5,026 research outputs found

    On Graph Stream Clustering with Side Information

    Full text link
    Graph clustering becomes an important problem due to emerging applications involving the web, social networks and bio-informatics. Recently, many such applications generate data in the form of streams. Clustering massive, dynamic graph streams is significantly challenging because of the complex structures of graphs and computational difficulties of continuous data. Meanwhile, a large volume of side information is associated with graphs, which can be of various types. The examples include the properties of users in social network activities, the meta attributes associated with web click graph streams and the location information in mobile communication networks. Such attributes contain extremely useful information and has the potential to improve the clustering process, but are neglected by most recent graph stream mining techniques. In this paper, we define a unified distance measure on both link structures and side attributes for clustering. In addition, we propose a novel optimization framework DMO, which can dynamically optimize the distance metric and make it adapt to the newly received stream data. We further introduce a carefully designed statistics SGS(C) which consume constant storage spaces with the progression of streams. We demonstrate that the statistics maintained are sufficient for the clustering process as well as the distance optimization and can be scalable to massive graphs with side attributes. We will present experiment results to show the advantages of the approach in graph stream clustering with both links and side information over the baselines.Comment: Full version of SIAM SDM 2013 pape

    Change detection in categorical evolving data streams

    Get PDF
    Detecting change in evolving data streams is a central issue for accurate adaptive learning. In real world applications, data streams have categorical features, and changes induced in the data distribution of these categorical features have not been considered extensively so far. Previous work on change detection focused on detecting changes in the accuracy of the learners, but without considering changes in the data distribution. To cope with these issues, we propose a new unsupervised change detection method, called CDCStream (Change Detection in Categorical Data Streams), well suited for categorical data streams. The proposed method is able to detect changes in a batch incremental scenario. It is based on the two following characteristics: (i) a summarization strategy is proposed to compress the actual batch by extracting a descriptive summary and (ii) a new segmentation algorithm is proposed to highlight changes and issue warnings for a data stream. To evaluate our proposal we employ it in a learning task over real world data and we compare its results with state of the art methods. We also report qualitative evaluation in order to show the behavior of CDCStream

    SOTXTSTREAM: Density-based self-organizing clustering of text streams

    Get PDF
    A streaming data clustering algorithm is presented building upon the density-based selforganizing stream clustering algorithm SOSTREAM. Many density-based clustering algorithms are limited by their inability to identify clusters with heterogeneous density. SOSTREAM addresses this limitation through the use of local (nearest neighbor-based) density determinations. Additionally, many stream clustering algorithms use a two-phase clustering approach. In the first phase, a micro-clustering solution is maintained online, while in the second phase, the micro-clustering solution is clustered offline to produce a macro solution. By performing self-organization techniques on micro-clusters in the online phase, SOSTREAM is able to maintain a macro clustering solution in a single phase. Leveraging concepts from SOSTREAM, a new density-based self-organizing text stream clustering algorithm, SOTXTSTREAM, is presented that addresses several shortcomings of SOSTREAM. Gains in clustering performance of this new algorithm are demonstrated on several real-world text stream datasets

    Data Stream Clustering: Challenges and Issues

    Full text link
    Very large databases are required to store massive amounts of data that are continuously inserted and queried. Analyzing huge data sets and extracting valuable pattern in many applications are interesting for researchers. We can identify two main groups of techniques for huge data bases mining. One group refers to streaming data and applies mining techniques whereas second group attempts to solve this problem directly with efficient algorithms. Recently many researchers have focused on data stream as an efficient strategy against huge data base mining instead of mining on entire data base. The main problem in data stream mining means evolving data is more difficult to detect in this techniques therefore unsupervised methods should be applied. However, clustering techniques can lead us to discover hidden information. In this survey, we try to clarify: first, the different problem definitions related to data stream clustering in general; second, the specific difficulties encountered in this field of research; third, the varying assumptions, heuristics, and intuitions forming the basis of different approaches; and how several prominent solutions tackle different problems. Index Terms- Data Stream, Clustering, K-Means, Concept driftComment: IMECS201

    Data Mining Applications in Big Data

    Get PDF
    Data mining is a process of extracting hidden, unknown, but potentially useful information from massive data. Big Data has great impacts on scientific discoveries and value creation. This paper introduces methods in data mining and technologies in Big Data. Challenges of data mining and data mining with big data are discussed. Some technology progress of data mining and data mining with big data are also presented
    corecore