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ABSTRACT

Modern data centers have to accommodate the storage of an increasing

amount of data with multiple users accessing that data from all over the

world. Most of these data centers are geo-distributed to improve availability

and protect against the loss of data in the case of outages and disasters. They

are also increasingly using erasure codes to improve the reliability at a much

lower storage cost. In addition to reliability, the clients and applications also

demand storage solutions with better performance and cost-effectiveness. For

a geo-distributed data center, a major part of the cost is associated with send-

ing the data between the data centers. This paper builds on previous work to

minimize the latency and cost in a data center and applies it to a multi-user

geo-distributed environment. We develop a mathematical model for service

latency and communication cost for a multi-user geo-distributed cloud envi-

ronment. We also provide an algorithm to jointly optimize the service latency

and communication cost by controlling the placement of the erasure-coded

file chunks and scheduling the requests for these chunks. Through simula-

tions, we show that our algorithm converges quickly and outperforms other

heuristics in optimizing service latency and communication cost.
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CHAPTER 1

INTRODUCTION

Data is being produced at an unprecedented rate these days, both by indi-

viduals and corporations. According to one estimate, Facebook generates 4

PB of data everyday [1]. Large-scale cloud systems and distributed storage

systems are seeing an increasing demand both on enterprise and personal

level. Data storage is not just being provided as part of the package along

with computation facilities, but also as a separate on-demand virtual storage.

These include the cloud storage services such as Amazon S3 [2], Microsoft

Azure [3], Google Cloud [4] and personal storage services like Dropbox [5],

Box [6], Apple’s iCloud [7]. These have become an essential part of the per-

sonal computing experience for most of the users to deal with their increasing

storage demands reliably.

For many applications such as social networking, e-commerce and web

searching, sharing and access of data by multiple clients is necessary. The

clients want sufficiently reliable storage, fast access times as well as lower

costs associated with storing their data. Even delays of less than 400 ms can

mean a measurable loss of users and revenue [8]. The cloud storage market is

quite competitive because of high initial investments [9], so the vendors have

to offer better pricing to gain customers. Reliable storage can be ensured

by providing redundancy in the stored data through replication or erasure

coding to protect against failures. Lower latency and cost are affected by

several different parameters, which we will explore in detail subsequently.

In geo-distributed storage, while most of the previous work has focused

on solving the problems related to reliability, availability and consistency;

many ordinary users care far more about performance and cost. A major

part of the cost involved in any geo-distributed system is the communication

cost between the data centers since the WAN bandwidth is both limited

and costly. The performance experienced by the users is highly influenced

by the efficient load distribution in the system. Any attempt to reduce the
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bandwidth use and balance the load through data placement and request

scheduling can play a major role to bring down the latency and costs. Xiang

et al. [10] provides a latency model and perform a joint optimization for

latency and storage cost for a multi-user data center. We use and extend the

latency model to a multi-user geo-distributed cloud environment.

1.1 Thesis Contribution

We develop a mathematical model for service latency and communication

cost in a cloud environment with data centers at multiple geographical places.

The system model specifies data as being erasure-coded and distributed with

many users storing and accessing the data from different locations. We also

allow the capability to the users to specify a custom reliability guarantee for

their data. Based on this model, we formulate a joint optimization problem

for service latency and communication cost. We develop Sandooq algorithm

to efficiently perform joint optimization for the formulated problem.

We show that Sandooq algorithm can converge quickly for a large number

of users and files. We also demonstrate that Sandooq outperforms other

heuristics in terms of optimizing service latency and communication cost.

We further study and measure the effects of changing different parameters

of the model on our optimization variables.

1.2 Thesis Organization

The rest of this work is organized as follows. We first explain the necessary

background, motivation and related work for the problem in Chapter 2. We

present the system model and develop the latency and cost model in Chapter

3. We formulate a joint optimization problem for service latency and com-

munication cost and present the Sandooq algorithm to solve the problem in

Chapter 4. In Chapter 5, we perform different experiments to evaluate and

analyze Sandooq algorithm. We describe potential future work in Chapter 6

and present the conclusions in Chapter 7.
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CHAPTER 2

BACKGROUND

2.1 What is Erasure Coding?

Erasure Coding is a technique to ensure reliability in a distributed storage

system where a data block is broken down and encoded into several smaller

fragments such that the original data can be recovered from a subset of the

smaller fragments. Erasure coding has been studied widely for its use in dis-

tributed storage systems [11]. It ensures high reliability with lower storage

overhead compared to replication, albeit with higher repair and reconstruc-

tion costs [12]. It has been widely used in industry by Windows Azure [13],

Facebook [14], Ceph [15], QFS [16] etc.

