
Journal of Algebra 320 (2008) 4030–4062

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

One-way permutations, computational asymmetry
and distortion ✩

Jean-Camille Birget

Department of Computer Science, Rutgers University at Camden, Camden, NJ 08102, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 May 2008
Available online 26 July 2008
Communicated by Derek Holt

Keywords:
Combinatorial group theory
Complexity

Computational asymmetry, i.e., the discrepancy between the com-
plexity of transformations and the complexity of their inverses, is
at the core of one-way transformations. We introduce a computa-
tional asymmetry function that measures the amount of one-
wayness of permutations. We also introduce the word-length
asymmetry function for groups, which is an algebraic analogue
of computational asymmetry. We relate combinational circuits to
words in a Thompson monoid, over a fixed generating set, in
such a way that circuit size is equal to word-length. Moreover,
combinational circuits have a representation in terms of elements
of a Thompson group, in such a way that circuit size is polynomi-
ally equivalent to word-length. We show that circuits built with
gates that are not constrained to have fixed-length inputs and
outputs, are at most quadratically more compact than circuits
built from traditional gates (with fixed-length inputs and outputs).
Finally, we show that the computational asymmetry function is
closely related to certain distortion functions: The computational
asymmetry function is polynomially equivalent to the distortion of
the path length in Schreier graphs of certain Thompson groups,
compared to the path length in Cayley graphs of certain Thompson
monoids. We also show that the results of Razborov and others on
monotone circuit complexity lead to exponential lower bounds on
certain distortions.

© 2008 Elsevier Inc. All rights reserved.

✩ Supported by NSF grant CCR-0310793. Some of the results of this paper were presented at the AMS Section Meeting,
October 21–23, 2005, Lincoln, Nebraska (http://www.ams.org/amsmtgs/2117_program.html), and at the conference “Various
Faces of Cryptography,” 10 November 2006 at City College of CUNY, New York. The first version of the paper appeared in
http://arxiv.org/abs/0704.1569 (12 April 2007).

E-mail address: birget@camden.rutgers.edu.
0021-8693/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2008.05.035

https://core.ac.uk/display/81950235?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
http://www.ams.org/amsmtgs/2117_program.html
http://arxiv.org/abs/0704.1569
mailto:birget@camden.rutgers.edu
http://dx.doi.org/10.1016/j.jalgebra.2008.05.035


J.-C. Birget / Journal of Algebra 320 (2008) 4030–4062 4031
1. Introduction

The existence of one-way permutations or of one-way functions (i.e., permutations or functions
that are “easy to evaluate” but “hard to invert”) is a major open problem. In this paper we give some
connections between this question and some group-theoretic concepts:

(1) We continue the work of [7–9] on the relation between combinational circuits, on the one hand,
and the Thompson–Higman groups and monoids on the other hand. We give a representation of
any combinational circuit by a word over the Thompson group, such that circuit size is polyno-
mially equivalent to word-length.

(2) We establish connections between the existence of one-way permutations and the distortion
function in a certain Thompson group. Distortion is an important concept in metric spaces (e.g.,
Bourgain [11]) and in combinatorial group theory (e.g., Gromov [18], Farb [15]).

As in [7–9], we treat the Thompson–Higman groups and monoids as models of computation, rather
than just a source of computational problems; every combinational circuit can be represented by
a word over group or monoid generators. This enables us to place open problems from computational
complexity into an algebraic setting: On these groups and monoids we define functions that have
an algebraic and geometric meaning and, in addition, are polynomially related to some traditional
complexity functions.

Overview. Subsections 1.1–1.6 of the present section define and motivate the concepts used: One-way
functions and one-way permutations; computational asymmetry; word-length asymmetry; reversible
computing; distortion; Thompson groups and monoids. In Section 2 we show that circuits can be
represented by elements of Thompson monoids: A combinational circuit is equivalent to a word
over a fixed generating set of a Thompson monoid, with circuit size being equal (or linearly equiv-
alent) to word-length over the generating set. The Thompson monoids that appear here are monoid
generalizations of the Thompson group G2,1, obtained when bijections are generalized to partial
functions [9]. Section 3 shows that computational asymmetry and word-length asymmetry (for the
Thompson groups and monoids) are linearly related. In Section 4 we give a representation of ar-
bitrary (not necessarily bijective) circuits by elements of the Thompson group G2,1; circuit size is
polynomially equivalent to word-length over a certain generating set in the Thompson group. In Sec-
tion 5 we show that the computational asymmetry function of permutations is polynomially related
to a certain distortion in a Thompson group. Section 6 contains miscellaneous results, in particular
that the work of Razborov and others on monotone circuit complexity leads to exponential lower
bounds on certain distortion functions. Finally, we state some open problems about the distortion of
the Thompson–Higman groups within the Thompson–Higman monoids, related to the existence of
one-way permutations.

1.1. One-way functions and one-way permutations

Intuitively, a one-way function is a function f (mapping words to words, over a finite alphabet),
such that f is “easy to evaluate” (i.e., given x0 in the domain, it is “easy” to compute f (x0)), but “hard
to invert” (i.e., given y0 in the range, it is “hard” to find any x0 such that f (x0) = y0). The concept
was introduced by Purdy [31] and Diffie and Hellman [14].

There are many ways of defining the words “easy” and “hard,” and accordingly there exist many
different rigorous notions of a one-way function, all corresponding to a similar intuition. It remains
an open problem whether one-way functions exist, for any “reasonable” definition. Moreover, for cer-
tain definitional choices, this problem is a generalization of the famous question whether P �= NP
[12,17,36].

We will base our one-way functions on combinational circuits and their size. The size of a cir-
cuit will also be called its complexity. Below, {0,1}n (for any integer n � 0) denotes the set of all
bitstrings of length n. A combinational circuit with input–output function f : {0,1}m → {0,1}n is an
acyclic boolean circuit with m input wires (or “input ports”) and n output wires (or “output ports”).
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The circuit is made from gates of type not, and, or, fork, as well as wire-crossings or wire-swappings.
These gates are very traditional and are defined as follows.

and: (x1, x2) ∈ {0,1}2 �−→ y ∈ {0,1}, where y = 1 if x1 = x2 = 1, and y = 0 otherwise.
or: (x1, x2) ∈ {0,1}2 �−→ y ∈ {0,1}, where y = 0 if x1 = x2 = 0, and y = 1 otherwise.
not: x ∈ {0,1} �−→ y ∈ {0,1}, where y = 0 if x = 1, y = 1 otherwise.
fork: x ∈ {0,1} �−→ (x, x) ∈ {0,1}2.

