, for contradiction, k′′jm > k∗jm . We can write k′′jm = k∗jm + pjm for some

integer p ≥ 1, since both k′′jm and k∗jm are multiples of jm. Consider

r∑
i=jm

k
′′

i = k∗jm + pjm +
r∑

i=jm+1

k∗i (4.25)

=
r∑

i=jm

k̃i − γjm + pjm (4.26)

≥
r∑

i=jm

k̃i − (jm − 1) + pjm (4.27)

≥
r∑

i=jm

k̃i + (p− 1)jm + 1 (4.28)

≥
r∑

i=jm

k̃i. (4.29)

However, this contradicts the feasibility of k′′ as it should satisfy
∑r

jm
k
′′
i ≤

∑r
jm
k̃i (due

to
∑jm

i=1 k
′′
i ≥

∑jm
i=1 k̃i and

∑r
i=1 k

′′
i =

∑r
i=1 k̃i).
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Next, we show that for any information locality profile, moving the coordinates to the

higher locality does not increase the minimum distance bound.

Proposition 3. Consider an information locality profile k. For any locality pair i and j

such that i < j and kj > 0. Set ki = ki − δ and kj = kj + δ for an integer δ such that

either i | δ or j | δ (or both). Then, such a transformation does not increase the value of

the minimum distance bound.

Proof. Case 1: i | δ. Let δ = ia for some integer a. After moving the coordinates of

locality i to locality j, the term
⌈
ki
i

⌉
reduces by a. Whereas, the term

⌈
kj
j

⌉
increases by at

most
⌈
δ
j

⌉
, which itself is at most a.

Case 2: j | δ. Let δ = jb for some integer b. In this case, the term
⌈
kj
j

⌉
increases by b.

Whereas, the term
⌈
ki
i

⌉
reduces by at least

⌊
δ
i

⌋
, which itself is at least b.

Therefore, in both the above case, the value of (4.22) does not increase.

Finally, we show that for any information locality profile, moving the coordinates to

the lower locality to obtain divisibility does not change the minimum distance bound.

Proposition 4. Consider an information locality profile k. Let j be a locality such that

j - kj , and let kj = jβj + γj for some integers βj and 1 ≤ γj ≤ j − 1. Then, setting

kj = ki−γj and kγj = kγj +γj does not change the value of the minimum distance bound.

Proof. The argument is the same as for the basis step in the proof of Lemma 3.

Finally, we show that we can transform an optimal information locality profile where

divisibility holds for each locality into k∗.

Lemma 4. Given a locality requirement k̃, any optimal information locality profile k
′
,

where j | k′′j for each j, can be converted into k∗ without loosing optimality, where k∗ is

the output of Algorithm 5.
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named 6 Transform an optimal locality profile k
′′ to k∗

1: Let |{j : k
′′
j 6= k∗j}| = m

2: while m > 0 do
3: Let jm = max{j : k

′′
j 6= k∗j}

4: while k′′jm < k∗jm do
5: Let jp = max{j : k

′′
j > k∗j}

6: Let δjm = k∗jm − k
′′
jm , δjp = k

′′
jp − k∗jp

7: Set k′′jm = k
′′
jm + min{δjm , δjp}, k

′′
jp = k

′′
jp −min{δjm , δjp}

8: if δjm < δjp then
9: Let k′′jp = jpβjp + γjp

10: if γjp > 0 then
11: Set k′′jp = k

′′
jp − γjp , k

′′
γjp

= k
′′
γjp

+ γjp
12: end if
13: end if
14: end while
15: Set m = |{j : k

′′
j 6= k∗j}|

16: end while

Proof. We give an iterative algorithm (Algorithm 6) to transform an optimal information

locality profile k
′′ to k∗. First note that, by Proposition 2, it must be that k′′jm < k∗jm in

the first iteration of the outer while-loop. Moreover, at line 13, k′′ is such that j | k′′j for

each j ∈ [r], hence we can invoke Proposition 2 for the every iteration of outer while-loop.

Next, the optimality of k′′ is maintained at line 6 due to Proposition 3, and also at line 10

due to Proposition 4. Finally, Algorithm 6 must terminate in finite time as m decreases by

at least 1 at line 13.

The proof of Theorem 11 follows from Lemma 3 and Lemma 4

4.6 Conclusion

We investigate linear codes, in which, different nodes possess different values of local-

ity. We first considered a class of codes with unequal information locality, i.e., systematic
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codes with unequal locality constraints imposed only on the information symbols. We

computed a tight upper bound on the minimum distance as a function of locality con-

straints. We demonstrated that the construction of Pyramid codes by Huang et al. [18]

can be adapted to design optimal codes with unequal information locality that achieve the

minimum distance bound. Then, we considered codes with unequal all-symbol locality,

i.e., codes in which the locality constraints are imposed on all symbols. We established a

tight upper bound on the minimum distance as a function of number of symbols of each

locality value. We showed that the construction based on rank-metric codes by Silberstein

et al. [24] can be adapted to obtain optimal codes with unequal all-symbol locality. Fi-

nally, we introduced the concept of locality requirement of a code, which can be viewed

as a recoverability requirement on symbols. Information locality requirement of a code

essentially specifies the minimum number of information symbols of each locality value

that must be present in the code. For a given locality requirement, we present a greedy

algorithm to construct codes that have maximum minimum distance among all codes that

satisfy the locality requirement.
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5. CODES WITH LOCALITY IN THE RANK AND SUBSPACE METRICS∗

5.1 Introduction

Distributed storage systems have been traditionally replicating data over multiple nodes

to guarantee reliability against failures and protect the data from being lost [76, 77]. How-

ever, the enormous growth of data being stored or computed online has motivated practical

systems to employ erasure codes for handling failures (e.g., [7, 78]). This has galvanized a

significant amount of work in the past few years on novel erasure codes that efficiently han-

dle node failures in distributed storage systems. Two main families of codes have received

primary research attention: (a) regenerating codes – that minimize repair bandwidth, i.e.,

the amount of data downloaded while repairing a failed node (see, e.g., [8, 57, 13]); and (b)

locally repairable codes – that minimize locality, i.e., the number of nodes participating

in the repair process (see, e.g., [18, 9, 20, 79, 25]). Almost all the work in the literature on

these families has considered block codes under the Hamming metric.

In this work, we first focus our attention to codes with locality constraints in the rank

metric. Let Fq be the finite field of size q. Codewords of a rank-metric code are m × n

matrices over Fq, where the rank distance between two matrices is the rank of their differ-

ence [80, 44, 81]. Maximum rank distance (MRD) codes are analogues of the maximum

distance separable (MDS) codes in the Hamming metric. We are interested in rank-metric

codes with locality constraints. To quantify the requirement of locally under the rank met-

ric, we introduce the notion of rank-locality. We say that the i-th column of anm×n array

code has (r, δ) rank-locality if there exists a set Γ (i) of r + δ − 1 columns containing i

such that the array code formed by deleting the columns outside Γ (i) has rank distance at

∗Parts of this chapter are reprinted with permission from [75] “Rank-metric codes with local recover-
ability,” by S. Kadhe, S. El Rouayheb, I. Duursma, and A. Sprintson, 2016. In Proceedings of 2016 54th
Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1033-1040, Sept
2016. Copyright c© by IEEE.
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least δ. We say that an m× n array code has (r, δ) rank-locality if every column has (r, δ)

rank-locality.

Our motivation of considering rank-locality is to design codes that can locally recover

from rank errors and erasures. Rank-errors are the error patterns such that the rank of

the error matrix is limited. For instance, consider an error pattern corrupting a 4 × 4 bit

array shown in Fig. 5.1. Though this pattern corrupts half the bits, its rank over the binary

field is only one. Note that it is not possible to correct such an error pattern using a code

E =

1 1 1 1
0 0 0 0
1 1 1 1
0 0 0 0

Figure 5.1: A rank-error pattern of rank one.

equipped with the Hamming metric. On the other hand, rank-metric codes are well known

for their ability to effectively correct rank-errors [81, 82].

Errors and erasures that affect a limited number of rows and/or columns are usually

referred to as crisscross patterns [81, 82]. (See Fig. 5.2 for some examples of crisscross

erasures.) Our goal is to investigate codes that can locally recover from crisscross era-

sures (and rank-errors). We note that crisscross errors (with no locality) have been studied

previously in the literature [81, 82], motivated by applications in memory chip arrays and

multi-track magnetic tapes. Our renewed interest in these types of failures stems from the

fact that they form a subclass of correlated and mixed failures.

Recent research has shown that many distributed storage systems suffer from a large

number of correlated and mixed failures [4, 83, 84, 85, 86, 87]. For instance, corre-

lated failure of several nodes can occur due to, say, simultaneous upgrade of a group of
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servers, or a failure of a rack switch or a power supply shared by several nodes [4, 83, 84].

Moreover, in distributed storage systems composed of solid state drives (SSDs), it is not

uncommon to have a failed SSD along with a few corrupted blocks in the remaining

SSDs, referred to as mixed failures [87, 88, 89]. Therefore, recent research on coding

for distributed storage has also started focusing on correlated and/or mixed failure models,

see e.g., [90, 91, 92, 69, 93, 88, 94, 95].

Another potential application for codes with rank-locality is for correcting errors oc-

curring in dynamic random-access memories (DRAMs). In particular, a typical DRAM

chip contains several internal banks, each of which is logically organized into rows and

columns. Each row/column address pair identifies a word composed of several bits. Re-

cent studies show that DRAMs suffer from non-negligible percentage of bit errors, single-

row errors, single-column errors and single-bank errors [96, 97, 98]. Using an array code

across banks, with a local code for each bank can be helpful in correcting such error pat-

terns.

In general, our goal is to design and analyze codes that can locally recover the criss-

cross patterns that affect a limited number of rows and columns by accessing a small

number of nodes. We show that a code with (r, δ) rank-locality can locally repair any

crisscross erasure pattern that affects less than δ rows and columns by accessing only r

columns. We begin with a toy example to motivate the coding theoretic problem that we

seek to solve.

Example 5. Consider a datacenter, such as the one depicted in Fig. 5.2, consisting of

multiple racks, each of which containing a number of servers. Each server is composed

of a number of storage nodes which can either be solid state drives (SSDs) or hard disk

drives (HDDs).2 Given two positive integers δ and d such that δ < d, our goal is to encode

2Many practical storage systems such as Facebook’s ‘F4’ storage system [78] and all-flash storage arrays
such as [99, 100] have similar architecture.
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Figure 5.2: A few instances of crisscross failures affecting two rows and/or columns.

the data in such a way that

1. any crisscross failure affecting at most δ rows and/or columns of nodes in a rack

should be ‘locally’ recoverable by only accessing the nodes on the corresponding

rack, and

2. any crisscross failure that affects at most d rows and/or columns of nodes in the

datacenter should be recoverable (potentially by accessing all the remaining data).

Note that the failure patterns of the first kind can occur in several cases. For example, all

the nodes on a server would fail if, say, the network switch connecting the server to the

system fails. The entire row of nodes would be temporarily unavailable if these nodes are

simultaneously scheduled for an upgrade. A few locally recoverable crisscross patterns

are shown in Fig. 5.2 (considering δ = 2). Note that locally recoverable erasures in

different racks can be simultaneously repaired.

Next, we extend the notion of locality from the rank metric to the subspace distance

metric. Let FMq denote the vector space of M -tuples over Fq. A subspace code is a non-

empty set of subspaces of FMq . A code in which each codeword has the same dimension
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is called a constant-dimension code. A useful distance measure between two spaces U

and V , called subspace metric, is defined in [101] as dS (U, V ) = dim (U) + dim (V ) −

2 dim (U ∩ V ). Note that every codeword of a subspace code can be associated with an

ordered basis. For a constant-dimension code, we say that the i-th basis vector has (r, δ)

subspace-locality if there exists a set Γ (i) of at most r + δ − 1 basis vectors containing i

such that the code obtained by removing the basis vectors outside Γ (i) for each codeword

has subspace distance at least δ. We say that a constant-dimension subspace code has

(r, δ) rank-locality if every basis vector has (r, δ) rank-locality. Subspace codes play an

important role in correcting errors and erasures (rank-deficiencies) in non-coherent linear

network coding [101, 102]. One potential application of these novel subspace codes with

locality is for downloading data and repairing failed nodes in a distributed storage system,

in which the nodes are connected over a network that can introduce errors and erasures.

The locality is useful in repairing a failed storage node over the network, or when a user

wants to download partial data by connecting to only a small subset of nodes.

Our Contributions

First, we introduce the notion of locality in rank metric. Then, we establish a tight

upper bound on the minimum rank distance of codes with (r, δ) rank-locality. We con-

struct a family of optimal codes which achieve this upper bound. Our approach is inspired

by [25], which generalizes Reed-Solomon code construction to obtain codes with locality.

We generalize the Gabidulin code construction [44] to design codes with rank-locality. In

particular, we obtain codes as evaluations of specially constructed linearized polynomials

over an extension field, and our codes reduce to Gabidulin codes if the locality parameter

r equals the code dimension. Finally, we characterize various erasure and error patterns

that the proposed codes with rank-locality can efficiently correct.
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Second, we extend the notion of locality to the subspace metric. Then, we consider a

method to construct subspace codes by lifting rank-metric codes proposed in [103]. We

show that a subspace code obtained by lifting an array code with rank-locality possesses

subspace-locality. This enables us to construct a family of subspace codes with locality by

lifting the proposed rank-metric codes with locality.

Related Work

Codes with Locality: Consider a block code of length n that encodes k information

symbols. A symbol i is said to have locality r if it can be recovered by accessing r other

symbols in the code. Note that r is the minimum possible size of a recovering set for the

i-th symbol. We say that a code has locality r if each of its n symbols has locality at most

r.

Codes with small locality were introduced in [18, 19] (see also [20]). The study of

the locality property was galvanized with the pioneering work of Gopalan et al. [9]. One

of their key contributions was to establish a trade-off between the minimum distance of a

scalar linear code and its locality analogous to the classical Singleton bound.

The distance bound was generalized for codes with multiple local parities in [59],

for universal (scalar/vector linear, nonlinear) codes in [21], and for universal codes with

multiple parities in [22, 60]. A large number of optimal code constructions have been

presented, see e.g., [24, 61, 62, 25, 55, 63, 64, 26, 65, 66]. In particular, it is worth

noting the following two references. In [24], the authors construct optimal LRCs using

rank-metric codes as outer codes, and in [25] the authors generalize Reed-Solomon code

construction to design LRCs with small alphabet size.3

Rank-Metric Codes: Rank-metric codes were introduced by Delsarte [80] and were

largely developed by Gabidulin [44] (see also [81]). In addition, Gabidulin [44] presented

3We present a detailed comparison of our proposed constructions with those of [25] and [24] in Sections 6
and 6, respectively.
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a construction for a class of MRD codes. Roth [81] introduced the notion of crisscross

error pattern, and showed that MRD codes are powerful in correcting such error patterns.