In our work, we use a subtype of erasure codes called Maximum Distance

Separable (MDS) codes. A data object O of size S is broken down into k

equal sized chunks of size S/k. These k chunks are encoded using an (n,k)

MDS code into a total of n chunks. The original k chunks are the data chunks

while the rest of the n-k chunks are the parity chunks. A key property of

MDS codes is that the original object O can be reconstructed from any of

the k (data or parity) chunks. Thus, for an object to be recoverable, the

system can tolerate corruption or loss of at most n − k chunks. Therefore,

erasure codes can have some overhead for encoding, decoding and repair but

they save a lot on the storage cost by having much lower storage overhead

compared to replication.

An example showing the encoding and reconstruction after two failures of

a (6,4) MDS encoded file is shown in Figure 2.1. The file F is encoded into

four data chunks D1, D2, D3, D4 and two parity chunks P1, P2. Each of the

chunks is of size S/4. The total size of all the encoded chunks is 3S/2. Since

the original file size was S, this constitutes an overall storage overhead of

1.5x. This (6,4) encoded file can be reconstructed by decoding any of the
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Figure 2.1: An example showing a file encoded with a (6,4) MDS erasure-code. It
has 1.5x storage overhead and can tolerate up to 2 failures.
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Figure 2.2: An example showing a file with 2 replicas. The storage overhead is 3x
that is double compared to that for a (6,4) erasure code. It can also tolerate only
up to 2 failures.

four chunks, so the system can tolerate two chunk losses. If any of the two

chunks such as D4 and P2 fail, the system can still recover the original file

by decoding the chunks.

For comparison, a replicated system with a similar fault tolerance is shown

in Figure 2.2. The original file has been replicated twice with each replica

having a size S. The total size of the original file and the replicas is 3S, which

is 3x overhead. The system can only recover from a loss of 2 of the replicas.

Therefore, this replicated file system has twice as much storage overhead

than the erasure-coded system described before, for the same fault tolerance.

This makes it desirable for the cloud providers to use erasure coding in their

data centers to save on the storage cost.
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Figure 2.3: A sample multi-user geo-distributed file system. There are multiple
data centers at different geographical locations and several users can access the
files.

2.2 Geo-Distributed Storage

A geo-distributed storage system is a kind of cloud storage system in which

data is stored across several different large data centers at different geograph-

ical locations. A simple geo-distributed storage system is shown in Figure

2.3. Each data center consists of local machines connected together with

high bandwidth and low latency links. These data centers are connected to

each other with WAN links that typically have higher latency than the local

links. Such systems generally store a lot of data with many users accessing

this data from all around the globe.

The need for distribution across multiple geographical regions arises be-

cause of several different design goals. The primary one is the need to scale

for a huge storage system. As storage systems hosting the data grow at a

rapid rate to millions of users, a single data center cannot scale out easily

to cater to the storage needs of these users. Adding more and more storage

units to a limited space becomes practically impossible. The only solution is

to add another data center and connect them together to give the illusion of

a single storage entity [17].

In addition, even a highly reliable data center is prone to occasional failures

due to administrative faults, geographical catastrophes etc. [18]. To protect
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against data loss, it is desirable that the system has the resiliency to protect

against the event of a data center failure. A geo-distributed storage system

is a practical way to provide disaster tolerance [19]. It also has the potential

to provide better availability. Even in the case of intermittent problems with

a data center, users can be seamlessly served by data hosted on other data

centers.

Another benefit is to provide better quality of service to the users. Latency

can directly influence the user experience of using the cloud [20]. By geo-

distributing data, you can place the data closer to the client. Whenever a

user makes a request for data, that request can be served by the nearest

data centers to improve latency [21]. Similarly geo-distribution can also

take advantage of the regional differences in energy prices and schedule the

requests accordingly to lower the costs [22] [23].

However, the prospect of geo-distributed storage also raises several prob-

lems and questions. Since data can be stored at and requested from any of

the data centers, any request that is served from a data center to the other

end of the globe can increase the cost and latency of retrieving the data sig-

nificantly. Poor load balancing of the requests can lead to higher loads on

one data center which can hurt performance [24]. Another challenge would

be choosing the encoding format and scheduling strategy for retrieving the

data in a way that provides the best cost-efficiency and maximizes the per-

formance.

2.3 Motivation

We have seen that erasure coding has significantly lower storage overhead

for the same reliability guarantees as replication. Using erasure coding in

a geo-distributed storage setting can save a lot of money by decreasing the

amount of storage needed. At the same time, it can cost more money by using

up much of the costly bandwidth between the data centers to transmit the

individual chunks. There is also a question of how to schedule the requests

coming from multiple users throughout the world to minimize the average

service latency for file access. These questions become much more relevant

when the system has to provide certain reliability guarantees to the user to

protect against the loss of data.
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Figure 2.4: An example showing geo-distributed storage system having two users
with one file stored with a (8,5) erasure code. Every chunk is placed on a
different storage unit.