Another gate that is often used is the exclusive-or gate,

xor: (x1, x2) ∈ {0,1}2 �−→ y ∈ {0,1}, where y = 1 if x1 �= x2, and y = 0 otherwise.

The wire-swapping of the ith and jth wire (i < j) is described by the bit transposition (or bit position
transposition)

τi, j : uxi vx j w ∈ {0,1}� �−→ ux j vxi w ∈ {0,1}�, where |u| = i − 1, |v| = j − i − 1, |w| = � − j − 1.

The fork and wire-swapping operations, although heavily used, are usually not explicitly called “gates”;
but because of their important role we will need to consider them explicitly. Other notations for the
gates: and(x1, x2) = x1 ∧ x2, or(x1, x2) = x1 ∨ x2, not(x) = x, xor(x1, x2) = x1 ⊕ x2.

A combinational circuit for a function f : {0,1}m → {0,1}n is defined by an acyclic directed graph
drawn in the plane (with crossing of edges allowed). In the circuit drawing, the m input ports are
vertices lined up in a vertical column on the left end of the circuit, and the n output ports are
vertices lined up in a vertical column on the right end of the circuit. The input and output ports and
the gates of the circuit (including the fork gates, but not the wire transpositions) form the vertices of
the circuit graph. We often view the circuit as cut into vertical slices. A slice can be any collection of
gates and wires in the circuit such that no gate in a slice is an ancestor of another gate in the same
slice, and no wire in a slice is an ancestor of another wire in the same slice (unless these two wires
are an input wire and an output wire of a same gate). Two slices do not overlap, and every wire and
every gate belongs to some slice. For more details on combinational circuits, see [12,34,45].

The size of a combinational circuit is defined to be the number of gates in the circuit, including
forks and wire-swappings, as well as the input ports and the output ports. For a function f : {0,1}m →
{0,1}n , the circuit complexity (denoted C( f )) is the smallest size of any combinational circuit with
input–output function f .

A cause of confusion about gates in a circuit is that gates of a certain type (e.g., and) are tradi-
tionally considered the same, no matter where they occur in the circuit. However, gates applied to
different wires in a circuit are different functions; e.g., for the and gate, (x1, x2, x3) �→ (x1 ∧ x2, x3) is
a different function than (x1, x2, x3) �→ (x1, x2 ∧ x3).

1.2. Computational asymmetry

Computational asymmetry is the core property of one-way functions. Below we will define compu-
tational asymmetry in a quantitative way, and in a later section we will relate it to the group-theoretic
notion of distortion.

For the existence of one-way functions, it is mainly the relation between the circuit complex-
ity C( f ) of f and the circuit complexity C( f −1) of f −1 that matters, not the complexities of f and
of f −1 themselves. Indeed, a classical padding argument can be used: If we add C( f ) “identity wires”
to a circuit for f , then the resulting circuit has linear size as a function of its number of input wires;
see Proposition 1.2 below. (An identity wire is a wire that goes directly from an input port to an
output port, without being connected to any gate.)

In [12, p. 230] Boppana and Lagarias considered log C( f ′)/ log C( f ) as a measure of one-wayness;
here, f ′ denotes an inverse of f , i.e., any function such that f ◦ f ′ ◦ f = f . Massey and Hiltgen [20,26]
introduced the phrases complexity asymmetry and computational asymmetry for injective functions, in
reference to the situation where the circuit complexities C( f ) and C( f −1) are very different. The
concept of computational asymmetry can be generalized to arbitrary (non-injective) functions, with
the meaning that for every inverse f ′ of f , C( f ) and C( f ′) are very different.
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In [26] Massey made the following observation. For any large-enough fixed m and for almost all
permutations f of {0,1}m , the circuit complexities C( f ) and C( f −1) are very similar:

1

10
C( f ) � C

(
f −1) � 10C( f ).

Massey’s proof is adapted from the Shannon lower bound [37] and the Lupanov upper bound [24] (see
also [20,21,34]), from which it follows that almost all functions and almost all permutations (and their
inverses) have circuit complexity close to the Shannon bounds. Massey’s observation can be extended
to the set of all functions f : {0,1}m → {0,1}n , i.e., for almost all f and for every inverse f ′ of f , the
complexities C( f ) and C( f ′) are within constant factors of each other.

Hence, computationally asymmetric permutations are rare among the boolean permutations overall
(and similarly for functions). This is an interesting fact about computational asymmetry, but by itself it
does not imply anything about the existence or non-existence of one-way functions, not even heuristi-
cally. Indeed, Massey proved his linear relation C( f ) = Θ(C( f ′)) in the situation where C( f ) = Θ(2m),
and then uses the fact that the condition C( f ) = Θ(2m) holds for almost all boolean permutations
and for almost all boolean functions. But there also exist functions with C( f ) = O (mk), with k a small
constant. In particular, one-way functions (if they exist) have small circuits; by definition, one-way
functions violate the condition C( f ) = Θ(2m).

A well-known candidate for a one-way permutation is the following. For a large prime number p
and a primitive root r modulo p, consider the map x ∈ {0,1, . . . , p − 2} �−→ rx − 1 ∈ {0,1, . . . , p − 2}.
This is a permutation whose inverse, known as the discrete logarithm, is believed to be difficult to
compute.

Measuring computational asymmetry. Let S{0,1}m denote the set of all permutations of {0,1}m ,
i.e., S{0,1}m is the symmetric group. We will measure the computational asymmetry of all permu-
tations of {0,1}m (for all m > 0) by defining a computational asymmetry function, as follows. A function
a : N → N is an upper bound on the computational asymmetry function iff for all m > 0 and all per-
mutations f of {0,1}m we have: C( f −1) � a(C( f )). The computational asymmetry function α of the
boolean permutations is the least such function a(.). Hence:

Definition 1.1. The computational asymmetry function α of the boolean permutations is defined as
follows for all s ∈ N: α(s) = max{C( f −1): C( f ) � s, f ∈ S{0,1}m , m > 0}.