In [82], the authors presented a family of MDS array codes for correcting crisscross errors.

Codes for Mixed Failures: Several families of codes have recently been proposed to

encounter mixed failures. The two main families are: sector-disk (SD) codes and partial-

MDS (PMDS) codes (see [88, 94, 104, 95]). These codes consider the set up when data

is stored in an m × n array, where a column of an array can be considered as an SSD.

Each row of the array contains up to k data symbols and h = n− k parity symbols, which

together form a maximum distance separable (MDS) code. Furthermore, there are s global

parity symbols in the first k columns. SD codes can tolerate erasure of any h drives, plus

erasure of any additional s sectors in the array. PMDS codes can tolerate a broader class

of erasures: any h sector erasures per row, plus any additional s sector erasures.

Sector-Disk (SD) codes for correcting mixed failures, i.e., disk failures and sector fail-

ures, were introduced in [94]. Partial-MDS (PMDS) codes for correcting mixed failures

were introduced in [88]. Since then, there have been several constructions for SD and

PMDS codes, see, e.g., [104, 95], and references therein.

Codes for Correlated Failures: Very recently, Gopalan et al. [93] presented a class

of maximally recoverable (MR) codes for grid-like topologies. For an m × n array, the

grid-like topology essentially specifies the number of local parity check equations in every

row and every column, and the number of global parity check equations in the array. The

maximal recoverability means that the code has the strongest erasure correction capability

that is possible with a given grid-like topology. The notion of maximal recoverability

was first proposed by [18] and was generalized by [92]. We note that the class of codes

considered in [93] can be used to correct mixed failures as well.

Subspace Codes: The important role of the subspace metric in correcting errors and

erasures in non-coherent linear network codes was first noted in [101]. Since then, sub-

97



space codes (also known as codes over projective space) have been studied in a number

of research papers, see e.g., [102, 103, 105, 106, 107, 108, 109, 110, 111, 112, 113], and

references therein.

Codes for Distributed Storage Based on Subspace Codes: Recently, subspace codes

have been used to construct repair efficient codes for distributed storage systems. In [114],

the authors construct regenerating codes based on subspace codes. In [115], array codes

with locality and availability (in the Hamming metric) are constructed using subspace

codes. A key feature of the proposed codes is their small locality for recovering a lost

symbol as well as a lost column.

5.2 Preliminaries

Notation: We use the following notation. For an integer l, [l] = {1, 2, . . . , l}. For a

vector x, wt (x) denotes its Hamming weight, i.e., wt (x) = |{i : x(i) 6= 0}|. The rank

an the column space of a matrix H is denoted by Rank (H) and 〈H〉, respectively. The

linear span of a set of vectors x1, . . . ,xk is denoted by 〈x1, . . . ,xk〉. The reduced column

echelon form (RCEF) of a matrix H is denoted by rcef (H).

Let C denote a linear (n, k) code over Fq with block-length n, dimension k, and

minimum distance dmin (C). For instance, under Hamming metric, we have dmin (C) =

minci,cj∈C, ci 6=cj wt (ci − cj). Given a length-n block code C and a set S ⊂ [n], let C |S
denote the restriction of C on the coordinates in S. Essentially, C |S is the code obtained

by puncturing C on [n] \ S .

Recall that, for Hamming metric, the well known Singleton bound gives an upper

bound on the minimum distance of an (n, k) code C as dmin (C) ≤ n − k + 1. Codes

which meet the Singleton bound are called maximum distance separable (MDS) codes

(see, e.g., [116]).
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5.2.1 Linearized Polynomials

In this section, we review some properties of linearized polynomials. (For details,

please see [117].) For convenience, we restate the definition of linearized polynomials.

Recall that xqi = x[i].

Definition 10. [Linearized Polynomial] ([117]) A polynomial in Fqm [x] of the following

form

L(x) =
n∑
i=0

aix
[i] (5.1)

is called as a linearized polynomial or a q-polynomial over Fqm . Further, max{i ∈ [n] :

ai 6= 0} is said to be the q-degree of L(x) denoted as degq (L(x)).

The name arises from the following property of linearized polynomials, referred to as

Fq-linearity ([117]). Let F be an arbitrary extension field of Fqm and L(x) be a linearized

polynomial over Fqm , then

L(α + β) = L(α) + L(β) ∀ α, β ∈ F. (5.2)

L(cα) = cL(α) ∀ c ∈ Fq and ∀ α ∈ F. (5.3)

Definition 11. ([117]) [q-Associates] The polynomials

l(x) =
n∑
i=0

cix
i and L(x) =

n∑
i=0

cix
[i] (5.4)

over Fqm are called q-associates of each other. In particular, l(x) is referred to as the

conventional q-associate of L(x) and L(x) is referred to as the linearized q-associate of

l(x).

Theorem 12. [117, Theorem 3.50] Let L(x) be a non-zero linearized polynomial over
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Fqm and let Fqs be the extension field of Fqm that contains all the roots of L(x). Then, the

roots form a linear subspace of Fqs , where Fqs regarded as the vector space over Fq.

The above theorem yields following corollary.

Corollary 1. Let L(x) be a non-zero linearized polynomial over Fqm with degq (L(x)) =

l, and let Fqt be arbitrary extension field of Fqm . Then, L(x) has at most l roots in Fqt that

are linearly independet over Fq.

5.2.2 Rank-Metric Codes

Let Fm×nq be the set of all m × n matrices over Fq. The rank distance is a distance

measure between elements A and B of Fm×nq , defined as dR (A,B) = Rank (A−B).

It can be shown that the rank distance is indeed a metric [44]. A rank-metric code is

a non-empty subset of Fm×nq equipped with the rank distance metric (see [80, 44, 81]).

Rank-metric codes can be considered as array codes or matrix codes.

The minimum rank distance of a code C is given as

dR (C) = min
Ci, Cj∈C, Ci 6=Cj

dR (Ci, Cj) .

We denote a linear code C ⊂ Fm×nq with cardinality |C| = (qm)k and minimum rank

distance d as an (m× n, k, d) code.

The Singleton bound for the rank metric (see [44]) states that every rank-metric code

with minimum rank distance d must satisfy

|C| ≤ qmax{n,m}(min{n,m}−d+1).

Codes that achieve this bound are called maximum rank distance (MRD) codes.

A minimum distance decoder for a rank-metric code C ⊆ Fm×nq takes an array Y ∈
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Fm×nq and returns a codeword X ∈ C that is closest to Y in rank distance. In other words,

X = arg min
X′∈C

Rank (Y −X ′) . (5.5)

Typically, rank-metric codes are considered by leveraging the correspondence between

Fm×1
q and the extension field Fqm of Fq. In particular, by fixing a basis for Fqm as an m-

dimensional vector space over Fq, any element of Fqm can be represented as a length-m

vector over Fq. Similarly, any length-n vector over Fqm can be represented as an m × n

matrix over Fq. The rank of a vector a ∈ Fnqm is the rank of the corresponding m × n

matrix A over Fq. This rank does not depend on the choice of basis for Fqm over Fq. This

correspondence allows us to view a rank-metric code in Fm×nq as a block code of length

n over Fqm . More specifically, a rank metric code C ⊆ Fm×nq is a block code of length n

over Fqm .

Note that, for m ≥ n, the Singleton bound for rank metric coincides with the classical

Singleton bound for the Hamming metric. Indeed, when m ≥ n, every (m×n, k, d) MRD

code over Fq is also an [n, k, d] MDS code over Fqm , and hence can correct any d − 1

column erasures.

Gabidulin Codes

Gabidulin [44] presented a construction of a class of MRD codes for m ≥ n. The

construction is based on the evaluation of a special type of polynomials called linearized

polynomials. For notational convenience, we write xqi = x[i].

Definition 12. [Linearized Polynomial] ([117]) A polynomial in Fqm [x] of the following

form

L(x) =
n∑
i=0

aix
[i] (5.6)

is called a linearized polynomial, or a q-polynomial, over Fqm . Further, max{i ∈ [n] |
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ai 6= 0} is said to be the q-degree of L(x), denoted as degq (L(x)).

Gabidulin Code Construction: An (n, k) Gabidulin code over the extension field

Fqm for m ≥ n is the set of evaluations of all q-polynomials of q-degree at most k−1 over

n elements of Fqm that are linearly independent over Fq.

In particular, let P = {p1, · · · , pn} be a set of n elements in Fqm that are linearly

independent over Fq (m ≥ n). Let Gm(x) ∈ Fqm [x] denote the linearized polynomial of

q-degree at most k − 1 with coefficients m = [m0 m1 · · · mk−1] ∈ Fkqm as follows.

Gm(x) =
k−1∑
j=0

mjx
[j], (5.7)

Then, the Gabidulin code is obtained by the following evaluation map

Enc : Fkqm → Fnqm

m 7→ {Gm(γ), γ ∈ P} (5.8)

Therefore, we have

CGab =
{

(Gm(γ), γ ∈ P ) |m ∈ Fkqm
}
. (5.9)

Reed-Solomon Code Construction: It is worth mentioning the analogy between

Reed-Solomon codes and Gabidulin codes. An (n, k) Reed-Solomon code over the fi-

nite field Fq for q ≥ n is the set of evaluations of all polynomials of degree at most k − 1

over n distinct elements of Fq. More specifically, let P = {p1, · · · , pn} be a set of n

distinct elements of Fq (q ≥ n). Consider polynomials gm(x) ∈ Fq[x] of the following

form

gm(x) =
k−1∑
j=0

mjx
j, (5.10)
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Then, the Reed-Solomon code is obtained by the following evaluation map

Enc : Fkq → Fnq

m 7→ {gm(γ), γ ∈ P} (5.11)

Therefore, we have

CRS =
{

(gm(γ), γ ∈ P ) |m ∈ Fkq
}
. (5.12)

Remark 20. For the same information vector m = [m0 · · ·mk−1], the evaluation polyno-

mials of the Gabidulin code and the Reed-Solomon code are q-associates of each other.

(See Definition 11.)

5.2.3 Subspace Codes

The set of all subspaces of FMq , called the projective space of order n over Fq, is

denoted byPq (M). The set of all n-dimensional subspaces of FMq , called a Grassmannian,

is denoted by Gq (M,n), where 0 ≤ n ≤M . Note that Pq (M) = ∪Mn=0Gq (M,n).

In [101], the notion of subspace distance was introduced. Let U, V ∈ Pq (M). The

subspace distance between U and V is defined as

dS (U, V ) = dim (U) + dim (V )− 2 dim (U ∩ V ) . (5.13)

It is shown in [101] that the subspace distance is indeed a metric on Pq (M).

A subspace code is a non-empty subset ofPq (M) equipped with the subspace distance

metric [101]. The minimum subspace distance of a subspace code Ω ⊆ Pq (M) is defined

as

dS (Ω) = min
Vi,Vj∈Ω, Vi 6=Vj

dS (Vi, Vj) . (5.14)

A subspace code Ω in which each codeword has the same dimension, say n, i.e., Ω ⊆
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Gq (M,n), is called a constant-dimension code. Such a code with minimum subspace

distance d is denoted as an (M,n, logq |Ω|, d) code. It is easy to see, from (5.13) and (5.14),

that the minimum distance of a constant-dimension code is always an even number. In the

rest of the paper, we restrict our attention to constant-dimension codes.

Construction Based on Lifting Rank-Metric Codes

In [103], the authors presented a construction for a broad class of subspace codes

based on rank-metric codes. The construction takes codewords of a rank-metric code and

generates codewords of a subspace code using an operation called lifting, described in the

following.

Definition 13 (Lifting). Consider the following mapping

Λ : Fm×nq → Gq (m+ n, n) ,

X 7→ Λ(X) =

〈 I
X

〉 , (5.15)

where I is the n × n identity matrix. The subspace Λ(X) is called the lifting of the

matrix X . Similarly, for a rank-metric code C ⊆ Fm×nq , the subspace code Λ(C) =

{Λ(X) : X ∈ C} is called the lifting of C.

Note that the lifting operationX 7→ Λ(X) is an injective mapping since every subspace

corresponds to a unique matrix in reduced column echelon form (RCEF). Thus, we have

|Λ(C)| = |C|. Also, a subspace code constructed by lifting is a constant-dimension code,

with each codeword having dimension n.

The key feature of the lifting based construction is that the subspace code constructed

by lifting inherits the distance properties of its underlying rank-metric code. More specif-

ically, we have the following result from [103].
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Lemma 5. ([103]) Consider a rank-metric code C ⊆ Fm×nq ,. Then, we have

dS (Λ(C)) = 2 dR (C) .

5.2.4 Codes with Locality

Locality of of a code captures the number of symbols participating in recovering a lost

symbol. In particular, an (n, k) code is said to have locality r if every symbol is recoverable

from a set of at most r symbols. For linear codes with locality, essentialy a local parity

check code of length at most r+ 1 is associated with every symbol. The notion of locality

can be generalized to accommodate local codes of larger distance as follows (see [59]).

Definition 14. [Locality] An (n, k) code C is said to have (r, δ) locality, if for each symbol

ci, i ∈ [n], of a codeword c = [c1 c2 · · · cn] ∈ C, there exists a set of indices Γ (i) such

that

1. i ∈ Γ (i),

2. |Γ (i) | ≤ r + δ − 1, and

3. dmin
(
C |Γ(i)

)
≥ δ.

The code C |Γ(i) is said to be the local code associated with the i-th coordinate of C.

Properties 2 and 3 imply that for any codeword in C, the values in Γ (i) are uniquely

determined by any r of those values. Under Hamming metric, the (r, δ) locality allows one

to repair any δ−1 erasures in C |Γ(i), ∀i ∈ [n], locally by accessing at most r other symbols.

When δ = 2, the above definition reduces to the classical definition of locality proposed

by Gopalan et al. [9], wherein any one erasure can be repaired by accessing at most r

symbols. The Singleton bound can be generalized to accommodate locality constraints.
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In particular, the minimum Hamming distance of an (n, k) code C with (r, δ) locality is

upper bounded as follows (see [22, Theorem 21], also [59, Theorem 2] for linear codes):

dmin (C) ≤ n− k + 1−
(⌈

k

r

⌉
− 1

)
(δ − 1). (5.16)

Most of the existing work on locally recoverable codes has been focused on locality

with respect to the Hamming metric. We are interested in locality with respect to the rank

metric.

5.3 Codes with Rank-Locality

Recall from Definition 14 that, for a code C with (r, δ) locality, the local code C |Γ(i)

associated with the i-th symbol, i ∈ [n], has minimum distance at least δ. We are interested

in rank-metric codes such that the local code associated with every column should be a

rank-metric code with minimum rank distance guarantee. This motivates us to generalize

the concept of locality to that of rank-locality as follows.