This can be illustrated by a motivating example shown in Figure 2.4. A

file is being stored in the system that has been encoded using a (8,5) erasure

code so it has 5 data chunks and 3 parity chunks. These chunks are stored on

a geo-distributed storage system with 8 data centers. To maintain reliability

guarantees, each data center has hosted only 1 chunk. Two different users

are trying to access the same file from the storage system. The file can be

reconstructed from any of the 5 chunks hosted on the storage system. We

consider two simple heuristics to schedule requests to get the data. (i) The

data centers that are nearest to the user will service the request. We call this

Prioritize-Nearest Heuristic. This can be seen in Figure 2.5. Each of the user

gets the chunks from 5 of the nearest data centers to reconstruct the file. (ii)

As the requests arrive, they are served by the data centers hosting the data

that have the least load. We call this Balance-Load Heuristic. This has been

shown in Figure 2.6. The least loaded servers serve the user requests.

Prioritize-Nearest Heuristic tends to minimize the network transfer cost.

Since the data is served by the nearest data centers, this decreases the dis-

tance over which the data has to be sent, which in turn brings down the cost.

However, since this does not take into account the load on the data centers,
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Figure 2.5: An example showing Prioritize-Nearest Heuristic in a geo-distributed
cloud. The users get the erasure-coded file chunks from the storage units nearest
to them. This reduces the communication cost.
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Figure 2.6: An example showing Balance-Load Heuristic in a geo-distributed
cloud. The users retrieve the erasure-coded file chunks from the storage units
with the least load. This reduces the service latency.
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this can increase the service latency. If a lot of requests are coming from the

same geographical area, they will be served by the same data centers, which

will become loaded. The overloaded data centers will have higher queuing

delay for the files that is undesirable for the end users. We can see this in

Fig.2.5, that the data center 5 is staying idle while some of the other servers

are overloaded.

On the other hand, Balance-Load Heuristic evenly distributes the load

between the data centers. This makes sure that the service latency does not

get very high. However, this can potentially increase the cost to transfer the

data significantly since a user request from China can be sent to the US for

processing. This causes the data to be transmitted over a lot of distance that

is very costly.

In order to better balance out these competing attributes of network cost

and service latency, our goal is to provide a model for service latency and

communication cost for a multi-user erasure-coded geo-distributed system.

Along with the model, we aim to provide an algorithm for the erasure-coded

chunk placement and request scheduling to minimize both the service delay

and communication cost for the end users.

2.4 Related Work

We divide the related work into different sections based on their focus and

describe them briefly.

2.4.1 Minimizing Repair Bandwidth

Erasure coding has been mostly touted as a means to reduce the storage

overhead with the same reliability as replication. Most of the research has

gone towards reducing the high repair cost associated with erasure codes

both in terms of computation and bandwidth [25], [26], [27]. More and more

cloud storage companies have also shown a lot of interest in this to try to

minimize the repair bandwidth and network I/O in the case of intermittent

failures [14], [13]. Our work does not deal with minimizing repair bandwidth,

but rather strives to minimize the communication cost for the simple case

just by chunk placement and request scheduling. We also use only one type
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of erasure codes namely Reed-Solomon that is a type of MDS erasure code.

2.4.2 Coding Schemes for Latency Analysis and Improvement

There has been a variety of literature that presents a new erasure coding

scheme for improving the reliability with less storage cost or repair band-

width and also show latency improvements in the evaluation as a perfor-

mance metric for different system implementations [28], [29], [30], [31], [32].

However, these schemes present latency improvement as just a side-benefit.

Our work deals with latency as one of the main metrics. A lot of work has

been done to perform a detailed analysis of the queuing latency, including

the upper bounds on average latency, for an MDS erasure-coded file system

[33], [34], [35], [36], [10]. We use and extend the latency model developed by

[10] in our system model.

2.4.3 Costs in a Geo-Distributed Cloud

For a geo-distributed cloud, [37] has identified the major costs associated

with a geo-distributed data center. Servers, infrastructure, power and net-

work constitute a majority of the costs in the cloud. A variety of existing

literature [38], [39], [40], [41] deals with optimizing the performance and

power cost in a distributed data center. They vary various parameters or

scheduling strategies to do a power-delay performance analysis. [10] tries

to minimize the server cost without compromising the latency by doing a

joint optimization of storage cost and service latency. Similar to this we do

a joint optimization of communication cost and service latency and devise a

placement and scheduling strategy to optimize these metrics.
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CHAPTER 3

SYSTEM MODEL

In this section, we formulate a joint service latency communication-cost op-

timization problem for our system model with a given choice of erasure code

with a scheduling strategy called probabilistic scheduling. The variables in

this problem include the set of servers on which the chunks are to be placed

and the set of servers that serve the requests. We modify the system model

and latency model presented by [10] in our problem formulation and de-

velop the communication cost model. The main addition in the model is the

change of environment from a single data center to multiple geo-distributed

data centers and replacing the storage cost model with the communication

cost model. We also allow the users to specify a custom reliability guarantee

for the files stored in the cloud. We shall describe the system model as well as

the service latency and communication cost models in more concrete terms

hereafter.

