112,909 research outputs found

    On dominating and spanning circuits in graphs

    Get PDF
    An eulerian subgraph of a graph is called a circuit. As shown by Harary and Nash-Williams, the existence of a Hamilton cycle in the line graph L(G) of a graph G is equivalent to the existence of a dominating circuit in G, i.e., a circuit such that every edge of G is incident with a vertex of the circuit. Important progress in the study of the existence of spanning and dominating circuits was made by Catlin, who defined the reduction of a graph G and showed that G has a spanning circuit if and only if the reduction of G has a spanning circuit. We refine Catlin's reduction technique to obtain a result which contains several known and new sufficient conditions for a graph to have a spanning or dominating circuit in terms of degree-sums of adjacent vertices. In particular, the result implies the truth of the following conjecture of Benhocine et al.: If G is a connected simple graph of order n such that every cut edge of G is incident with a vertex of degree 1 and d(u)+d(v) > 2(1/5n-1) for every edge uv of G, then, for n sufficiently large, L(G) is hamiltonian

    FO-Definability of Shrub-Depth

    Get PDF
    Shrub-depth is a graph invariant often considered as an extension of tree-depth to dense graphs. We show that the model-checking problem of monadic second-order logic on a class of graphs of bounded shrub-depth can be decided by AC^0-circuits after a precomputation on the formula. This generalizes a similar result on graphs of bounded tree-depth [Y. Chen and J. Flum, 2018]. At the core of our proof is the definability in first-order logic of tree-models for graphs of bounded shrub-depth

    Circuits in random graphs: from local trees to global loops

    Full text link
    We compute the number of circuits and of loops with multiple crossings in random regular graphs. We discuss the importance of this issue for the validity of the cavity approach. On the one side we obtain analytic results for the infinite volume limit in agreement with existing exact results. On the other side we implement a counting algorithm, enumerate circuits at finite N and draw some general conclusions about the finite N behavior of the circuits.Comment: submitted to JSTA

    On Symmetric Circuits and Fixed-Point Logics

    Get PDF
    We study properties of relational structures such as graphs that are decided by families of Boolean circuits. Circuits that decide such properties are necessarily invariant to permutations of the elements of the input structures. We focus on families of circuits that are symmetric, i.e., circuits whose invariance is witnessed by automorphisms of the circuit induced by the permutation of the input structure. We show that the expressive power of such families is closely tied to definability in logic. In particular, we show that the queries defined on structures by uniform families of symmetric Boolean circuits with majority gates are exactly those definable in fixed-point logic with counting. This shows that inexpressibility results in the latter logic lead to lower bounds against polynomial-size families of symmetric circuits.Comment: 22 pages. Full version of a paper to appear in STACS 201

    On monotone circuits with local oracles and clique lower bounds

    Get PDF
    We investigate monotone circuits with local oracles [K., 2016], i.e., circuits containing additional inputs yi=yi(x⃗)y_i = y_i(\vec{x}) that can perform unstructured computations on the input string x⃗\vec{x}. Let μ∈[0,1]\mu \in [0,1] be the locality of the circuit, a parameter that bounds the combined strength of the oracle functions yi(x⃗)y_i(\vec{x}), and Un,k,Vn,k⊆{0,1}mU_{n,k}, V_{n,k} \subseteq \{0,1\}^m be the set of kk-cliques and the set of complete (k−1)(k-1)-partite graphs, respectively (similarly to [Razborov, 1985]). Our results can be informally stated as follows. 1. For an appropriate extension of depth-22 monotone circuits with local oracles, we show that the size of the smallest circuits separating Un,3U_{n,3} (triangles) and Vn,3V_{n,3} (complete bipartite graphs) undergoes two phase transitions according to μ\mu. 2. For 5≤k(n)≤n1/45 \leq k(n) \leq n^{1/4}, arbitrary depth, and μ≤1/50\mu \leq 1/50, we prove that the monotone circuit size complexity of separating the sets Un,kU_{n,k} and Vn,kV_{n,k} is nΘ(k)n^{\Theta(\sqrt{k})}, under a certain restrictive assumption on the local oracle gates. The second result, which concerns monotone circuits with restricted oracles, extends and provides a matching upper bound for the exponential lower bounds on the monotone circuit size complexity of kk-clique obtained by Alon and Boppana (1987).Comment: Updated acknowledgements and funding informatio

    One-way permutations, computational asymmetry and distortion

    Get PDF
    Computational asymmetry, i.e., the discrepancy between the complexity of transformations and the complexity of their inverses, is at the core of one-way transformations. We introduce a computational asymmetry function that measures the amount of one-wayness of permutations. We also introduce the word-length asymmetry function for groups, which is an algebraic analogue of computational asymmetry. We relate boolean circuits to words in a Thompson monoid, over a fixed generating set, in such a way that circuit size is equal to word-length. Moreover, boolean circuits have a representation in terms of elements of a Thompson group, in such a way that circuit size is polynomially equivalent to word-length. We show that circuits built with gates that are not constrained to have fixed-length inputs and outputs, are at most quadratically more compact than circuits built from traditional gates (with fixed-length inputs and outputs). Finally, we show that the computational asymmetry function is closely related to certain distortion functions: The computational asymmetry function is polynomially equivalent to the distortion of the path length in Schreier graphs of certain Thompson groups, compared to the path length in Cayley graphs of certain Thompson monoids. We also show that the results of Razborov and others on monotone circuit complexity lead to exponential lower bounds on certain distortions.Comment: 33 page
    • …
    corecore