Definition 15 (Rank-Locality). An (m × n, k) rank-metric code C is said to have (r, δ)

rank-locality if for each column i ∈ [n] of the codeword matrix, there exists a set of

columns Γ (i) ⊂ [n] such that

1. i ∈ Γ (i),

2. |Γ (i) | ≤ r + δ − 1, and

3. dR
(
C |Γ(i)

)
≥ δ,

where C |Γ(i) is the restriction of C on the columns of Γ (i). The code C |Γ(i) is said to be the

local code associated with the i-th column. An (m×n, k) rank-metric code with minimum

distance d and (r, δ) locality is denoted as an (m× n, k, d, r, δ) rank-metric code.
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As we will see in Section 5.5, the (r, δ)-rank-locality allows us to repair any crisscross

erasure pattern of weight δ − 1 in C |Γ(i), ∀i ∈ [n], locally by accessing the symbols of

C |Γ(i). Further, we can correct any crisscross erasure pattern of weight dR (C)− 1 in C by

accessing unerased symbols of C.

Remark 21. In the remainder of the paper, we assume that the columns of an (m ×

n, k, r, δ) rank-metric code C can be partitioned into µ := n/(r + δ − 1) disjoint sets

C1, . . . , Cµ each of size r + δ − 1 such that, for all i ∈ Cj , Γ (i) = Cj . In other words, we

assume that the local codes associated with the columns have disjoint coordinates.

5.3.1 Upper Bound on Rank Distance

It is easy to find the Singleton-like upper bound on the minimum rank distance for

codes with rank-locality using the results in the Hamming metric.

Theorem 13. For a rank-metric code C ⊆ Fm×nq of cardinality qmk with (r, δ) rank-

locality, we have

dR (C) ≤ n− k + 1−
(⌈

k

r

⌉
− 1

)
(δ − 1). (5.17)

Proof. Note that by fixing a basis for Fqm as a vector space over Fq, we can obtain a

bijection φ : Fqm → Fm×1
q . This can be extended to a bijection φ : Fnqm → Fm×nq . Then,

for any vector c ∈ Fnqm , there is a corresponding matrix C ∈ Fm×nq such that C = φ(c).

For any such vector-matrix pair, we have

Rank (C) ≤ wt (c) . (5.18)

An (m×n, k, d) rank-metric code C over Fq can be considered as a block code of length

n over Fqm , denoted as C ′. From (5.18), it follows that dR (C) ≤ dmin (C ′). Moreover, it

follows that, if C has (r, δ) rank-locality, then the corresponding code C ′ possesses (r, δ)

locality in the Hamming metric. Therefore, an upper bound on the minimum Hamming
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distance of an (n, k, d′)-LRC C ′ with (r, δ) locality is also an upper bound on the rank

distance of an (m × n, k, d) rank-metric code with (r, δ) rank-locality. Hence, (5.17)

follows from (5.16).

5.3.2 Code Construction

We build upon the construction methodology of Tamo and Barg [25] to construct codes

with rank-locality that are optimal with respect to the rank distance bound in (5.17). In

particular, the codes are constructed as the evaluations of specially designed linearized

polynomials on a specifically chosen set of points of Fqm . The detailed construction is as

follows.

Construction 7. [(m×n, k, r, δ) rank-metric code.] Let n, k, r, δ be positive integers such

that r | k, (r + δ − 1) | n, and n | m. Define µ := n/(r + δ − 1). Fix q ≥ 2 to be a

power of a prime. Let A = {α1, . . . , αr + δ − 1} be a basis of Fqr+δ−1 as a vector space

over Fq, and B = {β1, . . . , βµ} be a basis of Fqn as a vector space over Fqr+δ−1 . Define

the set of n evaluation points P ⊂ Fqm , with the partition P = P1 ∪ · · · ∪ Pµ, where Pj =

{αiβj, 1 ≤ i ≤ r + δ − 1} for 1 ≤ j ≤ µ. To encode the message m ∈ Fkqm , denoted as

m =
{
mij : i = 0, . . . , r − 1; j = 0, . . . , k

r
− 1
}

, define the encoding polynomial

Gm(x) =
r−1∑
i=0

k
r
−1∑
j=0

mijx
[(r+δ−1)j+i]. (5.19)

The codeword for m is obtained as the vector of the evaluations of Gm(x) at all the points

of P . In other words, the linear code CLoc is constructed as the following evaluation map:

Enc : Fkqm → Fnqm

m 7→ {Gm(γ), γ ∈ P} . (5.20)

108



Therefore, we have

CLoc =
{

(Gm(γ), γ ∈ P ) |m ∈ Fkqm
}
. (5.21)

The (m × n, k) rank-metric code is obtained by considering the matrix representation

of every codeword obtained as above by fixing a basis of Fqm over Fq. We denote the

following µ codes as the local codes.

Cj =
{

(Gm(γ), γ ∈ Pj) |m ∈ Fkqm
}
, 1 ≤ j ≤ µ. (5.22)

Remark 22. [Field Size] It is worth mentioning that, even for constructing Gabidulin

codes of length n over Fqm , it is required that m ≥ n [44]. Note that, it is sufficient to

choose m = n and q = 2 in our construction. In other words, the field size of 2n is

sufficient for the proposed code construction.

In the following, we show that Construction 7 gives codes with rank-locality, which

are optimal with respect to the rank distance bound in Theorem 13.

Theorem 14. Construction 7 gives a linear (m×n, k, d) rank-metric code CLoc with (r, δ)

rank-locality such that the minimum rank distance d is equal to the upper bound given

in (5.17).

Proof. The proof makes use of two key lemmas; Lemma 6 is used to prove the the rank

distance optimality and Lemma 7 is used to prove the rank-locality for the proposed con-

struction.

We begin with showing the rank distance optimality of CLoc. The first step is to prove

the linear independence of the evaluation points P as stated in the following lemma.

Lemma 6. The n evaluation points given in Construction 7,

P = {αiβj, 1 ≤ i ≤ r + δ − 1, 1 ≤ j ≤ µ} ,
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are linearly independent over Fq.

Proof. Suppose, for contradiction, that the evaluation points are linearly dependent over

Fq. Then, we have
∑µ

j=1

∑r+δ−1
i=1 ωijαiβj = 0 with coefficients ωij ∈ Fq such that not all

ωij’s are zero. We can write the linear dependence condition as
∑µ

j=1

(∑r+δ−1
i=1 ωijαi

)
βj =

0. Now, from the linear independence of the βj’s over Fqr+δ−1 , we have
∑r+δ−1

i=1 ωijαi = 0

for each 1 ≤ j ≤ µ. However, as the αi’s are linearly independent over Fq, we have every

ωij = 0. This is a contradiction.

Lemma 6 essentially asserts that CLoc is obtained as the evaluations of Gm(x) on n

points of Fqm that are linearly independent over Fq. Combining this with the structure of

Gm(x) (see (5.19)), CLoc can be considered as a subcode of an
(
n, k +

(
k
r
− 1
)

(δ − 1)
)

Gabidulin code (cf. (5.7)). Hence, dR (CLoc) ≥ n − k + 1 −
(
k
r
− 1
)

(δ − 1), which

shows dR (CLoc) attains the upper bound (5.17) in Theorem 13, and thus that the proposed

construction is optimal with respect to rank distance. We present an alternative proof from

first principles using the properties of linearized polynomials after this proof for the sake

of completeness.

Second, we show that CLoc has (r, δ) rank-locality. Define H(x) = xq
r+δ−1−1 =

x[r+δ−1]−1. We note that (5.19) can be written in the following form using H(x).

Gm(x) =
r−1∑
i=0

Gi(x)x[i], (5.23)

where

Gi(x) = mi0 +

k
r
−1∑
j=1

mij[H(x)]
∑j−1
l=0 q

(r+δ−1)l+i

. (5.24)
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To see this, observe that

[H(x)]
∑j−1
l=0 q

(r+δ−1)l+i

=
[
xq

r+δ−1−1
]∑j−1

l=0 q
(r+δ−1)l+i

= x
∑j−1
l=0 q

(r+δ−1)(l+1)+i−
∑j−1
l=0 q

(r+δ−1)l+i

= xq
(r+δ−1)j+i−qi . (5.25)

Using this in (5.24), we get

Gi(x) = mi0 +

k
r
−1∑
j=1

mijx
[(r+δ−1)j+i]−[i]. (5.26)

Substituting (5.26) into (5.23) gives us (5.19).

Now, to prove the rank-locality, we want to show that dR (Cj) ≥ δ for every local code

1 ≤ j ≤ µ. Towards this, let γ ∈ Pj and define the repair polynomial as

Rj(x) =
r−1∑
i=0

Gi(γ)x[i]. (5.27)

We show that Cj can be considered as obtained by evaluating Rj(x) on the points of Pj .

For this, we first prove that H(x) is constant on all points of Pj for each 1 ≤ j ≤ µ.

Lemma 7. Consider the partition of the set of evaluation points given in Construction 7

as P = P1 ∪ · · · ∪Pµ, where Pj = {αiβj, 1 ≤ i ≤ r + δ − 1}. Then, H(x) is constant on

all evaluation points of any set Pj , 1 ≤ j ≤ µ.

Proof. Note that H(βjαi) = (βjαi)[r+δ−1]−1 = βj[r+δ−1]−1αi[r+δ−1]−1 = βj[r+δ−1]−1,

where the last equality follows from αi ∈ Fqr+δ−1 \ {0}. Thus, H(ω) = βj[r+δ−1]−1, for

all ω ∈ Pj , 1 ≤ j ≤ µ.

Note that, since Gi(x) is a linear combination of powers of H(x), it is also constant on
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the set Pj . In other words, we have

Gi(γ) = Gi(λ), ∀ γ, λ ∈ Pj, (5.28)

for every 0 ≤ i ≤ r − 1.

Moreover, when evaluating Rj(x) in λ ∈ Pj , we get

Rj(λ) =
r−1∑
i=0

Gi(γ)λ[i] =
r−1∑
i=0

Gi(λ)λ[i] = Gm(λ). (5.29)

Hence, the evaluations of the encoding polynomial Gm(x) and the repair polynomial

Rj(x) on points in Pj are identical. In other words, we can consider that Cj is obtained

by evaluating Rj(x) on points of Pj . Now, since points of Pj are linearly independent

over Fq, and Rj(x) is a linearized polynomial of q-degree r − 1, Cj can be considered

as a (r + δ − 1, r) Gabidulin code (cf. (5.7)). Thus, Cj is an MRD code, and we have

dR (Cj) = δ, which proves the rank-locality of the proposed construction.

This concludes the proof of Theorem 14.

Proof from the First Principles

We note that the result dR (C) ≥ δ also follows from Lemma 8 as shown in the follow-

ing, which is proved from first principles using the properties of linearized polynomials.

We begin with a useful lemma regarding the minimum rank-distance of the rank-metric

codes that are obtained through evaluation of linearized polynomials.

Lemma 8. Let P be a set of n elements in Fqm that are linearly independent over Fq

(m ≥ n). Consider a linearized polynomial Lm(x) ∈ Fqm [x] of the following form

Lm(x) =
k∑
j=1

mijx
[ij ], (5.30)
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where ij’s are non-negative integers such that 0 ≤ i1 < i2 < · · · < ik ≤ n−1, and k ≤ n.

Consider the code obtained by the following evaluation map

Enc : Fkqm → Fnqm

m 7→ {Lm(γ), γ ∈ P} (5.31)

In other words, we have

C =
{
Lm(γ) |m ∈ Fkqm , γ ∈ P

}
. (5.32)

Then, C is a linear [m× n, k, d] rank-metric code with rank-distance d ≥ n− ik.

Proof. First, note that a codeword c ∈ C is the evaluation of Lm(x) on n points of P for a

fixed m ∈ Fkqm . Thus, a codeword is a set of n values each in Fqm . By fixing a basis for

Fqm as a vector space over Fq, we can represent a codeword c ∈ Fnqm as an m × n matrix

C ∈ Fm×nq . Thus, C is a matrix or array code.

Second, note that C is an evaluation map over Fqm . Observe that m 7→ Lm(x) is an

injective map. Since q-degree of Lm(x) is at most n− 1, two distinct polynomials Lmj
(x)

and Lml
(x) result in distinct codewords, and thus, dimension of the code (over Fqm) is k.

Finally, we show that dR (C) ≥ n− ik. Notice that

max
Lm,m∈Fkqm

degq (Lm) ≤ ik, (5.33)

where degq (F ) denotes the q-degree of a linearized polynomial F .

Consider a codeword c as a length-n vector over Fqm . Let mc be the message vector

resulting in c, and Lmc be the corresponding polynomial giving c. Let C ∈ Fm×nq be the

matrix representation of c for some basis of Fqm over Fq. Suppose Rank (C) = wr. We
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want to prove that wr ≥ n− ik. Suppose, for contradiction, wr < n− ik.

Let wt (c) = w. Clearly, wr ≤ w. Without loss of generality (WLOG), assume that

the last n − w columns of C are zero. We know that n − w points in P , {γw+1, . . . , γn},

are the roots of Lmc(x). Note that, since elements of P are linearly independent over Fq,

w ≥ n− ik (see Corollary 1).

WLOG, assume that the first wr columns of C are linearly independent over Fq. After

doing column operations, we can make the middle w−wr columns as zero columns. Thus,

there exist coefficients clj’s, not all zero, such that

wr∑
j=1

cljLmc(γj) + clj+1Lmc(γwr+l) = 0, for 1 ≤ l ≤ w − wr. (5.34)

By using Fq-linearity property of linearized polynomials (see (5.2), (5.3)), the above set of

equations (5.34) is equivalent to

Lmc

(
wr∑
j=1

cljγj + clj+1γwr+l

)
= 0, for 1 ≤ l ≤ w − wr. (5.35)

Therefore,
{∑wr

j=1 c
l
jγj + clj+1γwr+l, 1 ≤ l ≤ w − wr

}
are also the roots of Lmc(x). To-

gether with {γw+1, . . . , γn} as its roots, Lmc(x) has n − wr > ik roots. Note that, since

γj’s are linearly independent over Fq, so are all of the n−wr roots. Thus, Lmc(x) has more

than ik roots that are linearly independent over Fq, which is a contradiction due to (5.33)

and Corollary 1.

From the above lemma, it follows that C obtained using Construction 7 is a linear

(m× n, k) rank-metric code. Observe that the q-degree of Gm(x) is bounded as

degq (Gm(x)) ≤
(
k

r
− 1

)
(r + δ − 1) + r − 1 = k − 1 +

(
k

r
− 1

)
(δ − 1).
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Further, we have dR (C) ≥ n − k + 1 −
(
k
r
− 1
)

(δ − 1), which proves the rank-distance

optimality.

Example for the Proposed Construction

Next, we present an example of an (9×9, 4) rank-metric code with (2, 2) rank-locality.

We note that the code presented in this example satisfies the correctability constraints

specified in the motivating example (Example 5) in the introduction section.

Example 6. Let n = 9, k = 4, r = 2, δ = 2. Set q = 2 and m = n. Let ω be the

primitive element of F29 with respect to the primitive polynomial p(x) = x9 + x4 + 1.