The system consists of a geo-distributed storage environment with m data

centers, denoted byM = {1, ...., m}. Each of these data centers can contain

multiple inter-connected storage devices but for the sake of our problem, we

treat each data center as a single entity and we will refer to it as a storage

unit throughout this paper. The whole system stores a set of r files. Each

file i is divided into fixed sized k chunks which are further encoded by an

(n, k) MDS erasure code into a total of n chunks of the same size. The file i

can be reconstructed by getting any of the k chunks. Each of these chunks is

placed onto a storage unit, such that file i is placed onto a set Si ⊆M. The

reliability guarantee can be specified by the client that each storage unit can

only host up to c ≤ k chunks of a file. This requirement can account for any

failure or outage of a storage unit. This may be necessary if enough storage

units are not available or the client does not want to account for the unlikely

events that can bring a data center down.

A file can be requested by multiple clients from any of the storage units
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throughout the world. The probability that a file i will be requested from a

storage unit l by any client is given by Pi,l. Each file i can be reconstructed

by sending a request to any k of the n storage units hosting the file. In prob-

abilistic scheduling as described in [10], k scheduling requests are randomly

sent to get k chunks of the file. Every set Ai ⊆ Si has a probability P(Ai)
of being selected to serve the request for a file i.

Using this system model, the original latency and communication cost

optimization problem can be described as two smaller subproblems.

Chunk Placement Subproblem

Given a choice of erasure code (n,k), find the set Si ⊆ M of storage units

on which the chunks of a file i should be placed such that the latency and

communication cost is minimized.

Request Scheduling Subproblem

Given a choice of erasure code (n,k) and chunk placement Si for a file i,

find the probability P(Ai, ∀Ai ⊆ Si that minimizes the average latency and

communication cost.

It should be noted that both these subproblems are closely related. Optimal

chunk placement, along with optimal request scheduling can minimize the

latency and network cost. If chunk placement is arbitrarily chosen, solving

for best request scheduling can only lead to sub optimal results. Similarly,

for optimal chunk placement, arbitrarily scheduling the requests would not

give the optimal result. We shall now develop and describe the mathematical

models for service latency and communication cost for the aforementioned

system model.

3.1 Latency Model

The access requests for files are independent of each other. Therefore, we

assume that the arrival rate for the access requests for a file forms a Poisson

process with rate λi. Let the probability that a storage unit j receives a
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request for v chunks of a file i from a storage unit l, if k chunk requests

for the file i have gone out, be denoted as πvi,j. [10] has shown that the

probabilistic scheduling policy would be feasible iff:

m∑
j=1

c∑
v=1

vπvi,j = k, πi,j ∈ [0, 1],∀i, j and πi,j = 0,∀j /∈ Si (3.1)

Intuitively, this makes sense because
∑c

v=1 vπ
v
i,j is the average number of

chunks retrieved from any storage unit j. A total of k chunks have to be

retrieved from all the storage units collectively to reconstruct the file i.

Every storage unit maintains a single queue for all incoming requests for

different hosted chunks. Thus, the arrival rate Λl,j of chunk requests at a

storage unit j from a storage unit l is also a Poisson process since it is formed

by the superposition of r individual arrival requests, all of which are Poisson

processes as specified by the model. Since the probability that a file i will be

requested from a storage unit l is Pi,l and chunk arrival request for a file i at

the storage unit j would have a rate λi
∑c

v=1 vπ
v
i,j, it can be seen that Λl,j is

given by:

Λl,j =
r∑
i=1

c∑
v=1

λiPi,lvπ
v
i,j (3.2)

Any incoming request to a storage unit j spends some time waiting in

the local queue. Let Ql,j,v be the random wait time a request dispatched

from storage unit i to storage unit j to retrieve v chunks of a file, spends in

the queue of storage unit j. The queuing time is determined by the chunk

request arrival rate at the storage units as well as the processing power of

the storage units. We have already seen the expression for the chunk arrival

request rate. The processing power of the storage units is characterized by

the service time for a request on the storage unit. Let Xj be the random

service time at the storage unit j with an arbitrary distribution satisfying

finite mean E[Xj] = 1/µj, variance E[X2
j ] − E[Xj]