Note that in this definition we look at all combinational circuits, for all permutations in⋃
m>0 S{0,1}m ; we do not need to work with non-uniform or uniform families of circuits.
Computational asymmetry is closely related to one-wayness, as the next proposition shows.

Proposition 1.2.

(1) For infinitely many n we have: There exists a permutation fn of {0,1}n such that fn is computed by
a circuit of size � 3n, but f −1

n has no circuit of size < α(n).
(2) Suppose that α is exponential, i.e., there is k > 1 such that for all n, α(n) � kn. Then k � 2, and there is

a constant c > 1 such that we have: For every integer n � 1 there exists a permutation Fn of {0,1}n which
is computed by a circuit of size � cn, but F −1

n has no circuit of size < kn.

Proof. (1) By the definition of α, for every m > 0 there exists a permutation F of {0,1}m such that F
is computed by a circuit of some size C F , but F −1 has no circuit of size < α(C F ). Let n = C F , and let
us consider the function fn : {0,1}C F → {0,1}C F defined by fn : (x, w) �−→ (F (x), w), for all x ∈ {0,1}m

and w ∈ {0,1}C F −m .
Then fn(x, w) is computed by a circuit of size C F + 2(C F − m); the term “2(C F − m)” comes

from counting the input–output wires of w . Hence fn has a circuit of size � 3n. On the other hand,
(y, w) �−→ f −1

n (y, w) = (F −1(y), w) is not computed by any circuit of size < α(C F ), so f −1
n has no

circuit of size < α(n).
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(2) For every n � 1 there exists a permutation F of {0,1}n such that F is computed by a circuit
of some size C F , and F −1 has a circuit of size C F −1 = α(C F ) � kC F ; moreover, F −1 has no circuit
of size < α(C F ). Thus, kC F � C F −1 � 2n(1 + co

logn
n ), for some constant co > 1; the latter inequality

comes from the Lupanov upper bound [24] (or see Theorem 2.13.2 in [34]). Hence, k � 2 and n �
C F � 1

log2 k n + c1
logn

n , for some constant c1 > 0. Hence, for all n � 1 there exists a permutation F of

{0,1}n with circuit size C F ∈ [n, 1
log2 k · n + c1 · logn

n ], such that C F −1 = α(C F ) � kC F � kn . �
We will show later that the computational asymmetry function is closely related to the distortion

of certain groups within certain monoids.

Remarks. Although in this paper we only use the computational asymmetry function of the boolean
permutations, the concept can be generalized. Let Inj({0,1}m, {0,1}n) denote the set of all injective
functions {0,1}m → {0,1}n . The computational asymmetry function αinj of the injective boolean func-
tions is defined by

αinj(s) = max
{

C
(

f −1): C( f ) � s, f ∈ Inj
({0,1}m, {0,1}n)

, m > 0, n > 0
}
.

More generally, let ({0,1}n){0,1}m
denote the set of all functions {0,1}m → {0,1}n . The computational

asymmetry of all finite boolean functions is defined by

αfunc(s) = max
{

C( f ′): C( f ) � s, f f ′ f = f , f , f ′ ∈ ({0,1}n){0,1}m

, n > 0, m > 0
}
.

When we compare functions we will be mostly interested in their asymptotic growth pattern.
Hence we will often use the big-O notation, and the following definitions.

By definition, two functions f1 : N → N and f2 : N → N are linearly equivalent iff there are constants
c0, c1, c2 > 0 such that for all n � c0: f1(n) � c1 f2(c1n) and f2(n) � c2 f1(c2n). Notation: f1 �lin f2.

Two functions f1 and f2 (from N to N) are called polynomially equivalent iff there are constants
c0, c1, c2,d, e > 0 such that for all n � c0: f1(n) � c1 f2(c1nd)d and f2(n) � c2 f1(c2ne)e . Notation:
f1 �poly f2.

1.3. Word-length asymmetry

For a monoid M with generating set Γ , the word-length of an element x ∈ M is defined to be the
length of a shortest word over Γ , representing x; we use the notation |x|Γ . We introduce an algebraic
notion that looks very similar to computational asymmetry:

Definition 1.3. Let G be a group, let M be a monoid with generating set Γ (finite or infinite), and
suppose G ⊆ M . The word-length asymmetry function of G within M (over Γ ) is

λ(n) = max
{∣∣g−1

∣∣
Γ

: |g|Γ � n, g ∈ G
}
.

The word-length asymmetry function λ depends on G , M , Γ , and the embedding of G in M .
Consider the right Cayley graph of the monoid M with generating set Γ ; its vertex set is M and

the edges have the form x
γ−→ γ x (for x ∈ M , γ ∈ Γ ). For x, y ∈ M , the directed distance d(x, y) in the

Cayley graph is the shortest length over all paths from x to y in the Cayley graph; if no path from x
to y exists, the directed distance is infinite. By “path” we always mean directed path.

Lemma 1.4. Under the above conditions on G, M, Γ , we have for every g ∈ G: d(1, g−1) = d(g,1) and
d(1, g) = d(g−1,1).
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Fig. 1. Toffoli representation of the function f .

Proof. This is straightforward; see [10]. �
Since |g|Γ is the distance d(1, g) in the graph of M , and since |g−1|Γ = d(1, g−1) = d(g,1), the

word-length asymmetry also measures the asymmetry of the directed distance, to or from the identity
element 1 in the Cayley graph of M , restricted to vertices in the subgroup G .

For distances to or from the identity element of M it does not matter whether we consider the
left Cayley graph or the right Cayley graph.

1.4. Computational asymmetry and reversible computing

Reversible computing deals with the following questions: If a function f is injective (or bijective)
and computable, can f be computed in such a way that each elementary computation step is injective
(respectively bijective)? And if such injective (or bijective) computations are possible, what is their
complexity, compared to the usual (non-injective) complexity?

One of the main results is the following (Bennett’s theorem [4,5], and earlier work of Lecerf [23]):
Let f be an injective function, and assume f and f −1 are computable by deterministic Turing ma-
chines with time complexity T f (.), respectively T f −1 (.). Then f (and also f −1) is computable by a
reversible Turing machine (in which every transition is deterministic and injective) with time complex-
ity O (T f + T f −1 ). Note that only injectiveness (not bijectiveness) is used here.