Note that ω73 generates F23 , as (ω73)
7

= 1. Consider A = {1, ω73, ω146} as a basis

for F23 over F2. We view F29 as an extension field over F23 considering the irreducible

polynomial p(x) = x3 + x + ω73. It is easy to verify that ω309 is a root of p(x), and thus,

B = {1, ω309, ω107} forms a basis of F29 over F23 . Then, the evaluation points P and their

partition P is as follows.

P = {P1 = {1, ω73, ω146}, P2 = {ω309, ω382, ω455}, P3 = {ω107, ω180, ω253}}.

Let m = (m00, m01, m10, m11) ∈ F4
29 be the information vector. Define the encoding

polynomial (as in (5.19)) as follows.

Gm(x) = m00x
[0] +m01x

[3] +m10x
[1] +m11x

[4].

The codeword c for the information vector m is obtained as the evaluation of the polyno-

mial Gm(x) at all the points of P . The code C is the set of codewords corresponding to all

m ∈ F4
29 .

From Lemma 6, the evaluation points are linearly independent over F2, and thus, C

can be considered as a subcode of a (9, 5) Gabidulin code (cf. (5.7)). Thus, dR (C) = 5,
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which is optimal with respect to (5.17).

Now, consider the local codes Cj , 1 ≤ j ≤ 3. It is easy to verify that Cj can be obtained

by evaluating the repair polynomial Rj(x) on Pj given as follows (see (5.27)).

R1(x) = (m00 +m01)x[0] + (m10 +m11)x[1], (5.36)

R2(x) = (m00 + ω119m01)x[0] + (m10 + ω238m11)x[1], (5.37)

R3(x) = (m00 + ω238m01)x[0] + (m10 + ω476m11)x[1]. (5.38)

For instance, let the message vector be m = (ω, ω2, ω4, ω8). Then, the codeword is

c = (ω440, ω307, ω81, ω465, ω11, ω174, ω236, ω132, ω399).

One can easily check that evaluating R1(x) on P1 gives c1 = (ω440, ω307, ω81), eval-

uating R2(x) on P2 gives c2 = (ω465, ω11, ω174), and evaluating R3(x) on P3 gives

c3 = (ω236, ω132, ω399).

This implies that the local code Cj , 1 ≤ j ≤ 3, can be considered as obtained by

evaluating a linearized polynomial of the form Rj(x) = m′0x
[0] + m′1x

[1] on three points

that are linearly independent over F2. Hence, Cj is a Gabidulin code of length 3 and

dimension 2, which gives dR (C |Pi) = 2. This shows that C has (2, 2) rank-locality.

Comparison with Tamo and Barg [25]

The key idea in [25] is to construct codes with locality as evaluations of a specially de-

signed polynomial over a specifically chosen set of elements of the underlying finite field.

To point out the similarities and differences, we briefly review Construction 8 from [25].

We assume that r | k, and r + δ − 1 | n.

Construction 8 from [25]: Let P = {P1, . . . , Pµ}, µ = n/(r + δ − 1), be a partition

of the set P ⊂ Fq, |P | = n, such that |Pi| = r + δ − 1, 1 ≤ i ≤ µ. Let h ∈ Fq[x] be a

116



polynomial of degree r+ δ− 1, called the good polynomial, that is constant on each of the

sets Pi. For an information vector m ∈ Fkq , define the encoding polynomial

gm(x) =
r−1∑
i=0

 k
r
−1∑
j=0

mijh(x)j

xi.

The code C is defined as the set of n-dimensional vectors

C =
{

(gm(γ), γ ∈ P ) |m ∈ Fkq
}
.

The authors show that h(x) = xr+δ−1 can be used as a good polynomial, when the

evaluation points are the cosets of a multiplicative subgroup of F∗q of order r + δ − 1. In

this case, we can write gm(x) as

gm(x) =
r−1∑
i=0

k
r
−1∑
j=0

mijx
(r+δ−1)j+i. (5.39)

Therefore, C can be considered as a subcode of an
(
n, k +

(
k
r
− 1
)

(δ − 1)
)

Reed-Solomon

code. In addition, local codes Cj =
{

(gm(γ), γ ∈ Pj) |m ∈ Fkq
}

, 1 ≤ j ≤ µ, can be con-

sidered as (r + δ − 1, r) Reed-Solomon codes.

In our case, the code CLoc obtained from Construction 7 can be considered as a subcode

of a
(
n, k +

(
k
r
− 1
)

(δ − 1)
)

Gabidulin code. Further, the local codes Cj , 1 ≤ j ≤ µ, can

be considered as (r + δ − 1, r) Gabidulin codes. In fact, as one can see from the proof

of Theorem 14, we implicitly use H(x) = x[r+δ−1]−1 as the good polynomial, which

evaluates as a constant on all points of Pj for 1 ≤ j ≤ µ given in Construction 7. It is

worth mentioning that (5.39) and (5.19) turn out to be q-associates of each other. (See

Definition 11 in Sec. 5.2.1.)
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Comparison with Silberstein et al. [24]

In [24] (see also [22]), the authors have presented a construction of LRC codes based

on rank-metric codes. The idea is to precode the information vector with an (rµ, k)

Gabidulin code over Fqm . The symbols of the codeword are partitioned into µ setsC1, . . . , Cµ

of size r each. For each set Cj , an (r + δ − 1, r) Reed-Solomon code over Fq is used to

obtain δ − 1 local parities, which together with the symbols of Cj forms the codeword of

a local code Cj . This ensures that each local code has minimum distance δ. However, it

does not guarantee that the minimum rank distance of a local code is at least δ.

In fact, for any c ∈ Cj , 1 ≤ j ≤ µ, we have Rank (c) ≤ r, as the local parities are

obtained via linear combinations over Fq. Clearly, when δ > r, the construction cannot

achieve rank-locality. Moreover, even if δ ≤ r, it is possible to have a codeword c ∈ Cj
such that Rank (Ci) < δ for some local code Cj . Therefore, in general, the construction

of [24], that uses Gabidulin codes as outer codes, does not guarantee that the codes possess

rank-locality.

On the other hand, our construction can be viewed as a method to design (n, k) linear

codes over Fqm with (r, δ) locality (under Hamming metric). For the construction in [24],

the field size of qn is sufficient for q ≥ r + δ − 1 when δ > 2, while one can choose

any q ≥ 2 when δ = 2. When our construction is used to obtain LRCs, it is sufficient to

operate over the field of size 2n.

5.4 Codes with Subspace-Locality

In this section, we extend the concept of locality to that of subspace-locality. We

begin with setting up the necessary notation. Let Ω ⊆ Gq (M,n) be a constant-dimension

subspace code. For every codeword U ∈ Ω, consider an M × n matrix [U ] in a reduced

column echelon form (RCEF) such that columns of [U ] span U . In other words, [U ] =

rcef ([U ]) and U = 〈[U ]〉. Note that columns of [U ] form an ordered basis of U .

118



For a set S ⊂ [n], let [U ] |S denote the M × |S| sub-matrix of [U ] consisting of the

columns of [U ] indexed by S. Let U |S = 〈[U ] |S〉, and Ω |S = {U |S : U ∈ Ω}. Note that

the code Ω |S is essentially obtained by taking a projection of every subspace U of Ω on

the subspace formed by the basis vectors in S.

Now, we define the notion of subspace-locality in the following.

Definition 16 (Subspace-Locality). A constant-dimension subspace code Ω ⊆ Gq (M,n)

is said to have (r, δ) subspace-locality if, for each i ∈ [n], there exists a set Γ (i) ⊂ [n]

such that

1. i ∈ Γ (i),

2. |Γ (i) | ≤ r + δ − 1,

3. dim
(

Ω |Γ(i)

)
= |Γ (i) |, and

4. dS
(

Ω |Γ(i)

)
≥ δ.

The code Ω |Γ(i) is said to be the local code associated with the i-th basis vector for the

subspaces of Ω. A subspace code Ω ⊆ Gq (M,n) with minimum distance d and (r, δ)

locality is denoted as an (M,n, logq |Ω|, d, r, δ) subspace code.

Next, we show that the lifting construction given in (5.15) preserves the locality prop-

erty.

Lemma 9. A subspace code obtained by lifting a rank-metric code with (r, δ) rank-locality

has (r, 2δ) subspace-locality.

Proof. Let C ⊆ Fm×nq be a rank-metric code with (r, δ) rank-locality. For each i ∈ [n],

there is a local code C |Γ(i) such that dR
(
C |Γ(i)

)
≥ δ due to the (r, δ) rank-locality of C.
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Let Ω = Λ(C) be the subspace code obtained by lifting C. Let Ω |Γ(i) = {U |Γ(i) : U ∈

Ω}. Consider a pair of codewords V, V ′ ∈ Ω |Γ(i). Then, we have

V =

〈 ÎΓ(i)

CΓ(i)

〉 , V ′ =

〈 ÎΓ(i)

C ′Γ(i)

〉 ,
where ÎΓ(i) is an n × |Γ (i) | sub-matrix of the n × n identity matrix composed of the

columns indexed by Γ (i), and CΓ(i), C
′
Γ(i) ∈ C |Γ(i). Note that dim (V ) = dim (V ′) =

|Γ (i) |. Thus, we have

dS (V, V ′)
(a)
= 2 dim (V + V ′)− dim (V )− dim (V ′)

(b)
= 2 dim (V + V ′)− 2|Γ (i) |

(c)
= 2 Rank


 ÎΓ(i) ÎΓ(i)

CΓ(i) C ′Γ(i)


− 2|Γ (i) |

= 2 Rank


 ÎΓ(i) 0

CΓ(i) C ′Γ(i) − CΓ(i)


− 2|Γ (i) |

= 2 Rank
(
C ′Γ(i) − CΓ(i)

)
(d)

≥ 2δ, (5.40)

where (a) follows from (5.13) and the fact that dim (V + V ′) = dim (V ) + dim (V ′) −

dim (V ∩ V ′), (b) follows due to dim (V ) = dim (V ′) = |Γ (i) |, (c) follows from the fact

that for any pair of matrices X and Y , we have

〈X
Y

〉 = 〈X〉+ 〈Y 〉 ,

and (e) follows from dR
(
C |Γ(i)

)
≥ δ.
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The result is immediate from (5.40).

Now, by lifting rank-metric codes obtained via Construction 7, we get a family of

subspace codes with locality. Specifically, from Lemmas 5 and 9, we get the following

result as a corollary.

Corollary 2. Let CLoc be an (m × n, k, d, r, δ) rank-metric code obtained by Construc-

tion 7. The code Λ(CLoc) obtained by lifting CLoc is an (m + n, n,mk, 2d, r, 2δ) subspace

code.

5.5 Correction Capability of Codes with Rank-Locality

Suppose the encoded data is stored on an m × n array C using an (m × n, k, d, r, δ)

rank-metric code C over Fqm . Let C1, . . . , Cµ be the local codes of C and let C1, . . . , Cµ

be the corresponding local arrays, where a local array Ci is of size m × (n/µ). Our

goal is to characterize the class of (possibly correlated) mixed erasure and error patterns

corresponding to column and row failures of C that C can correct locally or globally.

Towards this, we consider the notion of crisscross weight of an erasure pattern.

Let E = [ei,j]1≤i≤m,1≤j≤n be an m× n binary matrix that specifies the location of the

erased symbols of C, referred to as an erasure matrix. In particular, eij = 1 if the (i, j)-th

entry of C is erased, otherwise eij = 0. For simplicity, we denote the erasure pattern by E

itself. We denote by E(Cj) the n/µ columns of E corresponding to the local array Cj , and

we refer to E(Cj) as the erasure pattern restricted to the local array Cj . We first consider

the notion of a cover of E, which is used to define the crisscross weight of E (see [81],

also [82]).

Definition 17. [Cover of E] A cover of an m × n matrix E is a pair (X, Y ) of sets

X ⊆ [m], Y ⊆ [n], such that eij 6= 0 =⇒ ((i ∈ X) or (j ∈ Y )) for all 1 ≤ i ≤ m,

1 ≤ j ≤ n. The size of the cover (X, Y ) is defined as |(X, Y )| = |X|+ |Y |.
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We define the crisscross weight of an erasure pattern as the crisscross weight of the

associated binary matrix E defined as follows.

Definition 18. [Crisscross weight of E] The crisscross weight of an erasure pattern E is

the minimum size |(X, Y )| over all possible covers (X, Y ) of the associated binary matrix

E. We denote the crisscross weight of E as wtc (E).

Note that a minimum-size cover of a given matrix E is not always unique. Further,

the minimum size of a cover of a binary matrix is equal to the maximum number of 1’s

that can be chosen in that matrix such that no two are on the same row or column [118,

Theorem 5.1.4].

Let E ′ = [e′i,j]1≤i≤m,1≤j≤n ∈ Fm×nq be a matrix that specifies the location and values of

errors occurred in the array, referred to as an error matrix. Specifically, e′i,j ∈ Fq denotes

the error at the i-th row and the j-th column. If there is no error, e′i,j = 0. We assume that

for every 1 ≤ i ≤ m, 1 ≤ j ≤ n, such that ei,j = 1, we have e′i,j = 0. In other words,

the value of the error is zero at a location where erasure occurs. We denote by E ′(Cj) the

n/µ columns of E ′ corresponding to the local array Cj , and we refer to E ′(Cj) as the error

pattern restricted to the local array Cj .

We characterize erasure and error patterns that C can correct locally or globally. Define

a binary variable δj for 1 ≤ j ≤ δ as follows.

δj =

 1 if 2 Rank (E ′(Cj)) + wtc (E(Cj)) ≤ δ − 1,

0 otherwise.
(5.41)

Recall that, for simplicity, we assume that the local codes associated with columns are

disjoint in their support. We note that the proposed construction indeed results in disjoint

local codes.
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Proposition 5. Let C be an (m × n, k, d) rank-metric code with (r, δ) rank-locality. Let

Cj , 1 ≤ j ≤ µ, be the j-th local (r + δ − 1, r, δ) rank-metric code, and let Cj be the

corresponding local array. Consider erasure and error matrices E and E ′. The code Cj is

guaranteed to correct the erasures and errors E(Cj) and E ′(Cj) locally by accessing the

unerased symbols only from Cj provided

2 Rank (E ′(Cj)) + wtc (E(Cj)) ≤ δ − 1. (5.42)

Further, the code C is guaranteed to correct E and E ′ provided

2 Rank (E ′) + wtc (E)−
µ∑
j=1

δj (2 Rank (E ′(Cj)) + wtc (E(Cj))) ≤ d− 1, (5.43)

where δj is defined in (5.41).