2 = σ2
j , second moment

E[X2
j ] = Γ2

j and third moment E[X3
j ] = Γ̂j

3
. Similar to the model in [10],

the expected latency of a file i is given by:
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T̄i ≤ min
z∈R

{
z +

∑
j∈Si

∑
l∈Si
l 6=j

c∑
v=1

πvi,j
2

(E[Ql,j,v]− z)

+
∑
j∈Si

∑
l∈Si
l 6=j

c∑
v=1

πvi,j
2

[√
(E[Ql,j,v]− z)2 + V ar[Ql,j,v]

]} (3.3)

where,

E[Ql,j,v] =
1

µj
+

Λl,jΓ
2
j

2(1− ρl,j)
(3.4)

V ar[Ql,j,v] = σ2
j +

Λl,jΓ̂j
3

3(1− ρl,j)
+

Λ2
l,jΓ

4
j

4(1− ρl,j)2
(3.5)

ρl,j = Λl,j/µj < 1,∀l, j (3.6)

ρl,j is the request intensity at storage unit j from l. The additional sum-

mations in Equation 3.3 are because of the multi-user environment with an

additional condition that multiple chunks can be placed on the same storage

unit.

An sample system with multiple users generating requests for file 1 is shown

in Figure 3.1. It shows a heterogeneous system with m = 6 storage units

having average service time µj, 1 ≤ j ≤ 6 between 0.06 sec to 0.13 sec. An

(n, r) = (5, 3) erasure coded file has been stored with chunks placed on five

of the storage units (c = 1). r = 3 users generate requests for that file with

the overall request arrival rate λ1 for the file being 0.1 req/sec. Every storage

unit has a given probability P1,j, 1 ≤ j ≤ 6 for receiving the request to access

the file with these probabilities adding up to 1. Every storage unit receiving

a file request sends r chunk requests to the storage units hosting the chunks.

The probability to send a chunk request to the storage unit is π1,j, 1 ≤ j ≤ 6.

These sum up to k = 3. π1,6 = 0 since storage unit 6 does not host any chunk

for file 1.
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Figure 3.1: A sample multi-user geo-distributed storage system showing the
processing of access requests for one file by multiple users.

3.2 Cost Model

We only consider communication cost in our analysis which is the cost to

transmit a chunk from one storage unit to another. We assume there is

uniform pricing and the communication cost is directly proportional to the

amount of data sent as well as the distance across which the data was sent.

Going by this assumption, greater amount of data sent directly corresponds

to a higher cost. The cost is also higher for data transmitted over far-off

distances. So the goal is to minimize the amount of traffic sent between the

storage units as well as to minimize the data transfer between the far-off

storage units.

We know that Pi,l is the probability that a client requests file i from storage

unit l. For this file i, v requests are dispatched to the storage unit j to retrieve

them with conditional probability πvi,j for v = 1, ...c. The average number

of chunks retrieved from storage unit j would thus be given by
∑c

v=1 vπ
v
i,j.

Therefore, the total data transmitted from the storage unit j to l for a file i

is:
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Di,l,j = C

c∑
v=1

Pi,lvπ
v
i,j (3.7)

where C is the given fixed size of an erasure coded chunk of any file i.

Under our cost model, the cost of retrieving a file i is the product of the

traffic sent between the storage units and the distance between the storage

units. This can be represented as:

Ci =
∑
j∈Si

m∑
l=1
l6=j

Di,l,jdl,j (3.8)

where Di,l,j represents the amount of data sent from storage unit j to l during

the process of retrieval of file i whereas dl,j is the distance between the storage

units l and j.

16



CHAPTER 4

JOINT LATENCY AND NETWORK COST
OPTIMIZATION

4.1 Formulating a Joint Optimization

In this section, we will combine the latency and communication cost models

that we developed in the previous section into a joint cost function. We will

formulate a joint optimization problem using this cost function and solve

it under the constraints specified by the system model. We know that λi

represents the arrival rate of all the requests for a file i by all the clients in

the system. Let λ̂ =
∑r

i=1 λi be the aggregate arrival rate for all the access

requests for all the files received by all the storage units in the system. The

average latency to access all files would then be given by
∑r

i=1(λi/λ̂)Ti where

Ti is the expected latency to access a file i. The joint objective function for

minimization problem of latency-network cost would be given by:

min
r∑
i=1

λi

λ̂
Ti + θ

r∑
i=1

Ci

s.t. (3.1), (3.2), (3.3), (3.4), (3.5), (3.8), (3.7)

var. Si, πvi,j,∀i, j, v

(4.1)

where θ ∈ [0,∞] is the tradeoff factor between the average latency and

network cost for the file access. The solutions that give higher importance

to minimizing latency will set this value to be much lower than the solutions

which prioritize network cost minimization over latency.