Bennett’s theorem has the following important consequence, which relates reversible computing
to one-way functions: Injective one-way functions exist iff there exist injective functions that have efficient
traditional algorithms but that do not have efficient reversible algorithms.

Toffoli representation. Remarkably, it is possible to “simulate” any function f : {0,1}m → {0,1}n (in-
jective or not, one-way or not) by a bijective circuit; a circuit is called bijective iff the circuit is made
from bijective gates. Here, bijective circuits will be built from the wire-swapping operations and the
following bijective gates: not (negation), c-not (the Controlled Not, also called “Feynman gate”) de-
fined by (x1, x2) ∈ {0,1}2 �−→ (x1, x1 ⊕ x2) ∈ {0,1}2, and cc-not (the Doubly Controlled Not, also called
“Toffoli gate”) defined by (x1, x2, x3) ∈ {0,1}3 �−→ (x1, x2, (x1 ∧ x2) ⊕ x3) ∈ {0,1}3.

Theorem 1.5. (See Toffoli [42,43].) For every boolean function f : {0,1}m → {0,1}n there exists a bijective
combinational circuit β f (over the bijective gates not, c-not, cc-not, and wire-transpositions), with input–
output function β f : x0n ∈ {0,1}m+n �−→ f (x)x ∈ {0,1}n+m.

In other words, f (x) consists of the projection onto the first n bits of β f (x0n); equivalently, f (.) =
projn ◦ β f ◦ concat0n (.), where projn projects a string of length n + m to the first n bits, and concat0n

concatenates 0n to the right of a string. See Theorems 4.1, 5.3 and 5.4 of [42], and see Fig. 1.
The Toffoli representation contains two non-bijective actions: The projection at the output, and the

forced setting of the value of some of the input wires.
Toffoli’s proofs and constructions are based on truth tables, and he does not prove anything about

the circuit size of β f (counting the bijective gates), compared to the circuit size of f . The following
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gives a polynomial bound on the size of the bijective circuit, at the expense of a large number of
input- and output-wires.

Theorem 1.6. (See E. Fredkin, T. Toffoli [16].) For every boolean function f : {0,1}m → {0,1}n with circuit
size C( f ) there exists a bijective combinational circuit B f (over a bounded collection of bijective gates, e.g.,
not, c-not, cc-not, and wire-transpositions), with input–output function

B f : x0n+C( f ) ∈ {0,1}m+n+C( f ) �−→ f (x)z(x) ∈ {0,1}m+n+C( f )

for some z(x) ∈ {0,1}m+C( f ) . The number of gates of B f has a polynomial upper bound in terms of C( f ).
If g : {0,1}m → {0,1}m is a permutation then there exists a bijective combinational circuit U g (over bijec-

tive gates), with input–output function

U g : x1m0m+C ∈ {0,1}3m+C �−→ g(x)g(x)x0C ∈ {0,1}3m+C

where C = max{C(g), C(g−1)}, and g(x) is the bitwise complement of g(x). The number of gates of U g has
a polynomial upper bound in terms of C .

Later we will introduce another reversible representation of boolean functions by bijective gates;
we will need only one 0-wire, but the gates will be taken from the Thompson group G2,1, i.e., we
will also use non-length-preserving transformations of bitstrings (Theorems 4.1 and 4.2 below).

1.5. Distortion

We will prove later (Theorem 5.10) that computational asymmetry has a lot to do with distortion,
a concept introduced into group theory by Gromov [18] and Farb [15]. Distortion is already known to
have connections with isoperimetric functions (see [25,29,30]). A somewhat different problem about
distortion (for finite metric spaces) was tackled by Bourgain [11].

We will use a slightly more general notion of distortion, based on (possibly directed) countably
infinite rooted graphs, and their (directed) path metric.

A weighted directed graph is a structure (V , E,ω) where V is a set (called the vertex set), E ⊆
V × V (called the edge set), and ω : E �−→ R>0 is a function (called the weight function); note that
every edge has a strictly positive weight. It is sometimes convenient to define ω(u, v) = ∞ when
(u, v) ∈ V × V − E . A path in (V , E) is a sequence of edges (ui, vi) (1 � i � n) such that ui+1 = vi
for all i < n, and such that all elements in {ui: 1 � i � n} ∪ {vn} are distinct; u1 is called the start
vertex of this path, and vn is called the end vertex of this path; the sum of weights

∑n
i=1 ω(ui, vi)

over the edges in the path is called the length of the path. Here we do not consider any paths with
infinitely many edges; but we allow V and E to be countably infinite. A vertex w2 is said to be
reachable from a vertex w1 in (V , E) iff there exists a path with start vertex w1 and end vertex w2.
If w2 is reachable from w1 then the minimum length over all paths from w1 to w2 is called the
directed distance from w1 to w2, denoted d(w1, w2); since we only consider finite paths here, this
minimum exists. If w2 is not reachable from w1 then we define d(w1, w2) to be ∞. Clearly we have
w1 = w2 iff d(w1, w2) = 0, and for all u, v, w ∈ V , d(u, w) � d(u, v) + d(v, w). In a directed graph,
the function d(.,.) need not be symmetric. The function d : V × V → R�0 ∪ {∞} is called the directed
path metric of (V , E,ω). A rooted directed weighted graph is a structure (V , E,ω, r) where (V , E,ω)

is a directed weighted graph, r ∈ V , and all vertices in V are reachable from r.
A set M with a function d : M × M → R�0 ∪ {∞}, satisfying the two axioms w1 = w2 iff

d(w1, w2) = 0, and d(u, w) � d(u, v) + d(v, w), will be called directed metric space (a.k.a. quasi-metric
space).

Any subset G embedded in a directed metric space M becomes a directed metric space by using
the directed distance of M . We call this the directed distance on G inherited from M .

If G ⊆ V for a rooted directed weighted graph (V , E,ω, r), we consider the function � : g ∈ G �−→
d(r, g) ∈ R�0, which we call the directed length function on G inherited from (V , E,ω, r). (The value ∞
will not appear here since all of G is reachable from r.)
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We now define distortion in a very general way. Intuitively, distortion in a set is a quantitative
comparison between two (directed) length functions that are defined on the same set.