Proof. The proof essentially follows from the fact that a rank-metric code C of rank dis-

tance d can correct any erasure pattern E and error pattern E ′ such that 2 Rank (E ′) +

wtc (E) ≤ d − 1. To see this, consider a minimum-size cover (X, Y ) of E. Delete the

rows and columns indexed respectively by X and Y in all the codeword matrices of C as

well as from E ′′. The resulting array code composed of matrices of sizem−|X|×n−|Y |

has rank distance at least d−wtc (E). This code can correct any error pattern E ′′ such that

Rank (E ′′) ≤ (d − wtc (E) − 1)/2 using the minimum distance decoder (cf. (5.5)). This

immediately gives (5.42). First correcting erasures and errors locally using Cj for each

1 ≤ j ≤ µ, and then globally using C yields (5.43).

Example 7. Suppose the data is to be stored on a 9 × 9 bit array C using the (9 ×

9, 5, 5, 2, 2) rank-metric code discussed in Example 6. Note that the first three columns of

C form the first local array C1, the next three columns form the second local array C2,

and the remaining three columns form the third local array C3. The encoding satisfies
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?? ?? ?? ?? ?? ?? ? ? ?
?? ?? ?? ?? c2,5 c2,6 c2,7 c2,8 c2,9

?? ?? ?? ?? c3,5 c3,6 c3,7 c3,8 c3,9

c4,1 c4,2 c4,3 ?? c4,5 c4,6 c4,7 c4,8 c4,9

c5,1 c5,2 c5,3 ?? c5,5 c5,6 c5,7 c5,8 c5,9

c6,1 c6,2 c6,3 ?? c6,5 c6,6 c6,7 c6,8 c6,9

c7,1 c7,2 c7,3 ?? c7,5 c7,6 c7,7 c7,8 c7,9

c8,1 c8,2 c8,3 ?? c8,5 c8,6 c8,7 c8,8 c8,9

c9,1 c9,2 c9,3 ?? c9,5 c9,6 c9,7 c9,8 c9,9

Figure 5.3: An example of a 9× 9 bit array.

the correctability constraints mentioned in Example 5. We give a few examples of erasure

patterns that are correcrable in Fig. 5.3, where locally correctable erasures are denoted

as ‘?’, while globally correctable erasures are denoted as ‘??’.

Remark 23. In Proposition 5, we only characterize the erasure patterns that are locally

or globally correctable. It is interesting to consider efficient decoding algorithms on the

lines of [119, 39].

Remark 24. We note that an (m × n, k, d, r, δ) code may correct a number of erasure

patterns that are not covered by the class mentioned in Proposition 5. This is analogous to

the fact that an LRC can correct a large number of erasures beyond minimum distance. In

fact, the class of LRCs that have the maximum erasure correction capability are known as

maximally recoverable codes. Along similar lines, it is interesting to extend the notion of

maximal recoverability for the rank metric and characterize all the erasure patterns that

an (m× n, k, d, r, δ) rank-metric code can correct.

5.6 Conclusion

We constructed codes with locality constraints in the rank and subspace metrics (in-

stead of the conventional Hamming metric). We showed that the proposed local rank-
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metric codes can recover locally from crisscross erasures and errors, which affect a lim-

ited number of rows and/or columns of the storage system. We proved a tight Singleton-

like upper bound on the minimum rank-distance of linear codes with rank-locality con-

straints. Then, we constructed a family of locally recoverable rank-metric codes that

achieve this bound for a broad range of parameters. Finally, we constructed a class of

subspace codes with locality constraints in the subspace metric. The construction used the

lifting method, and the main idea was to show that a subspace code with locality can be

easily constructed from a rank-metric code with locality by using the lifting method.
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6. LATENCY ANALYSIS FOR CODES WITH AVAILABILITY∗

6.1 Introduction

Cloud storage networks utilize large-scale distributed storage systems (DSS) to handle

enormous amounts of data. DSS are expected to provide timely service regardless of the

system conditions and loads. The key challenges in cloud storage systems are to maintain

reliability against failures, and guarantee high content availability. Reliability is achieved

by introducing some form of redundancy using either replication or erasure coding. In or-

der to ensure high availability, the objective is to minimize the delay to serve the download

requests arriving at the distributed storage system.

In the past few years, there has been a significant research in investigating how the

redundancy used for enhancing reliability can be leveraged to reduce download latency.

The main focus has been on analyzing download delay in DSS (or, in general, distributed

systems) that employ replication or erasure coding. The class of erasure codes that have

received the primary attention are maximum distance separable (MDS) codes. It is well

known that MDS codes achieve high storage efficiency as compared to replication. Their

utility in reducing the download latency has been studied recently in several works, see

e.g. [122, 7, 123, 124, 125, 126, 127, 128, 129, 73].

On one hand, these results demonstrate that the download latency in DSS can be im-

proved by employing an MDS coding scheme. On the other hand, the challenge of quickly

repairing failed nodes has motivated coding theorists to diverge from MDS codes in search

of several novel erasure codes that are repair efficient [8, 20, 9, 25, 130, 22]. These coding

∗Parts of this chapter are reprinted with permission from [120] “Analyzing the download time of avail-
ability codes,” by S. Kadhe, E. Soljanin, and A. Sprintson, 2015, In Proceedings of 2015 IEEE International
Symposium on Information Theory (ISIT), pp. 1467-1471, June 2015 and [121] “When do the availability
codes make the stored data more available?” by S. Kadhe, E. Soljanin, and A. Sprintson, 2015. In Proceed-
ings of 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp.
956-963, Sept 2015. Copyright c© by IEEE.
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schemes have not only made a significant impact on the theory side, but also on the practi-

cal side by becoming a part of real systems [131, 78]. The goal of this chapter is to analyze

how some these novel erasure codes affect the download latency in DSS. In particular, we

focus on locally repairable codes with availability property.

Locally repairable codes (LRCs) [20, 9] are a class of distributed storage codes, in

which a systematic storage node (i.e., a node that stores an uncoded data symbol) can be

reconstructed by accessing a group of other storage nodes, called a repair group. LRCs

possess a key property that, for each systematic node, the size of its repair group is small.

Availability codes, which belong to a sub-class of LRCs, have an additional property that

each systematic node has multiple, disjoint repair groups [22, 130, 30, 132].

For instance, consider the (n = 7, k = 3) Simplex code that encodes three files, say

{f1, f2, f3}, into seven files given as {f1, f2, f3, f1 + f2, f1 + f3, f2 + f3, f1 + f2 + f3}.

We assume that each file consists of one symbol in a finite field, and the encoded files are

stored on seven independent storage nodes. This code is said to have availability three as

each file has three disjoint repair groups. For example, file f1 can be can be recovered by

reading both f2 and f1 + f2 from nodes 2 and 4 or by reading both f3 and f1 + f3 from

nodes 3 and 5, or by reading f2 + f3 and f1 + f2 + f3 from nodes 6 and 7. Further, the

locality of each read is at most two – one needs to read at most two files to reconstruct the

desired file.

In this chapter, we analyze the delay for downloading individual files from a DSS that

employs availability codes. One of our goals is to compare the availability codes with

alternative approaches, in particular, the replication schemes and MDS codes. We also

strive to understand the role that various parameters of availability coded systems play in

the file download time. Moreover, we focus on the problem of service capacity provision-

ing across nodes with the objective of reducing the file download delay. If one can increase

the number of parallel reads, say by increasing the number of disjoint repair groups, then
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the download latency can be reduced. However, increasing the number of repair groups

involves increasing the total service capacity of the system, and in practice, available total

service capacity is often limited. Therefore, we are interested in investigating how one

can allocate service capacities across storage nodes so as to minimize the download delay

when the cumulative service capacity of the system is limited.

Related work

Our work is inspired by a series of recent studies [122, 7, 123, 124, 125, 126, 127, 128,

129, 73], which have analyzed erasure codes (mainly, MDS codes) through the lens of

queuing theory, and have shown that the download latency can be improved by employing

an erasure coding scheme.

MDS codes and replication schemes have been considered under different aspects of

the queuing systems, some of which are pointed out in the following list:

1. Several access schemes, such as fork-join access [122, 126, 127, 125], and central-

ized MDS queue [123, 73];

2. Various service time distributions, namely, exponential [122, 123], shifted exponen-

tial [124], new-worse-than-used (NWU) and new-better-than-used (NBU) distribu-

tions [73], more general service time distributions [126];

3. Different traffic patterns and system loads, such as low traffic [122] and high traf-

fic [129], and arbitrary arrival processes [133];

4. Heterogeneous job classes, for instance, MDS coding with heterogeneous jobs classes [134,

128] and replication schemes with heterogeneous job classes [125];

5. Investigation of computing cost [127], job cancellation cost [135], job size variabil-

ity [136].
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However, all these references analyze the download delay when a user is interested

in downloading the entire set of files that are jointly encoded using an erasure code. In

contrast to such all-data-access scenario considered in these references, we are interested

in a hot-data-access scenario, which has received surprisingly little research attention. In

particular, we are concerned with the scenario, in which users are interested in down-

loading particular popular files (hot data) jointly encoded with other files. We outline our

contributions in the following.

Our Contributions

We consider two specific request traffic scenarios: (i) low arrival rate scenario, in which

there is no overlap between different download requests, i.e., the current request is served

before the arrival of the next request; (ii) high arrival rate scenario, in which the download

requests can overlap and local queues are employed to control access to storage nodes.

For low arrival rate scenario, we consider the following two types of content access

models. (i) Fork-join access model: wherein a request is forwarded to the systematic node

and all its repair groups. The request is said to be complete when either the systematic node

completes the request, or all the nodes in a repair group complete requests; (ii) Traffic

flow splitting models: certain fraction of download requests would be forwarded to the

systematic node, while the remaining fraction would be forwarded to one or more repair

groups. Our motivation behind considering such models is that, in practice, it may not

always be possible to forward the request to all the nodes. This can happen when, for

instance, certain parts of the network are congested or some nodes are temporarily down

for maintenance.

Our contributions can be summarized as follows. First, for low-arrival rate scenario, we

characterize the mean download latency for the availability codes for the fork-join access

in the low arrival rate scenario, and compare it with that of replication and MDS codes.
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We demonstrate that, surprisingly, MDS codes perform better in terms of download delay

than availability codes. More specifically, we observe that an MDS code results in a lower

download delay and a higher fault tolerance (measured in terms of minimum distance)

than the availability codes proposed in [17, 22] of the same the code rate (which reflects

storage efficiency) for the same cumulative service rate of the system. In addition, we

find that replication scheme achieves the same download delay as an MDS code, when the

cumulative service rates are the same.

Further, we analyze the impact of the size and the number of multiple repair groups on

download latency in low arrival rate scenario by computing the following two metrics: the

mean download time achievable by all repair groups working together, and the probability

that the repair groups together perform slower download than the systematic node.

Second, for the high arrival rate scenario, we present an upper bound on the mean

download time. We also present an inner bound on the stability region – a sufficient

condition on the aggregate arrival rate of download requests such that the mean download

time is bounded. Finally, we perform simulation studies to compare the download latency

of availability codes with that of replication schemes and MDS codes. We observe that

when the request arrival rates are low, download delay of availability codes is comparable

with that of replication codes, however, for higher arrival rates replication codes have

lower latencies. This behavior is analogous to a typical communication system where one

uses coding at high SNRs but repetition at low SNRs.

Finally, we consider the problem of service capacity provisioning across storage nodes

so as to minimize the file download delay in low arrival rate scenario. We consider three

traffic splitting models depending on how the requests are forwarded to the systematic

node and to one or more of its repair groups. Under these models, we characterize optimal

allocation of service rates across systematic node and repair group nodes to minimize the

download delay.
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6.2 Preliminaries on Log Concavity (Convexity) of Order Statistics

In this section, we present a result on the log-concavity/log-convexity of the density

of a minimum of maximum of i.i.d. random variables. We begin with basic definitions.

We refer the reader to [137] for a comprehensive treatment of log-concavity of probability

densities.

A function f is said to be log-concave (resp. log-convex) if ln f is concave (reps.

onvex). We say that a random variable S is log-concave (resp. log-convex) if its density

function fS(s) is log-concave (reps. log-convex).

Let Y = Sr:r denote the maximum of r i.i.d. random variables each with probability

density function fS(s), whose support is the interval (a, b). Let X = Y1:t be the minimum

of t i.i.d. random variables each with probability density function fY (y). Then, we have

the following results.

Claim 6. If fS(s) is continuously differentiable and log-concave on (a, b), then fY (y) is

also log-concave on (a, b); and if fY (y) is continuously differentiable on (a, b), then fX(x)

is also log-concave on (a, b).

Proof: If fS(s) is continuously differentiable and log-concave on (a, b), then the

cumulative distribution function FS(s) is also log-concave on (a, b) [137]. Further, we

have

fY (y) = rFS(s)r−1fS(s).

Observe that ln(fY (y)) is a weighted sum of concave functions with non-negative weights,

and thus fY (y) is also log-concave.

Next, note that since fY (y) is log-concave on (a, b), if it is continuously differen-

tiable on (a, b), then the complementary cumulative distribution function F̄Y (y) is also
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log-concave on (a, b) [137]. Further, we have

fX(x) = tF̄Y (y)t−1fY (y).

Observe that ln(fX(x)) is a weighted sum of concave functions with non-negative weights,

and thus fX(x) is also log-concave.

Claim 7. If fS(s) is continuously differentiable and log-convex on (a, b), and if fS(a) = 0,

then fY (y) is also log-concave on (a, b). If fY (y) is continuously differentiable on (a, b),

and if fY (b) = 0, then fX(x) is also log-convex on (a, b).

Proof: The proof essentially follows the same lines as the one for log-concavity.

The extra condition fS(a) = 0 is required for FY (y) to be log-convex, and fY (b) = 0 is

required for F̄Y (y) to be log-convex (see [137]).

6.3 System Model

6.3.1 Encoding Model

We assume that the data to be stored, say F , is divided into k equal sized files. We

denote F = {f1, f2, . . . , fk}, where each file fi is a sequence of symbols that belong to

some finite field, and encoding is performed on symbol-by-symbol basis (scalar coding).

The files in F are encoded using a systematic (n, k) code, and the encoded files are stored

on n storage nodes. The model can be generalized for vector linear codes.

We are interested in a special sub-class of Locally Repairable Codes (LRC’s) for which

each systematic node has (r, t)-availability [22, 130, 27]. The (r, t)-availability ensures

that each systematic node can be regenerated using one of the t disjoint repair groups of

other storage nodes, each of size at most r (typically, r � k). We denote such an LRC as

an (n, k, r, t)-LRC code. . The size of the repair group r is referred to as the locality of

the code. We denote the l-th repair group for the i-th node asRl
i, where |Rl

i| ≤ r.
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Example: Consider a (7, 3, 2, 3)-LRC as follows: {f1, f2, f3, f1 + f2, f1 + f3, f2 +

f3, f1 + f2 + f3}, where files are respectively stored on nodes one to seven. Note that each

systematic node can be repaired from three repair groups each of size 2, e.g.,R1
1 = {2, 4},

R2
1 = {3, 5}, andR3

1 = {6, 7}.