This optimization problem has two variables: Si that determines placement

and πi,j,v that determines request-scheduling . This problem is also subject

to various constraints that were derived in the previous chapter. Plugging

the results from previous section into Equation 4.1, we can arrive at the

following optimization problem:
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min z +
m∑
j=1

m∑
l=1
l 6=j

c∑
v=1

λ̂l,j,v

2λ̂

[
Xl,j,v +

√
X2
l,j,v + Yl,j,v

]

+θ
m∑
j=1

m∑
l=1
l 6=j

Dl,jdl,j (4.2)

s.t. Xl,j,v =
v

µj
+

Λl,jΓ
2
j

2(1− ρl,j)
− z,∀l, j, v (4.3)

Yl,j,v = vσ2
j +

Λl,jΓ̂
3
j

(1− ρl,j)
+

Λ2
l,jΓ

4
j

(1− ρl,j)2
,∀l, j, v (4.4)

ρl,j = Λl,j/µj < 1, ∀l, j (4.5)

λ̂l,j,v =
r∑
i=1

λiPi,lπ
v
i,j,∀l, j, v (4.6)

Λl,j =
r∑
i=1

c∑
v=1

λiPi,lvπ
v
i,j,∀l, j (4.7)

Dl,j = C
r∑
i=1

c∑
v=1

Pi,lvπ
v
i,j,∀l, j, l 6= j (4.8)

m∑
j=1

c∑
v=1

vπvi,j = k; πvi,j ∈ [0, 1]; πvi,j = 0,∀j /∈ Si (4.9)

|Si| ≤ n and Si ⊆M,∀i (4.10)
m∑
l=1

Pi,l = 1, ∀i (4.11)

var. z, Si, πvi,j,∀i, j, l.

given k, n, C, Pi,l, λi, µj,Γ
2
j , Γ̂

3
j (4.12)

The summations in Equation (4.2) are changed from j ∈ Si and l ∈ Si to

j = 1, ..m and l = 1, ..,m because πvi,j = 0,∀j /∈ Si i.e. for all the storage

units that does not host the chunks. The rest of the equations are just

obtained by naming and substitution of variables.

This problem is hard to solve because the optimization variables depend

upon each other. Changing the nodes Si for chunk placement also changes

the conditional probabilities πvi,j for request scheduling because of Equation

4.9.
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4.2 Sandooq Algorithm

We propose Sandooq algorithm to solve the joint optimization problem for

service latency and communication cost. First we need to shorten the prob-

lem space. We replace Si with an indicator function of πvi,j. Only the nodes

with πvi,j = 0 is retained in the subset Si of the overall node set M, since

they are the only ones that determine the access latency and network cost of

a file i. This leads to Si being removed as a variable from the optimization

problem and the addition of an extra constraint,

m∑
j=1

1(πv
i,j>0) = n,∀i, j, v (4.13)

The first part of the Equation (4.2), which is the service latency is convex

in πvi,j as shown by [10]. The communication cost, which constitutes the

second part of Equation (4.2), clearly is convex w.r.t. πvi,j since it is simply

a linear function of πvi,j. This shows that the objective function is convex in

πvi,j when other variables are fixed and it is subjected to linear constraints.

It can be solved by any of the popular convex optimization tools such as

subgradient projection methods, interior-point methods etc.

We use the gradient descent method to solve our optimization problem.

The algorithm works in exactly the same way as mentioned in [10] except

for the part that the storage cost has been replaced by the communication

cost. The proposed algorithm is shown in Algorithm 1. For each itera-

tion, we minimize the objective function over (πvi,j,∀i, j, v) while keeping

the parameter z fixed. The updated probabilities (πvi,j,∀i, j, v) in each step

have to be projected on to the feasibility set {
∑m

j=1

∑c
v=1 vπ

v
i,j = ki; π

v
i,j ∈

[0, 1];
∑m

j=1 1(πv
i,j>0) = n,∀i, j, v}. After this, we minimize the objective func-

tion over z ∈ R for fixed values of probabilities (πvi,j,∀i, j, v). We repeat this

until we reach a minimum when the change in value is within a small enough

tolerance value.
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Algorithm 1 Sandooq Algorithm

Initialize t = 0 and feasible z(0), πvi,j(0),∀i, j and choose a small ε

Initialize Pi,l, C, λi, µj, σj,Γ
2
j , Γ̂

3
j , ∀i, j, l to actual or estimated values

Evaluate the initial value of the objective F(0) using (4.2)
while F (t)− F (t− 1) > ε do

Compute πvi,j(t + 1),∀i, j = arg min (4.2) by calling pro-
jected gradient()

z(t+ 1) = arg min (4.2)
Compute new objective F(t+1)
Update t = t+ 1

end while
Find Si = j : πvi,j > 0,∀i
return (Si, πvi,j), ∀i, j, v

function projected gradient()
Choose a small step size δ
Initialize s = 0 and πvi,j(s) = πvi,j(t)
while