Definition 1.7. Let G be a set, and let �1 and �2 be two functions G → R�0. The distortion of �1 with
respect to �2 is the function δ�1,�2 : R�0 → R�0 defined by

δ�1,�2 (n) = max
{
�1(g): g ∈ G, �2(g) � n

}
.

We will also use the notation δ[�1, �2](.) for δ�1,�2 (.). When we consider a distortion δ�1,�2 (.)

we often assume that �2 � �1 or �2 � O (�1); this insures that the distortion is at least linear, i.e.,
δ�1,�2(n) � cn, for some constant c > 0. We will only deal with functions obtained from the lengths
of finite paths in countable directed graphs, so in that case the functions �i are discrete, and the
distortion function exists. The next lemma generalizes the distortion result of Proposition 4.2 of [15].

Lemma 1.8. Let G be a set and consider three functions �3, �2, �1 : G → R�0 such that �1(.) � �2(.) � �3(.).
Then the corresponding distortions satisfy: δ�1,�3 (.) � δ�1,�2 ◦ δ�2,�3 (.).

Proof. The inequalities �1(.) � �2(.) � �3(.) guarantee that the three distortions δ�1,�3 , δ�1,�2 , and δ�2,�3

are at least as large as the identity map. By definition,

δ�1,�2

(
δ�2,�3(n)

) = max
{
�1(x): x ∈ G, �2(x) � δ�2,�3 (n)

}
= max

{
�1(x): x ∈ G, �2(x) � max

{
�2(z): z ∈ G, �3(z) � n

}}
= max

{
�1(x): x ∈ G, (∃z ∈ G)

(
�2(x) � �2(z) and �3(z) � n

)}
� max

{
�1(x): x ∈ G, �3(x) � n

} = δ�1,�3(n).

The last inequality follows from the fact that if �3(x) � n then for some z (e.g., for z = x): �2(x) � �2(z)
and �3(z) � n. �
Examples of distortion. Distortion and asymmetry are unifying concepts that apply to many fields.

1. Gromov distortion. Let G be a subgroup of a group H , with generating sets ΓG , respectively ΓH ,
such that ΓG ⊆ ΓH , and such that ΓG = Γ −1

G and ΓH = Γ −1
H . This determines a Cayley graph for G

and a Cayley graph for H . Now we have two distance functions on G , one obtained from the Cayley
graph of G itself (based on ΓG ), and the other inherited from the embedding of G in H . See [11,15,18].

The Gromov distortion function is a natural measure of the difficulty of the generalized word prob-
lem. A very important case is when both ΓG and ΓH are finite. Here are some results for that case:

Theorem of Ol’shanskii and Sapir [30] (making precise and proving the outline on pp. 66–67
in [18]): All Dehn functions of finitely presented groups (and “approximately all” time complexity
functions of non-deterministic Turing machines) are Gromov distortion functions of finitely generated
subgroups of FG2 × FG2; here, FG2 denotes the 2-generated free group. Moreover, in [6] it was proved
that FG2 × FG2 is embeddable with linear distortion in the Thompson group G2,1. So the theorem of
Ol’shanskii and Sapir also holds for the finitely generated subgroups of G2,1.

Actually, Gromov [18] and Bourgain [11] defined the distortion to be 1
n · max{|g|ΓG : |g|ΓH � n,

g ∈ G}, i.e., they use an extra factor 1
n . However, the connections between distortion, the generalized

word problem, and complexity (as we just saw, and will further see in the present paper) are more
direct without the factor 1

n .

2. Bourgain’s distortion theorem. Given a finite metric space G with n elements, the aim is to find
embeddings of G into a finite-dimensional euclidean space. The two distances of G are its given
distance and the inherited euclidean distance. In this problem the goal is to have small distortion,
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as a function of the cardinality of G , while also keeping the dimension of the euclidean space small.
Bourgain [11] found a bound O (n log n) for the distortion (or “O (log n)” in Bourgain’s and Gromov’s
terminology). This is an important result. See also [2,3,22].

3. Generator distortion. A variant of Gromov’s distortion is obtained when G = H , but ΓG � ΓH . So
here we look at the distorting effect of a change of generators in a given group. When ΓG and ΓH

are both finite the generator distortion is linear; however, when ΓG is finite and ΓH is infinite the
distortion becomes interesting. E.g., for the Thompson group G2,1 let us take ΓG to be any finite
generating set, and for ΓH let us take ΓG ∪ {τi, j: 1 � i < j}; here τi, j is the position transposition
defined earlier. Then the generator distortion is exponential (see [7]). Also, the word problem of G2,1
over any finite generating set ΓG is in P, but the word problem of G2,1 over ΓG ∪ {τi, j: 1 � i < j} is
coNP-complete (see [7] and [8]).

4. Monoids and directed distance. Gromov’s distortion and the generator distortion can be generalized
to monoids. We repeat what we said about Gromov distortion, but G and H are now monoids, and ΓG ,
respectively ΓH , are monoid generating sets which are used to define monoid Cayley graphs. We will
use the left Cayley graphs. We assume ΓG ⊆ ΓH . In each Cayley graph there is a directed distance,
defined by the lengths of directed paths. The monoid G now has two directed distance functions, the
distance in the Cayley graph of G itself, and the directed distance that G inherits from its embedding
into the Cayley graph of H . We denote the word-length of g ∈ G over ΓG by |g|G ; this is the minimum
length of all words over ΓG that represent g; it is also the length of a shortest path from the identity
to g in the Cayley graph of G . Similarly, we denote the word-length of h ∈ H over ΓH by |h|H . The
definition of the distortion becomes: δ(n) = max{|g|G : g ∈ G, |g|H � n}.

5. Schreier graphs. Let G , H , and F be groups, where F is a subgroup of H . Let ΓH be a generating set
of ΓH , and assume ΓH = Γ −1

H . We can define the Schreier left coset graph of H/F over the generating
set ΓH , and the distance function dH/F (.,.) in this coset graph. By definition, this Schreier graph has
vertex set H/F (i.e., the left cosets, of the form h · F with h ∈ H), and it has directed edges of the
form h · F

γ−→ γ h · F , for h ∈ H , γ ∈ ΓH . The graph is symmetric; for every edge as above there is an

opposite edge γ h · F
γ −1−−−→ h · F . Because of symmetry the Schreier graph has a (symmetric) distance

function based on path length, dH/F (.,.) : H/F × H/F → N.
Next, assume that G is embedded into H/F by some injective function G ↪→ H/F . Such an em-

bedding happens, e.g., if G and F are subgroups of H such that G ∩ F = {1}. Indeed, in that case each
coset in H/F contains at most one element of G (since g1 F = g2 F implies g−1

2 g1 ∈ F ∩ G = {1}).
The group G now inherits a distance function from the path length in the Schreier graph of H/F .