The (r, t)-availability property allows one to reconstruct a systematic symbol in (t+1)

ways: either directly from the systematic node or by decoding of all symbols in one of its

t repair groups. For instance, in the above (7, 3, 2, 3)-LRC, we can download file f1 in one

of the following ways: (i) download directly from node 1, (ii) download f2 and f1 + f2

from nodes 2 and 4, respectively, and decode f1, or (iii) download f3 and f1 + f3 from

nodes 3 and 5, respectively, and decode f1, or (iv) download f2 + f3 and f1 + f2 + f3 from

nodes 6 and 7, respectively, and decode f1.

Throughout, we assume that the time required to reconstruct (decode) a file from the

contents of its repair group is negligible in comparison with other delays. For simplicity,

we assume that all repair groups are of equal size r.

6.3.2 Content Access Models

Request Arrival Model

We consider low and high arrival rate regimes. In the low arrival rate regime, we

assume that the system can complete processing the current request before the next request

arrives. This assumption serves as a starting point for the latency analysis, and can be

useful in systems which are provisioned with enough resources such that the mean service

time at a node is significantly smaller than the inter-arrival time of download requests.

In the high arrival rate regime, subsequent requests may arrive before the current re-

quest(s) are processed. Hence, there is a need to queue the requests before they can be

served. We assume that the requests forwarded to a node are queued at the node in a first-

come-first-serve local queue. After a request reaches the head of the queue, it takes certain
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random service time to read the content from the node. We consider that the arrivals for

each file follow an independent Poisson process with a known arrival rate.

Service Model

At node i, the time Si required to read its contents, referred to as service time, is

considered to be a random variable. We assume that Si is an exponential random variable

with parameter µ, denoted as Si ∼ Exp(µ), and is i.i.d. for each node i.We denote the

probability density function (PDF) of Si as fS(s) and its cumulative distribution function

(CDF) as FS(s).

Every request is forwarded to the systematic node containing the requested file as well

as all its repair groups. Whenever a request is forwarded to a repair group, it is forked into

r nodes. A repair group is said to complete the download when all the r nodes finish their

service. The download is complete when either the systematic node or any one of the t

repair groups finishes the download.

6.4 Analysis of Download Time for Low Arrival Rate Regime

6.4.1 Mean Download Time

We begin by analyzing the mean download time for codes with (r, t)-availability in the

low arrival rate scenario.

Recall that Si denotes the random variable corresponding to the service time at node

i. Let Slr:r denote the random time required by all the r nodes in its l-th repair group

to complete their respective downloads. Notice that Slr:r would be the maximum of r

exponential random variables, i.e.,

Slr:r = max
j∈R(i)

l

Sj. (6.1)

Let T (r,t) be the random variable that denotes the time required to download a file using
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a code with (r, t)-availability. Then, we have

T (r,t) = min

{
Si, min

1≤l≤t
Slr:r

}
. (6.2)

This is because T (r,t) = Si if the systematic node downloads its file first. Otherwise,

T (r,t) = Sl
∗
r:r, if the repair groupRl∗

i completes all its requests before the systematic node.

Theorem 15. For the low arrival rate model using a code with (r, t)-availability, the mean

download time for a file is given as

E
[
T (r,t)

]
=

1

µr
β

(
t+ 1,

1

r

)
, (6.3)

where β(x, y) is the beta function defined as β(x, y) =
∫ 1

0
ux−1(1− u)y−1 du.

Proof: To find its expectation, we first compute the complimentary CDF of T (r,t)

from the first principles as follows.

Pr
(
T (r,t) > s

) (a)
= Pr

(
min

{
Si, min

1≤l≤t
Slr:r

}
> s

)
(b)
= Pr (Si > s) Pr

(
min
1≤l≤t

Slr:r > s

)
(c)
= Pr (Si > s)

[
Pr
(
S1
r:r > s

)]t
(d)
= Pr (Si > s)

[
Pr

(
max
j∈R1

i

Sj > s

)]t
= Pr (Si > s)

[
1− Pr

(
max
j∈R1

i

Sj ≤ s

)]t
(e)
= Pr (Si > s) [1− [Pr (Sj ≤ s)]r]

t

(f)
= exp(−µs) [1− (1− exp(−µs))r]t , (6.4)

where (a) follows from (6.2), (b), (c), and (e) follow from the independence of Si’s, (d)

follows from (6.1), and (f) follows since the service times Si’s are exponential with rate µ.
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Next, observing that T (r,t) is a non-negative random variable, we have

E
[
T (r,t)

]
=

∫ ∞
s=0

Pr
(
T (s,t) > s

)
ds

(g)
=

1

µr

∫ 1

v=0

vt (1− v)(
1
r
−1)dv

(h)
=

1

µr
β

(
t+ 1,

1

r

)
, (6.5)

where (g) can be obtained using (6.4) by substituting 1 − (1 − exp(−µs))r = v, and (h)

follows from the definition of the beta function.

Remark 25. The above expression allows us to examine the effect of increasing the avail-

ability t on the mean download time for a fixed locality r. Suppose ∆ denotes the relative

decrease in the mean download time by enhancing the availability from (r, t) to (r, t+ 1).

Then, using a simple property of beta function that β(x, y+1) = y
x+y

β(x, y), it is straight-

forward to verify that

∆ :=
E
[
T (r,t)

]
− E

[
T (r,t+1)

]
E [T (r,t)]

=
1

r(t+ 1) + 1
. (6.6)

For large values of r, t, one can see that ∆ ≈ 1
rt

. In other words, if t is large, increasing t

further has diminishing returns.

6.4.2 Comparison with Replication Codes

Consider a replication code with replication factor tr. Such a replication code stores tr

copies of each of the k files, and can be described as a (nr = ktr, k, 1, tr−1)-code. Let the

service time of a node (Si) be an exponential random variable with rate µr, i.i.d. across

nodes. For the fairness of comparison, we assume that the system using the replication

scheme has the same cumulative mean service rate as the system using an (n, k, r, t)-LRC.

In other words, we have nrµr = nµ. Let T (tr) denote the file download time for a scheme

using a tr-replication code.
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Lemma 10. Consider a tr-replication code that has the same cumulative mean service

rate as that of the system using an (n, k, r, t)-LRC. Then, for the low arrival rate model,

the mean download time for a file is given as

E
[
T (tr)

]
=

k

nµ
. (6.7)

Proof: Notice that, for fairness of comparison, we consider that the replication

scheme has the same cumulative mean service time as that of the system using an (n, k, r, t)-

LRC. Therefore, if µr is the mean service time of a node in the replication scheme, then we

have nrµr = nµ, where nr = tr k is the total number of nodes in the replication scheme.

Therefore, we have µr = nµ
trk

.

Now, in the replication scheme, a request is forked into all the tr replicas of the sys-

tematic node containing the file, and the request is complete when any one of the replicas

fetches the file. Thus, the mean download time behaves as the minimum of tr indepen-

dent, exponential random variables each with mean 1
µr

. Therefore, we have E
[
T (tr)

]
= tr

µr
.

Substituting the value of µr gives the result (6.7).

Remark 26. If we consider tr = t+ 1, we get a replication code having the same param-

eter t as that of an (n, k, r, t)-code. On the other hand, if we consider tr = dmin, where

dmin is the minimum Hamming distance of the (n, k, r, t)-code, we get a replication code

that has the same fault-tolerance as that of an (n, k, r, t)-code. Interestingly, as long as the

replication code has the same cumulative mean service rate as that of an (n, k, r, t)-LRC,

the mean download time of the replication coded system under the low arrival rate model

only depends on the rate k
n

of the comparable LRC.
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Table 6.1: Normalized mean download time for different coding approaches

No. Code E [T ]µ Fault-tolernace
1. (30, 15, 3, 2)-code [22] 1/1.5556 7
2. (30, 15, 2, 1)-code [17] 2/3 9
3. (120, 15, 1, 7)-replication 0.5 7
4. (30, 15)-MDS 0.5 15

6.4.3 Comparison with MDS Codes

Since MDS codes reduce the mean download time for the entire data (see, e.g., [138,

122, 72]), it is natural to ask how MDS codes would perform in downloading individual

files.

Consider a storage system using an (n, k)-MDS code. When a file download request

arrives, it is forked into n tasks which are sent to each of the n nodes. A job is complete

if the systematic node containing the requested file completes the service or any k out of

the remaining n − 1 nodes complete their service. Notice that since the code is MDS, all

the k files can be reconstructed from the contents of any k nodes, from which, the required

file can be obtained. Here as well, we assume that Si ∼ Exp(µ), and it is i.i.d. across the

nodes.

In this case, it is easy to see that the download time T (n,k) of the MDS coded system

can be given as

T (n,k) = min
{
Si, Sk:(n−1)

}
, (6.8)

where Sk:(n−1) denotes the k-th order statistics out of n − 1 i.i.d. exponential random

variables. This allows us to get the following result for the mean download time.

Lemma 11. For the low arrival rate model using an (n, k)-MDS code, the mean download

time for a file is given as

E
[
T (n,k)

]
=

k

nµ
. (6.9)

138



Proof: From (6.8), we have T (n,k) = min
{
Si, Sk:(n−1)

}
. To find the expectation,

we first find the complementary CDF as follows.

Pr
(
T (n,k) > s

)
= Pr

(
min

{
Si, Sk:(n−1)

}
> s
)

(h)
= Pr (Si > s) Pr

(
Sk:(n−1) > s

)
(i)
= Pr (Si > s)

{
k−1∑
j=0

(
n− 1

j

)
[Pr (Si ≤ s)]j [Pr (Si > s)]n−j−1

}
(j)
= exp(−µs)

{
k−1∑
j=0

(
n− 1

j

)
(1− exp(−µs))j exp(−µ(n− j − 1)s)

}

=
k−1∑
j=0

(
n− 1

j

)
exp (−µ(n− j)s) (1− exp(−µs))j , (6.10)

where (h) follows from the independence of Si’s. For obtaining (i), we use the stan-

dard expression for the CDF of the k-th order statistics out of n − 1 independent ran-

dom variables as Pr
(
Sk:(n−1) ≤ s

)
=
∑n−1

j=k

(
n−1
j

)
[Pr (Si ≤ s)](j) [Pr (Si > s)](n−j−1) ,

which gives Pr
(
Sk:(n−1) > s

)
= 1 −∑n−1

j=k

(
n−1
j

)
[Pr (Si ≤ s)](j) [Pr (Si > s)](n−j−1) =∑k−1

j=0

(
n−1
j

)
[Pr (Si ≤ s)](j) [Pr (Si > s)](n−j−1). Finally, (j) follows from the fact that

each Si ∼ exp(µ).
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Now, noting that T (n,k) is a non-negative random variable, we have

E
[
T (n,k)

]
=

∫ ∞
s=0

Pr
(
T (n,k) > s

)
ds

(k)
=

∫ ∞
s=0

k−1∑
j=0

(
n− 1

j

)
exp (−µ(n− j)s) (1− exp(−µs))j ds

(l)
=

k−1∑
j=0

(
n− 1

j

)∫ ∞
s=0

exp (−µ(n− j)s) (1− exp(−µs))(j) ds

(m)
=

k−1∑
j=0

(
n− 1

j

)
1

µ

∫ 1

v=0

vj(1− v)n−j−1dv

(n)
=

1

µ

k−1∑
j=0

(
n− 1

j

)
β(j + 1, n− j)

(o)
=

k

nµ
, (6.11)

where, (k) follows by substituting (6.10), (l) follows from changing the order of summa-

tion and integration, (m) follows from change of variables v = (1 − exp(−µs)), and

(n) follows from the definition of β(x, y) function. Finally, (o) is obtained by using

β(x, y) = (x−1)! (y−1)!
(x+y−1)!

, when x and y are positive integers.

Remark 27. Under the low arrival rate model, an (n, k)-MDS code has the same mean

download time as a tr-replication code when the cumulative mean service time for the

replication system is equal to that of the MDS coded system.

6.4.4 Discussion

In table I, we compare the mean download time for various codes along with their fault-

tolerance capability (fault-tolerance is measured in number of failures that can be sustained

without any data loss). The rate of each code gives an indication of its storage efficiency.

We consider replication scheme having the same fault-tolerance as that of the (30, 15, 3, 2)-
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LRC2. We observe that MDS code performs the best in terms of all these parameters. One

caveat is that, for any MDS code, computational complexity of reconstructing the file

would be the highest.

6.4.5 Download Performance of Repair Groups

In this section, we analyze the impact of the number of repair groups t and the size

of repair groups r on the download time when each of the repair group nodes is given a

fixed service rate, say µ. We do so by studying the latency performance of repair groups

with respect to the systematic node. We first compute the expected download time when

the request is forked to all the t repair groups. Next, we compute the probability that

systematic node is faster in download than its repair groups.

Let S(r,t) be the random variable that denotes the download time for t repair groups

each of size r. Then, we have

S(r,t) = min
1≤l≤t

Slr:r. (6.12)

Expected Download Time of Repair Groups

Proposition 6. The mean time to download a file using t repair groups each of size r is

given as

E
[
S(r,t)

]
=

1

µ

t∑
m=1

(
t

m

)
(−1)j−1Hrm, (6.13)

where Hrm is (rm)- th Harmonic number defined as Hrm =
∑rm

j=1
1
j
.

2 The fault-tolerances for the LRC’s are obtained from their minimum distance properties mentioned in
respective references.
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Proof: We first compute the complementary CDF of S(r,t) as follows.

Pr
(
S(r,t) > s

)
= Pr

(
min
1≤l≤t

Slr:r > s

)
(a)
=
[
Pr
(
Slr:r > s

)]t
(b)
= [1− (Pr (Sj ≤ s))r]

t

(c)
= [1− (1− exp(−µs))r]t , (6.14)

where (a) and (b) follow since service times are independent across nodes, and (c) follows

since service time at each node is exponentially distributed with parameter µ. Next, since

S(r,t) is a non-negative random variable, we have

E
[
S(r,t)

]
=

∫ ∞
s=0

Pr
(
S(r,t) > s

)
ds

(d)
=

∫ ∞
s=0

[1− (1− exp(−µs))r]t ds (6.15)

(e)
=

∫ ∞
s=0

(
t∑

j=0

(
t

j

)
(−1)j(

rj∑
l=0

(
rj

l

)
(−1)l exp(−µsl)

))
ds

(f)
=

∫ ∞
s=0

(
t∑

j=1

(
t

j

)
(−1)j(

rj∑
l=1

(
rj

l

)
(−1)l exp(−µsl)

))
ds

(g)
=

t∑
j=1

(
t

j

)
(−1)j

(
rj∑
l=1

(
rj

l

)
(−1)l

1

µl

)
(h)
=

1

µ

t∑
j=1

(
t

j

)
(−1)j−1Hrj, (6.16)

where (d) can be obtained using (6.14), (e) is obtained by binomial expansions with respect

to powers t and r, (f) is obtained by gathering together the terms in inner summation for l =
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0 and using
∑t

j=0

(
t
j

)
(−1)j = 0, (g) is obtaineed by interchanging the order of summation

and integration, and (h) is obtained using an identity Hm =
∑m

l=1

(
m
l

)
(−1)l−1 1

l
.