∑
i,j,v |πvi,j(s+ 1)− πvi,j(s)| > ε do

Calculate gradient ∇(4.2) w.r.t πvi,j
Compute πvi,j(s+ 1) = πvi,j(s) + δ.∇(4.2)
Project πvi,j(s+ 1) onto the feasibility set:
{πvi,j(s+ 1) :

∑m
j=1

∑c
v=1 vπ

v
i,j = ki; π

v
i,j ∈ [0, 1];∑m

j=1 1(πv
i,j>0) = n,∀i, j, v}

Update s = s+ 1
end while
return (πvi,j,∀i, j, v)

end function
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CHAPTER 5

EVALUATION

5.1 Testbed

We implemented the Sandooq algorithm in MATLAB to get the optimal

placement and scheduling for the chunks of the files. We used MOSEK,

which is an optimization framework for MATLAB. The algorithm is run on

a quad-core machine with an i7 CPU processor and 8 GB RAM. We run it

for 1000 files. We assume that the files have been coded using a (6,4) erasure

code with each chunk equally sized at C = 10MB and these chunks can be

placed on any of the 12 storage units, each located in a different geographical

area (different US State). The distance between these storage units is shown

in the Table 5.1.

WA NV CA ND CO TX IL GA KS MS DC FL

WA 0 573 1065 1195 1021 1772 1735 2181 1504 2488 2324 2735

NV 573 0 494 1261 789 1401 1686 1993 1346 2520 2271 2472

CA 1065 494 0 1452 834 1156 1733 1890 1336 2582 2272 2271

ND 1195 1261 1452 0 643 1150 569 1116 549 1298 1138 1721

CO 1021 789 834 643 0 773 919 1211 558 1767 1491 1727

TX 1772 1401 1156 1150 773 0 981 819 637 1696 1318 1115

IL 1735 1686 1733 569 919 981 0 589 413 850 594 1193

GA 2181 1993 1890 1116 1211 819 589 0 677 937 543 607

KS 1504 1346 1336 549 558 637 413 677 0 1249 942 1244

MS 2488 2520 2582 1298 1767 1696 850 937 1249 0 394 1260

DC 2324 2271 2272 1138 1491 1318 594 543 942 394 0 928

FL 2735 2472 2271 1721 1727 1115 1193 607 1244 1260 928 0

Table 5.1: Distance between the different Storage Units in miles.

5.2 Experiments

We perform different experiments to evaluate the Sandooq algorithm.
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Figure 5.1: Number of iterations required for Sandooq algorithm to converge for
a geo-distributed system with 1000 files and 12 storage units. It can be seen that
the algorithm converges within about 100 iterations.

5.2.1 Convergence Time of Sandooq

Using the parameters described above, Figure 5.1 shows the number of iter-

ations it takes for the Sandooq algorithm to converge. We can see that the

algorithm converges in less than 100 iterations within a tolerance factor of

0.1. An iteration takes about 3.5 seconds on average. So the overall algorithm

finishes in nearly 350 seconds. It is also interesting to note the trend for the

objective function as well as the network and latency costs. All these values

have been normalized by their minimum values respectively. The objective

decreases rapidly at first but then starts smoothing off. We can also see the

effect of the trade-off factor at play here. The network cost decreases at a

more rapid rate initially and overwhelms the latency cost which increases.

Afterwards, the increase in the latency cost factors more and pushes the

algorithm to start making decisions to decrease both of them.
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Figure 5.2: Comparison of Sandooq algorithm with other heuristics in terms of
the Service Latency.

5.2.2 Performance Comparison with other Heuristics

To evaluate the performance of our algorithm, we compare it with three

other heuristics, Balance-Load, Prioritize-Nearest and Random. Two of these

heuristics, Balance-Load and Prioritize-Nearest try to minimize either the

service latency or the network transfer cost. Random Heuristic places the

chunks randomly to any of the 6 among the 12 storage units. For the request

arrivals, it again schedules these requests randomly to 4 of the 6 storage

units hosting the file. Balance-Load Heuristic uses the optimal chunk place-

ment calculated by Sandooq algorithm. It then schedules the requests to

the storage units proportional to their service time. So more requests would

be scheduled to the faster storage units that would potentially reduce the

service latency. Prioritize-Nearest Heuristic places the file chunks on 6 of

the nearest storage units to the user who sent the put request. For request

scheduling, it services the request by the storage units that have the mini-

mum distance from the user making the get request. This heuristic strives to

reduce the communication cost by reducing the distance data has to travel

through the network.