Comparing this distance with other distances in G leads to distortion functions. E.g., if the group G is
also embedded in a monoid M with monoid generating set ΓM , this leads to the following distortion
function: δG(n) = max{dH/F (F , g F ): g ∈ G, |g|M � n}.

It will turn out that for appropriate choices of G , F , H , ΓH , and ΓM , this last distortion is polyno-
mially related to the computational asymmetry function α of boolean permutations (Theorem 5.10).

6. Asymmetry functions. We already saw the computational asymmetry function of combinational
circuits, and the word-length asymmetry function of a group embedded in a monoid. More generally,
in any quasi-metric space (S,d), where d(.,.) is a directed distance function, an asymmetry function
A : R�0 → R�0 can be defined by A(n) = max{d(x2, x1): x1, x2 ∈ S, d(x1, x2) � n}.

This asymmetry function can also be viewed as the distortion of drev with respect to d in S; here
drev denotes the reverse directed distance, defined by drev(x1, x2) = d(x2, x1).

7. Other distortions.

– Distortion can compare lengths of proofs (or lengths of expressions) in various, more or less pow-
erful proof systems (respectively description languages). Distortion can also compare the duration
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of computations or of rewriting processes in various models of computation. Hence, many (per-
haps all) notions of complexity are examples of distortion. Distortion is an algebraic or geometric
representation (or cause) of complexity.

– Instead of length and distance, other measures (e.g., volumes in higher dimension, energy, action,
entropy, etc.) could be used.

1.6. Thompson–Higman groups and monoids

The Thompson groups, introduced by Richard J. Thompson [27,40,41], are finitely presented infi-
nite groups that act as bijections between certain subsets of {0,1}∗ . So, the elements of the Thompson
groups are transformations of bitstrings, and hence they are related to input–output maps of combi-
national circuits. In this subsection we define the Thompson group G2,1 (also known as “V ”), as well
as its generalization (by Graham Higman [19]) to the group Gk,1 that partially acts on A∗ , for any
finite alphabet A of size k � 2. We will follow the presentation of [6] (see also [8] and [7]); another
reference is [35], which is also based on string transformations but with a different terminology; the
classical references [13,19,27,40,41] do not describe the Thompson groups by transformations of finite
strings. Because of our interest in strings and in circuits, we also use generalizations of the Thompson
groups to monoids, as introduced in [9].

Some preliminary definitions, all fairly standard, are needed in order to define the Thompson–
Higman group Gk,1. First, we pick any alphabet A of cardinality |A| = k. By A∗ we denote the set
of all finite words (or “strings”) over A; the empty word ε is also in A∗ . We denote the length of
w ∈ A∗ by |w| and we let An denote the set of words of length n. We denote the concatenation
of two words u, v ∈ A∗ by uv or by u · v; the concatenation of two subsets B, C ⊆ A∗ is defined by
BC = {uv: u ∈ B, v ∈ C}. A right ideal of A∗ is a subset R ⊆ A∗ such that R A∗ ⊆ R . A generating set of
a right ideal R is, by definition, a set C such that R is equal to the intersection of all right ideals that
contain C ; equivalently, C generates R (as a right ideal) iff R = C A∗ . A right ideal R is called essential
iff R has a non-empty intersection with every right ideal of A∗ . For u, v ∈ A∗ , we call u a prefix of v
iff there exists z ∈ A∗ such that uz = v . A prefix code is a subset C ⊆ A∗ such that no element of C
is a prefix of another element of C . A prefix code C over A is maximal iff C is not a strict subset of
any other prefix code over A. It is easy to prove that a right ideal R has a unique minimal (under
inclusion) generating set C R , and that C R is a prefix code; moreover, C R is a maximal prefix code iff R
is an essential right ideal.

For a partial function f : A∗ → A∗ we denote the domain by Dom( f ) and the image (range) by
Im( f ). A restriction of f is any partial function f1 : A∗ → A∗ such that Dom( f1) ⊆ Dom( f ), and such
that f1(x) = f (x) for all x ∈ Dom( f1). An extension of f is any partial function of which f is a re-
striction. An isomorphism between right ideals R1, R2 of A∗ is a bijection ϕ : R1 → R2 such that for
all r1 ∈ R1 and all z ∈ A∗: ϕ(r1z) = ϕ(r1) · z. The isomorphism ϕ is uniquely determined by a bijection
between the prefix codes that minimally generate R1, respectively R2. One can prove [6,35,41] that
every isomorphism ϕ between essential right ideals has a unique maximal extension (within the cate-
gory of isomorphisms between essential right ideals of A∗); we denote this unique maximal extension
by max(ϕ).

Now, finally, we define the Thompson–Higman group Gk,1: It consists of all maximally extended
isomorphisms between finitely generated essential right ideals of A∗ . The multiplication consists of
composition followed by maximum extension: ϕ · ψ = max(ϕ ◦ ψ). Note that Gk,1 acts partially and
faithfully on A∗ on the left.

Every element ϕ ∈ Gk,1 can be described by a bijection between two finite maximal prefix codes;
this bijection can be described concretely by a finite function table. When ϕ is described by a max-
imally extended isomorphism between essential right ideals, ϕ : R1 → R2, we call the minimum
generating set of R1 the domain code of ϕ , and denote it by domC(ϕ); similarly, the minimum gen-
erating set of R2 is called the image code of ϕ , denoted by imC(ϕ). See the beginning of the proof of
Theorem 4.1 for examples of tables of elements of G2,1. More examples appear in [6].

Thompson and Higman proved that Gk,1 is finitely presented. Also, when k is even Gk,1 is a simple
group, and when k is odd Gk,1 has a simple normal subgroup of index 2. In [6] it was proved that
the word problem of Gk,1 over any finite generating set is in P (in fact, more strongly, in the parallel
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complexity class AC1). In [7,8] it was proved that the word problem of Gk,1 over Γ ∪ {τi, j: 1 �
i < j} is coNP-complete, where Γ is any finite generating set of Gk,1, and where τi, j is the position
transposition introduced in Subsection 1.1.