To get some more insight into how the expected download time of the repair groups

behaves with respect to r and t , we derive lower and upper bounds in the following.

Claim 8. For any natural numbers r, t > 0, we have

1

µ
· Hr

t
≤ E

[
S(r,t)

]
≤ 1

µ
·Hr

1

r
β

(
t,

1

r

)
, (6.17)

where β(x, y) denotes the beta function defined as β(x, y) =
∫ 1

v=0
vx−1(1− v)y−1dv.

Proof: To get the upper bound, from (6.15), we have

E
[
S(r,t)

]
=

∫ ∞
s=0

[1− (1− exp(−µs))r]t ds

(i)
=

1

µ

∫ 1

u=0

(
1− ur
1− u

)
(1− ur)t−1 du

(j)

≤ 1

µ

∫ 1

u=0

(
1− ur
1− u

)
du
∫ 1

u=0

(1− ur)t−1 du

(k)
=

1

µ
·Hr ·

1

r
β

(
t,

1

r

)
, (6.18)

where (i) follows from substituting 1 − exp(−µs) = u. To obtain (j), we use Harris’s

inequality [139, Theorem 2.15], which says that, for a random variable x, if g(x) is

a non-decreasing function and h(x) is a non-increasing function, then E [g(x)h(x)] ≤

E [g(x)]E [h(x)]. We consider the random variable u distributed uniformly over [0, 1],

and functions g(u) = 1−ur
1−u and h(u) = (1− ur)t−1. To obtain (k), we use the inte-

gral representation of a harmonic number given as Hr =
∫ 1

u=0

(
1−ur
1−u

)
du, and we obtain∫ 1

u=0
(1− ur)t−1 du = 1

r
β
(
t, 1
r

)
by substituting 1− ur = v.

To get the lower bound, we observe that, being an exponential random variable, Si is

a log-concave random variable. (See Sec. 6.2 for discussion on log-concavity and log-
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Figure 6.1: Expected service time and its upper and lower bounds as a function of t for
various values of r for µ = 1.

convexity of random variables.) This allows us to show that Slr:r is also log-concave.

(Sec. 6.2, Claim 6.) Then, we use a result in [126] that for a log-concave random variable

S with PDF fS(s), we have E [S] ≤ tE [S1:t], where S1:t is the minimum of t i.i.d. random

variables each with PDF fS(s). Notice that using S = Slr:r results in S1:t = S(r,t), and it is

well known order-statistics result that the expected value of the maximum of exponential

random variables is E
[
Slr:r
]

= Hr
µ

(see [140]).
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The equalities hold for all t ≥ 1 when r = 1. In Fig. 6.1, we numerically evaluate the

tightness of the bound in (6.17). Observe that the bounds become loose as the locality r

increases.

Remark 28. Suppose we are using an (n, k)-MDS code to store the files. Consider fork-

join type of policy for MDS codes, wherein a download request is forked to all the n nodes.

The request is complete if the systematic node containing the file completes its service or

if any k out of the remaining n− 1 nodes complete their service. In this case, the expected

download time using parity nodes is the k-th order statistic among n− 1 i.i.d. exponential

RVs. Therefore, using the well-known result on mean of k-th order-statistics of exponential

random variables (see [140]), we have

E
[
T

(n−1,k)
MDS

]
=

1

µ
(Hn−1 −Hn−1−k) . (6.19)

Probability that Systematic Node is Faster than its Repair Groups

We analyze the probability that all the repair groups together take more time to com-

plete the service than the systematic node.

Proposition 7. The probability that repair groups are slower than the systematic node is

given as

Pr
(
T

(r,t)
FJ > Si

)
=

1

r
β

(
t+ 1,

1

r

)
, (6.20)

where β(x, y) denotes the beta function defined as β(x, y) =
∫ 1

v=0
vx−1(1− v)y−1dv.
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Proof:

Pr
(
S(r,t) > Si

)
=

∫ ∞
s=0

Pr
(
S(r,t) > s

)
fS(s)ds

(a)
=

∫ ∞
s=0

[1− (Pr (Sj ≤ s))r]
t
fS(s)ds

(b)
=

∫ ∞
s=0

[1− (1− exp(−µs))r]t

µ exp(−µs)ds

(c)
=

1

r
β

(
t+ 1,

1

r

)
,

where (a) follows from (6.14), (b) follows since Si ∼ Exp(µ) ∀ i, and (c) follows from

substituting 1− (1− exp(−µs))r = v.

Notice that, since t is a non-negative integer, one can write

1

r
β

(
t+ 1,

1

r

)
=

t!(
1
r

+ 1
) (

1
r

+ 2
)
· · ·
(

1
r

+ t
) .

This clearly shows that 0 ≤ 1
r
β
(
t+ 1, 1

r

)
≤ 1. Further, one can observe that this proba-

bility expression increases with r and decreases with t, which corroborates the intuition.

We plot the probability versus t for various values of r when µ = 1 in Fig. 6.2. Observe

that increasing r greatly increases the probability that repair groups perform slower than

systematic node. For instance, if we increase r from 1 to 3, we need to increase t from 1

to 5 to keep the probability of success the same (i.e., 0.5).

Remark 29. Similar to above, we can compute the probability that the systematic node

is faster than parity nodes in an (n, k)-MDS code. Recall the fork-join type of policy

for MDS codes, wherein a download request is forked to all the n nodes. The request is

complete if the systematic node containing the file completes its service or if any k out of

n− 1 remaining nodes complete their service.
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Figure 6.2: Probability that the repair groups download faster than the systematic node as
a function of t for various values of r when µ = 1.

Proposition 8. For an (n, k)-MDS code, the probability that parity nodes finish after the

systematic node is given as

Pr
(
T

(n−1,k)
MDS > Si

)
=
k

n
. (6.21)

Proof:

Pr
(
T

(k,n−1)
MDS > Si

)
=

∫ ∞
s=0

Pr
(
T

(k,n−1)
MDS > s

)
fS(s)ds

(d)
=

∫ ∞
s=0

Pr (Sk:n−1 > s) fS(s)ds

(e)
=

∫ ∞
s=0

k−1∑
j=0

(
n− 1

j

)
FS(s)j(1− FS(s))n−1−jfS(s)ds

where (d) follows from the fact that the request is complete when any k out of n− 1 nodes

finish their service, (e) follows from FSk:n(s) =
∑n

j=k

(
n
j

)
FS(s)j(1 − FS(s))n−j . Using
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the fact that service time at each node is an exponential random variable, we get

Pr
(
T

(k,n−1)
MDS > Si

)
=

∫ ∞
s=0

k−1∑
j=0

(
n− 1

j

)
(1− exp(−µs))j

exp(−µ(n− 1− j)s)
)
µ exp(−µs)ds

After substituting exp(−µs) = v and rearranging the terms, we get

Pr
(
T

(k,n−1)
MDS > Si

)
=

k−1∑
j=0

(
n− 1

j

)∫ 1

v=0

(1− v)jvn−j−1dv

=
k−1∑
j=0

(
n− 1

j

)
β(j + 1, n− j)

=
k−1∑
j=0

(n− 1)!

j! (n− 1− j)! ·
j! (n− j − 1)!

n!

=
k

n
. (6.22)

6.5 Results for the High Arrival Rate Scenario

In this scenario we assume that one or more requests can arrive before the current event

is served. As before, we assume that the service time at each node is an i.i.d. exponential

random variable with mean 1
µ

.

We consider that the download requests arrive as a Poisson process with aggregate rate

λ. Requests are split according to the popularity of the files. In particular, a file fi is said

to have the popularity pi such that 0 ≤ pi ≤ 1 for each i and
∑k

i=1 pi = 1. Notice that the

download requests for a file fi form a Poisson process with arrival rate λpi.

There are two levels of fork-join (FJ) queues3 present in the system. On the outer side,

3In an (n, k)-FJ queue, where n ≥ k, a job is forked into n tasks. The job is complete, once any k out
of the n tasks are complete. The remaining n − k tasks are immediately killed (removed from the system).
See [72] for details on (n, k)-FJ queues.
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Figure 6.3: Fork-join queueing system with an (n, k, r, t)-LRC.

the (t + 1) tasks form a (t + 1, 1)-FJ queue. On the inner side, the r sub-tasks associated

with each of the t repair groups form an (r, r)-FJ queue. (See Fig. 6.3.)

Example: Consider a simple (3, 2, 2, 1)-LRC code {f1, f2, f1 + f2}. We call the FJ

queue for this particular code as the butterfly queue, since the code resembles the one used

over the butterfly network for network coding. (See Fig. 6.4.) Requests for file f1 form

a Poisson process with rate λp1, while those for f2 form a Poisson process with rate λp2

such that p1, p2 ≥ 0, p1 + p2 = 1. Each job is forked into three (sub)tasks. Request for a

file f1 (resp. f2) is complete if either f1 (resp. f2) is downloaded directly or both f2 and

f1 + f2 (resp. both f1 and f1 + f2) are downloaded. If the systematic task completes first,

the remaining sub-tasks corresponding to the request are removed from the system. The

systematic task is removed from the system if the other two sub-tasks complete before it.

6.5.1 Upper Bound on Mean Download Time

Fork-join queues are difficult to analyze. Only bounds have been known for the mean

download time except for a (2, 2) FJ queue (see e.g., [141, 142]). Therefore, we obtain

bounds on the performance of the FJ queueing system by considering a more restricted

queueing model, known as the split-merge (SM) system. We note that the SM system is

149



45

34

345

5 12

2

3

Abandon

�p1

�p2

Figure 6.4: Butterfly Queue: Requests for f1 are shown in green whereas those for f2 are
shown in brown.

also used in [122, 72] for characterizing upper bounds on the (n, k)-FJ queue.

In the FJ system, a node can service the tasks of the next job in its local queue once

it completes the current task. This creates dependencies in waiting times across multiple

nodes, and the service time of a job becomes dependent on the departure time of the

previous job. On the other hand, in the SM system, all the n nodes are blocked until the

job is complete. Since the nodes are blocked in the SM system, its mean download time

gives an upper bound on the download time of the FJ system.

Theorem 16. For a fork-join queueing system using an (n, k, r, t)-LRC, an upper bound

on the mean download time of a file is given by

E
[
T

(r,t)
FJ

]
≤ 1

µr
β

(
t+ 1,

1

r

)
+

rλ
∑t

j=0

(
t
j

)
(−1)j

∑rj
l=0(−1)l

(
rj
l

)
1

(l+1)2(
rµ2 − λµβ

(
t+ 1, 1

r

)) . (6.23)

Here β(x, y) is the beta function defined as β(x, y) =
∫ 1

0
ux−1(1 − u)y−1 du. The bound

is valid only when λ < µr

β(t+1, 1
r )

.
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Proof: To obtain an upper bound, we consider the SM queueing model with the

same parameters. Notice that the SM queueing model is equivalent to an M/G/1 queue

with Poisson arrivals having aggregate arrival rate λ, and the generalized service time

equal to that of the low arrival rate model T (r,t) (see (6.3)).

Now, for an M/G/1 queue, the Pollaczek-Khinichin formula [143] allows us to compute

the mean download time in terms of the first and second moments of the generalized

service time as follows:

E [T ] = E [T ] +
λE [T 2]

2 (1− λE [T ])
. (6.24)

We find the second moment of T (r,t) as follows:

E
[
(T (r,t))2

] (l)
=

∫ ∞
s=0

2sPr
(
T (r,t) > s

)
ds

(m)
=

∫ ∞
s=0

2s exp(−µs) [1− (1− exp(−µs))r]t ds

(n)
=

t∑
j=0

(
t

j

)
(−1)j

rj∑
l=0

(−1)l
(
rj

l

)
×
∫ ∞
s=0

2s exp (−µ(l + 1)s) ds

=
t∑

j=0

(
t

j

)
(−1)j

rj∑
l=0

(−1)l
(
rj

l

)
2

µ2(l + 1)2
, (6.25)

where (l) follows since (T (r,t))2 is a non-negative random variable, (m) follows from (6.4),

and (n) follows from the binomial expansion of [1− (1− exp(−µs))r]t and interchanging

the order of integration and summation. Finally, substituting (6.3) and (6.25) into (6.24)

gives (6.23).

Remark 30. Since the SM system considers a single centralized queue, the above bound

does not capture the dependency of download latency on the popularities of files. More-
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over, from the simulation studies, we note that this bound is fairly loose for higher arrival

rates.

6.5.2 Inner Bound on Stability Region

Considering a split-merge system also allows us to characterize an inner bound on the

stability region of the FJ system.

Theorem 17. For a fork-join system with an (n, k, r, t)-LRC, an inner bound on the on the

stability region is given as

λ <
µr

β
(
t+ 1, 1

r

) , (6.26)

where β(x, y) is the beta function defined as β(x, y) =
∫ 1

0
ux−1(1− u)y−1 du.

Proof: Since the download time under FJ model is upper bounded by the download

time under SM model with same parameters, the stability region of the split-merge model

gives an inner bound on the stability region of the fork-join model. Now, as the split-merge

system is equivalent to an M/G/1 queue with generalized service time given as T (r,t), its

stability condition is λ < 1

E[T (r,t)]
. The result follows from (6.3).

Remark 31. The above condition gives a sufficient condition for the FJ system to be stable,

however, it is not a necessary condition. In the simulation studies, we note that this bound

is somewhat loose.

6.5.3 Simulation Results

In this section, we simulate the fork-join queueing model in the high arrival rate sce-

nario for the codes given in Table I: a (30, 15, 3, 2)-LRC in [22], a (30, 15, 2, 1)-LRC

in [17], an 8-replication scheme that is effectively a (120, 15, 1, 7)-LRC, and a (30, 15)-

MDS code.

In Fig. 6.5, we consider the case when all the files have the same popularity, i.e.,

pi = 1
15

, ∀ i ∈ {1, · · · , 15}. Observe that the replication scheme gives the lowest latency
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Figure 6.5: Mean download time vs. aggregate arrival rate for various coding schemes
when all the files have equal popularity.

at the cost of heavy storage overhead. Both the LRC’s have nearly the same latency per-

formance, which is slightly higher than that of the replication. This indicates that, even

though increasing the availability parameter t increases the the parallel reads, it may not

reduce the download time of a file. The latency for the MDS code increases rapidly with

the aggregate arrival rate. This is because, for an MDS code, a request is forked into all

the nodes, which increases the arrival rate for the local queues at each node. This tends to

saturate the local queues for higher values of aggregate arrival rate. The results show that

the availability codes are favorable at higher arrival rates.