We run these algorithms for 1000 files encoded with (6,4) erasure code with
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Figure 5.3: Comparison of Sandooq algorithm with other heuristics in terms of
the Communication Cost.

each chunk having a size of 10 MB. We assign the cost for transmitting each

chunk over a distance of 1 mile to be $1. We assume a heterogeneous cluster

with service time ranging between 0.05 requests/sec to 0.1 requests/sec. We

choose the arrival rate for each file to be between 0.0001 to 0.00005 that

leads to an aggregate arrival rate of nearly 0.075 requests/sec for all the files.

We simulate this system and calculate the network transfer cost and service

latency according to our model.

Figure 5.2 and Figure 5.3 show how well Sandooq performs compared to

the heuristics. We can see that Sandooq outperforms all these heuristics in

terms of minimizing both the service latency and communication cost. More

specifically, the prioritize-nearest heuristic comes pretty close to Sandooq in

network transfer cost. Similarly, the balance-load heuristic also does a fairly

good job of minimizing the service latency. However, both of these heuristics

perform poorly in terms of the other metric. However, if the system designer

prioritizes only service latency or the network transfer cost, they may resort

to using one of these simple heuristics.
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Figure 5.4: Impact of the difference in request arrival rate on the service latency
under Sandooq algorithm. The service latency decreases by lowering the request
arrival rate.

5.2.3 Effect of Request Arrival Rate on Service Latency

We also vary the individual arrival rate of the requests to measure the impact

on the service latency under Sandooq algorithm. The aggregate request

arrival rate is varied from 0.1 requests/sec to 0.15 requests/sec. Higher arrival

rate means more load on the storage units that translates directly into higher

service latency. The results for the experiment are displayed in Figure 5.4.

We can see that the service latency is directly correlated with the request

arrival rate. In order to keep the latency under control, we would either need

to add more storage units to better balance the load or upgrade the storage

units to faster ones

5.2.4 Effect of Chunk Size on Communication Cost

To measure the impact of choosing the chunk size on the network transfer

cost under Sandooq algorithm, we vary the chunk size of the files from 10 MB

to 50 MB. Even if the file is not big enough, the chunks are padded to the

chosen size. A higher chunk size would directly translate into more network
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Figure 5.5: Impact of chunk size on the communication cost under Sandooq
algorithm. The commuication cost increases by increasing the chunk size.

traffic in the system that raises the communication cost. The results from

this experiment are shown in Figure 5.5. We can see that the communication

cost increases as the chunks become bigger in size because of increasing cost

associated with transporting more data.
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CHAPTER 6

FUTURE WORK

6.1 Extending the System Model

In this document, we considered the design of a multi-user erasure-coded

geo-distributed system and formulated the Sandooq algorithm to optimize

the service latency and the communication cost associated with storing and

accessing the files. We achieved this by coming up with a custom strategy

that optimally places the file chunks on the storage units and performs re-

quest scheduling. The model can be extended to a system with different tiers

of storage coded in a different manner. An example of this is a system in

which the files in hot storage are replicated while the files in cold storage are

erasure coded. We can also extend this to a system where the arrival requests

for the files can have any general distribution than the simpler Poisson one.

In addition, the current latency model is only for object storage. Extending

it to a file system with block storage with the same reliability guarantees is

also a possible future work.

The latency model right now only considers the service latency at each of

the storage units. We can add network transfer latency between the storage

units as well as the latency between the user and the point-of-contact data

center for a better and more accurate latency model. Similarly the cost

model could also be improved by including the other costs associated with

a geo-distributed data center such as storage cost and power cost. We can

also look for ways to incorporate other parameters other than latency and

monetary cost. The joint optimization of either latency or cost with other

parameters of importance such as repair time or repair bandwidth can be

performed.
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6.2 Evaluation on a Real System

Most of the experimental validation for the model and the algorithm has been

performed through simulations for a heterogeneous cluster assuming certain

service latency and arrival rates. However, real utility for the scheme should

be tested on a real geo-distributed cloud system using an erasure coded object

file system. The experiments could be performed by using a trace of requests

from an existing multi-user geo-distributed file system. If such a trace is not

available, it can be estimated by procuring a trace of requests for a simple

file system and assigning the origin of these requests to different regions of

the world.
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CHAPTER 7

CONCLUSION

We developed a mathematical model for the service latency and communica-

tion cost for a multi-user geo-distributed cloud environment. We formulated

a joint optimization problem for the service latency and communication cost

and developed the Sandooq algorithm that can efficiently solve this problem.

Through simulations, we show that even for a large number of users, our

algorithm converges within a few iterations and outperforms other heuris-

tics significantly in optimizing service latency and communication cost. It

provides a good benchmark to test other scheduling and placement algo-

rithms against. We also studied and showed the impact of changing different

parameters of the model on the cost and latency.
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