Because of connections with circuits we consider the subgroup lp Gk,1 of all length-preserving
elements of Gk,1; more precisely, lp Gk,1 = {ϕ ∈ Gk,1: ∀x ∈ Dom(ϕ), |x| = |ϕ(x)|}. See [8] for a study
of lp Gk,1 and some of its properties. In particular, it was proved that lp Gk,1 is a direct limit of
finite alternating groups, and that lp G2,1 is generated by the set {N, C, T } ∪ {τi,i+1: 1 � i}, where
N : x1 w �→ x1 w , C : x1x2 w �→ x1(x2 ⊕ x1)w , and T : x1x2x3 w �→ x1x2(x3 ⊕ (x2 ∧ x1))w (for x1, x2, x3 ∈
{0,1} and w ∈ {0,1}∗). Thus (recalling Subsection 1.4), N, C, T are the not, c-not, cc-not gates, applied
to the first (left-most) bits of a binary string. It is known that the gates not, c-not, cc-not, together with
the wire-swappings, form a complete set of gates for bijective circuits (see [16,38,42]); hence, lp G2,1
is closely related to the field of reversible computing.

It is natural to generalize the bijections between finite maximal prefix codes to functions between
finite prefix codes. Following [9] we will define below the Thompson–Higman monoids Mk,1. First, some
preliminary definitions. A right-ideal homomorphism of A∗ is a total function ϕ : R1 → A∗ such that R1
is a right ideal, and such that for all r1 ∈ R1 and all z ∈ A∗: ϕ(r1z) = ϕ(r1) · z. It is easy to prove that
Im(ϕ) is then also a right ideal of A∗ . From now on we will write a right-ideal homomorphism as
a total surjective function ϕ : R1 → R2, where both R1 and R2 are right ideals. The homomorphism ϕ
is uniquely determined by a total surjective function f : P1 → S2, with P1, S2 ⊂ A∗ where P1 is the
prefix code (not necessarily maximal) that generates R1 as a right ideal, and where S2 is a set (not
necessarily a prefix code) that generates R2 as a right ideal; f can be described by a finite function
table.

For two sets X, Y , we say that X and Y “intersect” iff X ∩ Y �= ∅. We say that a right ideal R ′
1 is

essential in a right ideal R1 iff R ′
1 intersects every right ideal that R1 intersects. An essential restriction

of a right-ideal homomorphism ϕ : R1 → R2 is a right-ideal homomorphism Φ : R ′
1 → R ′

2 such that R ′
1

is essential in R1, and for all x′
1 ∈ R ′

1: ϕ(x′
1) = Φ(x′

1). In that case we also say that ϕ is an essential
extension of Φ . If Φ is an essential restriction of ϕ then R ′

2 = Im(Φ) will automatically be essential in
R2 = Im(ϕ). Indeed, if I is any non-empty right subideal of R1 then I ∩ R ′

1 �= ∅, hence ∅ �= Φ(I ∩ R ′
1) ⊆

Φ(I) ∩ Φ(R ′
1) = Φ(I) ∩ R ′

2; moreover, any non-empty right subideal J of R2 is of the form J = Φ(I),
where I = Φ−1( J ) is a non-empty right subideal of R1; hence, for any non-empty right subideal J
of R2, ∅ �= J ∩ R ′

2.
The free monoid A∗ can be pictured by its right Cayley graph, which is easily seen to be the infinite

regular k-ary tree with vertex set A∗ and edge set {(v, va): v ∈ A∗, a ∈ A}. We simply call this the
tree of A∗ . It is a directed, rooted tree, with all paths directed away from the root ε (the empty
word); by “path” we will always mean a directed path. Many of the previously defined concepts can
be reformulated more intuitively in the context of the tree of A∗: A word v is a prefix of a word w
iff v is an ancestor of w in the tree. A set P is a prefix code iff no two elements of P are on
a common path. A set R is a right ideal iff any path that starts in R has all its vertices in R . The
prefix code that generates R consists of the elements of R that are maximal (within R) in the prefix
order, i.e., maximally close (along paths) to the root ε. A finitely generated right ideal R is essential iff
every infinite path eventually reaches R (and then stays in it from there on). Similarly, a finite prefix
code P is maximal iff any infinite path starting at the root eventually intersects P . For two finitely
generated right ideals R ′ , R with R ′ ⊂ R we have: R ′ is essential in R iff any infinite path starting
in R eventually reaches R ′ (and then stays in it from there on).

Assume now that a total order a1 < a2 < · · · < ak has been chosen for the alphabet A; this means
that the tree of A∗ is now an oriented rooted tree, i.e., the children of each vertex v have a total order
va1 < va2 < · · · < vak . The following can be proved (see [9, Prop. 1.4(1)]): Φ is an essential restriction
of ϕ iff Φ can be obtained from ϕ by starting from the table of ϕ and applying a finite number of
restriction steps of the following form: “replace (x, y) in a table by {(xa1, ya1), . . . , (xak, yak)}.” In the tree
of A∗ this means that x and y are replaced by their children xa1, . . . , xak , respectively ya1, . . . , yak ,
paired according to the order on the children. One can also prove (see [9, Remark after Prop. 1.4]):
Every right-ideal homomorphism ϕ with table P → S has an essential restriction ϕ′ that has a table
P ′ → Q ′ such that both P ′ and Q ′ are prefix codes. See [9] for examples of tables of elements of
right-ideal homomorphisms.
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An important fact is the following (see [9, Prop. 1.4(2)]): Every homomorphism between finitely
generated right ideals of A∗ has a unique maximal essential extension; we call it the maximum essen-
tial extension of Φ and denote it by max(Φ).

Finally here is the definition of the Thompson–Higman monoid: Mk,1 consists of all maximum essen-
tial extensions of homomorphisms between finitely generated right ideals of A∗ . The multiplication is
composition followed by maximum essential extension.

One can prove the following, which implies associativity: For all right-ideal homomorphisms
ϕ1,ϕ2: max(ϕ2 ◦ ϕ1) = max(max(ϕ2) ◦ ϕ1) = max(ϕ2 ◦ max(ϕ1)).