Next, we consider the case of unequal popularity of files, wherein 6.67% of the files

have 90% of the popularity while the rest of the files equally share 10% popularity (see
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Figure 6.6: Mean download time vs. aggregate arrival rate for various coding schemes
when 6.67% of the files have 90% of the popularity and the rest share 10% of popularity
equally.

Fig. 6.6). In this case, the latency performance of the replication scheme degrades, while

that of the MDS code improves. This is because, in the replication scheme, the lo-

cal queues at the nodes storing the replica of the most popular file (f1) get overloaded;

whereas, in the case of MDS code, the load of downloading f1 gets divided into all the

nodes. Observe that higher value of t helps in this case, as the (30, 15, 3, 2)-LRC performs

better than the (30, 15, 2, 1)-LRC. From Figures 6.5 and 6.6, we can see that the delay

performance of availability codes is fairly robust against sharp changes in popularity.

This also opens up an interesting problem to investigate if one can trade-off t for r for

different arrival patterns for obtaining better download delay. Further, it is interesting to

compute tighter bounds that also take into account file popularities. A challenging task
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Figure 6.7: Three traffic flow splitting models.

would be to consider a joint design of storage code and scheduling policy.

6.6 Service Capacity Allocation

In this section, we consider the problem of optimal service capacity provisioning across

nodes for availability codes. In particular, given a total budget of µ̃ units on the cumulative

service rate of the system, we allocate 1− γ fraction to the systematic node (0 ≤ γ ≤ 1),

and allocate the rest γ fraction equally among the repair groups. In other words, average

service rate of a node is µi = (1−γ)µ̃, for the systematic node i, and µj = γ
rt
µ̃, for a node

j in a repair group of i. Our goal is to find optimal γ which would minimize the mean

download delay. We consider three traffic flow models: no-split, (t + 1)-split, and 2-split

(see Fig. 6.7).
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6.6.1 Service Rate Allocation for No-Split Model

Recall that in the no-split (or 0-split) model, a request is forwarded to the systematic

node as well as all its repair groups. The request is said to be complete if either systematic

node finishes its service or all the r nodes in any one of the t repair groups complete their

service. We compute the mean download time as a function of γ in the following.

Proposition 9. When the systematic node is allocated 1− γ fraction of the total service

rate µ̃ and the remaining rate γµ̃ is equally distributed among the repair group nodes

(0 ≤ γ ≤ 1), the mean download delay for an (r, t)-availability code using a no-split fork

join policy is

E
[
T

(r,t)
0,FJ (γ)

]
=

1

µ̃

t∑
j=1

(
t

j

)
(−1)j(

rj∑
l=1

(
rj

l

)
(−1)l

1

1 + γ
(
l
rt
− 1
)) . (6.27)

Proof: First, note that the complementary CDF of T (r,t)
0,FJ can be written as

Pr
(
T

(r,t)
0,FJ > s

)
=Pr

(
min

{
Si, min

1≤l≤t
Slr:r

}
> s

)
(a)
=exp (−(1− γ)µ̃s)[

1−
(

1− exp(−γµ̃
rt
s)

)r]t
, (6.28)

where (a) follows from the independence of service times and the allocation strategy. Next,
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we have

E
[
T

(r,t)
0,FJ

]
=

∫ ∞
s=0

Pr
(
T

(r,t)
0,FJ > s

)
ds

(b)
=

∫ ∞
s=0

exp (−(1− γ)µ̃s)[
1−

(
1− exp

(
−γµ̃
rt
s

))r]t
ds,

where (b) follows from (6.28). After expanding the binomials, we get

Pr
(
T

(r,t)
0,FJ > s

)
=

∫ ∞
s=0

exp (−(1− γ)µ̃s)

(
t∑

j=0

(
t

j

)
(−1)j(

rj∑
l=0

(
rj

l

)
(−1)l exp

(
−γµ̃
rt
sl

)))
ds

(c)
=

∫ ∞
s=0

exp (−(1− γ)µ̃s)

(
t∑

j=1

(
t

j

)
(−1)j(

rj∑
l=1

(
rj

l

)
(−1)l exp

(
−γµ̃
rt
sl

)))
ds

(d)
=

1

µ̃

t∑
j=1

(
t

j

)
(−1)j

rj∑
l=1

(
rj

l

)
(−1)l

1− γ + γl
rt

where (c) follows from gathering terms for l = 0 and using
∑t

j=0

(
t
j

)
(−1)j = 0, and (d)

follows from interchanging the order of summation and integration.

Remark 32. Numerical evaluation of (6.27) indicates that E
[
T

(r,t)
0,FJ (γ)

]
is monotonically

increasing in γ (see Fig. 6.8). This suggests that if one has limited service rate budget, it

is optimal to allocate it entirely to the systematic node.

6.6.2 Service Rate Allocation for (t+ 1)-Split Model

In this model, a request is sent to the systematic node with probability α0 and is sent

to its l-th repair groups with probability αl for 1 ≤ l ≤ t. Notice that a request goes to
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Figure 6.8: E
[
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(r,t)
0,FJ (γ)

]
versus γ for various values of r.

exactly one of the repair groups or to the systematic node. In the following, we find the

mean download time and the optimal allocation γ.

Proposition 10. When the systematic node is allocated 1− γ fraction of the total service

rate µ̃ and the remaining rate γµ̃ is equally distributed among the repair group nodes

(0 ≤ γ ≤ 1), the mean download delay for an (r, t)-availability code using a t + 1-split
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traffic model is

E
[
T

(r,t)
t+1,FJ(γ)

]
= α0

1

(1− γ)µ̃
+ (1− α0)

rtHr

γµ̃
. (6.29)

For a given routing probability α0, the optimal delay is given as

E
[
T

(r,t)
t+1,FJ(γ

∗)
]

=
1

µ̃

(√
α0 +

√
(1− α0)rtHr

)2

, (6.30)

where γ∗ =

√
(1−α0)rtHr

√
α0+
√

(1−α0)rtHr
is the optimal allocation.

Proof: Notice that with probability α0, download time is the service time at the

systematic node with service rate (1 − γ)µ̃. With the remaining probability (1 − α0),

download time is the service time at a repair group, which is equal to the service time for

an (r, r) fork-join queue [141]. It is well-known that, for an (r, r) fork-join queue with

each server having rate µ′, the expected service time is Hr
µ′

(see [122]), where µ′ = γµ̃
rt

.

This allows us to get (6.29).

We observe that (6.29) is convex, and thus, taking a derivative with respect to γ and

equating to zero gives us γ∗ and (6.30).

Remark 33. Notice that (6.30) is an increasing function of t. This suggests that it is

optimal to allocate all the γ fraction to a single repair group than spreading it among

multiple repair groups.

6.6.3 Service Rate Allocation for 2-Split Fork Join Model

In this model, systematic node gets α0 fraction of requests, the rest of the requests are

sent to all the t repair groups. At the repair groups, download time is S(r,t). We can find

the mean download time under 2-split model as follows.

Proposition 11. When the systematic node is allocated 1− γ fraction of the total service

rate µ̃ and the remaining service rate γµ̃ is equally distributed among the repair group
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nodes (0 ≤ γ ≤ 1), the mean download delay for an (r, t)-availability code using a 2-split

traffic model is

E
[
T

(r,t)
2,FJ (γ)

]
= α0

1

(1− γ)µ̃
+ (1− α0)

rtb(r,t)

γµ̃
, (6.31)

where b(r,t) :=
∑t

j=1

(
t
j

)
(−1)jHrj .

For a given routing probability α0, the optimal delay is given as

E
[
T

(r,t)
t+1,FJ(γ

∗)
]

=
1

µ̃

(√
α0 +

√
(1− α0)rtb(r,t)

)2

, (6.32)

where γ∗ =

√
(1−α0)rtb(r,t)

√
α0+
√

(1−α0)rtb(r,t)
is the optimal allocation.

Proof: With probability α0 a request will be served at the systematic node, while

with probability 1 − α0, a request will be forked to all the t repair groups. Thus, we can

write

E
[
T

(r,t)
2,FJ

]
= α0E [Si] + (1− α0)E

[
S(r,t)

]
, (6.33)

where Si is the service time at the systematic node and S(r,t) is the service time by forking

to all the t repair groups. Using (6.13) with service rate per node as µ′ = γµ̃
rt

, and E [Si] =

1
(1−γ)µ̃

, gives (6.31). Since (6.31) is convex, taking a derivative with respect to γ and

equating to zero gives us γ∗ and (6.32).

Remark 34. Notice that b(r,t) = µ̃E
[
S(r,t)

]
= E [X1:t], where X = Slr:r is the service

time at a repair group, which is the maximum of r i.i.d. exponential random variables with

unit service rate. Recall that an exponential random variable is a log-concave random

variable. (See Sec 6.2.) This allows us to show that Slr:r is also log-concave. (Sec. 6.2,

Claim 6.) Then, we can use a result from [126] that for a log-concave random variable

S, tE [S1:t], is a non-decreasing function of t, where S1:t is the minimum of t i.i.d. random

variables each with PDF fS(s). Therefore, it is optimal to allocate γ fraction to only a
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single repair group.

One needs to investigate whether it is desirable to allocate the service rate to more than

one repair groups when the service time distribution is not exponential. In fact, it would be

interesting to explore if conclusions can be drawn just by knowing the log-concavity/log-

convexity property of the service time distributions, similar to [126].

6.7 Conclusion

We first studied the impact of the availability parameters, i.e., the size and the number

of repair groups, on the download latency by computing the mean download time of repair

groups and the probability that repair groups perform slower download than the systematic

nodes. Next, we characterized optimal service rate allocation across nodes when the total

service capacity of the system is limited. We found that higher level of availability is

not helpful in low arrival regime for exponential service time distribution, when the total

service capacity of the system is limited.

Our results are likely to be found surprising since, in principle, higher availability

should reduce delay by enabling multiple parallel reads. This indicates that we are still far

from understanding the impact of availability on the download latency performance. On

the other hand, the cost of availability on the minimum distance (and hence fault-tolerance)

is well understood. Therefore, it would be very interesting to investigate when does avail-

ability reduce download latency by analyzing different scenarios such as when requests

arrive at high rate, or when the service time distributions are different than exponential, or

when decoding desired file from coded files takes non-negligible time.
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7. CONCLUSIONS AND FUTURE DIRECTIONS

Large-scale cloud storage systems encounter a significant number of failure events

due to various issues such as the use of commodity components, software glitches, power

failures etc. In the face of the failures and the massive growth of data being stored and

computed online, the task of designing reliable, efficient, available, and secure distributed

storage systems opens up unique challenges and opportunities. In this thesis, we ad-

dressed some of these challenges and explored some new avenues by constructing novel,

low-complexity coding schemes and analyzing fundamental limits of their performance

metrics. However, there are a number of open problems, and we discuss potential future

directions below.

7.1 Security in DSS

In Chapter 2, we presented a framework to jointly design outer and inner codes for

achieving perfect security in DSS when the eavesdropper Eve can observe data stored on a

limited number of nodes. There are several natural questions that one can ask. How to ex-

tend the framework to design secure regenerating codes when repair data is eavesdropped?

How can one extend the framework for designing secure LRCs? How to use such secure

LRCs to construct locally recoverable secret sharing schemes for multiple secrets? Note

that we used longer storage codes to construct low field size secure codes. It is interesting

to investigate whether one can utilize such a code equivalence to obtain lower bounds on

field size for storage codes.

In Chapter 3, Section 3.4, we presented a universal outer code that can weakly se-

cure any MSR code, when Eve can observe the data stored on any single storage node.

The main feature of the proposed scheme is the lower alphabet-size requirement than the

existing universal outer coding schemes. There are several natural questions that we are
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interested in investigating further. The proposed universal scheme assumes that Eve can

observe any single storage node. On the other hand, the scheme based on maximum rank-

distance (MRD) codes, proposed in [38], achieves weak security when Eve can control up

to k − 1 nodes. Notice that k − 1 is the maximum possible number of nodes that can be

eavesdropped. In many scenarios, it might be possible to estimate a bound on the number

of nodes l that can be eavesdropped. For instance, suppose half of the nodes are in a trusted

cloud system while the other half of the nodes are a part of untrusted cloud system. Then,

this ensures l ≤ k
2
. When the parameter l is given, can we design universal outer codes

at lower field size than the scheme of [38]? What is the optimum field size (fundamental

lower bound on the field size) for a universal outer code achieving weak security? In [47],

it is shown that the field size of the scheme using MRD codes is optimal for large range

of parameters for any universal scheme achieving perfect secrecy in network coding. It is

interesting to explore the optimal field size for the weak security model.

7.2 Locality in DSS

In Chapter 4, Section 4.4.2, we presented a family of locally repairable codes with

unequal all-symbol locality. The construction is based on the maximum rank-distance

(MRD) outer codes [44]. The use of the rank-metric codes greatly increases the required

field size. In particular, for our constructions, the field size required is O (nn), where n

is the block-length of the code. Naturally, it is important to investigate whether it is pos-

sible to construct codes such that the field size is O (n). For codes with equal locality,

Tamo and Barg [25] presented a landmark code construction such that the alphabet size

is only slightly greater than the code length. Their construction can be considered as a

generalization of Reed-Solomon (RS) codes. The idea is to obtain codewords as evalua-

tions of specially constructed polynomials over a finite field at carefully chosen evaluation

points. The construction reduces to RS codes if the locality r equals the dimension of the
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code. One immediate question is how to extend this technique to accommodate unequal

all-symbol locality. It will also be interesting to generalize the notion of unequal locality

to unequal availability, where different symbols have different number of repair groups,

and explore the connections to Private Information Retrieval codes [144].

In Chapter 5, we studied rank-metric and subspace codes with locality constraints. We

quantified the requirement of locality under the rank-metric by introducing a notion of

rank-locality, and constructed codes with rank-locality that possess optimal rank-distance.

We used the lifting construction to obtain subspace codes with locality from the rank-

metric codes with locality. A natural question is to derive a Singleton-like upper bound

on the subspace distance, and to explore how one can design optimal subspace codes. It

is also interesting to explore further applications of such codes in diverse areas such as

distributed storage systems operating over a noisy network, and for linear authentication

systems as considered (without any locality constraint) in [145].

7.3 Availability in DSS

In Chapter 6, we analyzed the download delay performance of availability codes when

nodes take random time to fetch their contents. In general, an intriguing open question is

to investigate how the download delay metric interplays with the other metrics when the

service times are random, and in what ways the structure of the underlying code affects the

download delay. Since the coding and queuing schemes are inherently and intricately con-

nected to each other, this opens up several research problems in the code design paradigm:

What are some fundamental properties that a code should possess so that its download la-

tency performance is good? Would overlapping repair groups be helpful in reducing down-

load latency? If yes, how can one construct codes with overlapping repair groups? How

does non-uniform availability, i.e., different symbols having different number of recover-

ing sets, affect the download delay? How to construct codes with non-uniform availability,
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and how is their reliability performance (with respect to the minimum distance)?
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