In [9] the following are proved about the Thompson–Higman monoid Mk,1:

• The Thompson–Higman group Gk,1 is the group of invertible elements of the monoid Mk,1.
• Mk,1 is finitely generated.
• The word problem of Mk,1 over any finite generating set is in P.
• The word problem of Mk,1 over a generating set Γ ∪ {τi, j: 1 � i < j}, where Γ is any finite

generating set of Mk,1, is coNP-complete.

2. Boolean functions as elements of Thompson monoids

The input–output functions of combinational circuits map bitstrings of some fixed length to bit-
strings of a fixed length (possibly different from the input length). In other words, circuits have
input–output maps that are total functions of the form f : {0,1}m → {0,1}n for some m,n > 0. The
Thompson–Higman monoid Mk,1 has an interesting submonoid that corresponds to fixed-length maps,
defined as follows.

Definition 2.1 (The submonoid lep Mk,1). Let ϕ : P A∗ → Q A∗ be a right-ideal homomorphism, where
P , Q ⊂ A∗ are finite prefix codes, and where P is a maximal prefix code. Then ϕ is called length-
equality preserving iff for all x1, x2 ∈ Dom(ϕ): |x1| = |x2| implies |ϕ(x1)| = |ϕ(x2)|.

The submonoid lep Mk,1 of Mk,1 consists of those elements of Mk,1 that can be represented by
length-equality preserving right-ideal homomorphisms.

It is easy to check that an essential restriction of an element of lep Mk,1 is again in lep Mk,1, so
lep Mk,1 is well defined as a subset of Mk,1; moreover, one can easily check that lep Mk,1 is closed
under composition, so lep Mk,1 is indeed a submonoid of Mk,1.

For ϕ ∈ Mk,1 we have ϕ ∈ lep Mk,1 iff there exist m > 0 and n > 0 such that Am ⊂ Dom(ϕ) and
ϕ(Am) ⊆ An . So (by means of an essential restriction, if necessary), ϕ can be represented by a function
table Am → Q ⊆ An with a fixed input length and a fixed output length (but the input and output lengths
can be different).

The motivation for studying the monoid lep Mk,1 is the following. Every boolean function
f : {0,1}m → {0,1}n (for any m,n > 0) determines an element of lep Mk,1, and conversely, this ele-
ment of lep Mk,1 determines f when restricted to {0,1}m . By considering all boolean functions as
elements of lep Mk,1 we gain the ability to compose arbitrary boolean functions, even if their domain
and range “do not match.” Moreover, in lep Mk,1 we are able to generate all boolean functions from
gates by using ordinary functional composition (instead of graph-based circuit lay-outs). The following
remains open:

Question. Is lep Mk,1 finitely generated?

However we can find nice infinite generating sets, in connection with circuits.

Proposition 2.2 (Generators of lep Mk,1). The monoid lep Mk,1 has a generating set of the form Γ ∪
{τi,i+1: 1 � i}, for some finite subset Γ ⊂ lep Mk,1 .
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Proof. We only prove the result for k = 2; a similar reasoning works for all k (using k-ary logic).
It is a classical fact that any function f : {0,1}m → {0,1}n can be implemented by a combinational

circuit that uses copies of and, or, not, fork and wire-crossings. So all we need to do is to express these
gates, at any place in the circuit, by a finite subset of lep M2,1 and by position transpositions τi,i+1.
For each gate g ∈ {and,or} we define an element γg ∈ lep Mk,1 by

γg : x1x2 w ∈ {0,1}m �−→ g(x1, x2)w ∈ {0,1}m−1.

Similarly we define γnot, γfork ∈ lep Mk,1 by

γnot : x1 w ∈ {0,1}m �−→ x1 w ∈ {0,1}m,

γfork : x1 w ∈ {0,1}m �−→ x1x1 w ∈ {0,1}m+1.

For each g ∈ {and,or,not, fork}, γg transforms only the first one or two boolean variables, and leaves
the other boolean variables unchanged. We also need to simulate the effect of a gate g on any variable
xi or pair of variables xi xi+1, i.e., we need to construct the map

uxi xi+1 v ∈ {0,1}m �−→ ug(xi, xi+1)v ∈ {0,1}m−1

(and similarly in case where g is not or fork). For this, we apply wire-transpositions to move xi xi+1
to the wire-positions 1 and 2, then we apply γg , then we apply more wire-transpositions in order to
move g(x1, x2) back to position i. Thus the effect of any gate anywhere in the circuit can be expressed
as a composition of γg and position transpositions in {τi,i+1: 1 � i}. �
Proposition 2.3 (Change of generators of lep Mk,1). Let {τi,i+1: 1 � i} be denoted by τ . If Γ,Γ ′ ⊂ lep Mk,1
are two finite sets such that Γ ∪ τ and Γ ′ ∪ τ generate lep Mk,1 , then the word-length over Γ ∪ τ is linearly
related to the word-length over Γ ′ ∪ τ . In other words, there are constants c′ � c � 1 such that for all m ∈
lep Mk,1: |m|Γ ∪τ � c · |m|Γ ′∪τ � c′ · |m|Γ ∪τ .

Proof. Since Γ is finite, the elements of Γ can be expressed by a finite set of words of bounded
length (� c) over Γ ′ ∪ τ . Thus, every word of length n over Γ ∪ τ is equivalent to a word of length
� cn over Γ ′ ∪τ . This proves the first inequality. A similar reasoning proves the second inequality. �
Proposition 2.4 (Circuit size vs. lep M2,1 word-length). Let Γlep M2,1 ∪ {τi, j: 1 � i < j} be a generating set of
lep M2,1 with Γlep M2,1 finite. Let f : {0,1}m → Q (⊆ {0,1}n) be a function defining an element of lep M2,1 ,
and let | f |lep M2,1 the word-length of f over the generating set Γlep M2,1 ∪ {τi, j: 1 � i < j}. Let |C f | be the
circuit size of f (using any finite universal set of gates and wire-swappings). Then | f |lep M2,1 and |C f | are
linearly related. More precisely, for some constants c1 � co � 1:

|C f | � co · | f |lep M2,1 � c1 · |C f |.

Proof. For the proof we assume that the set of gates for circuits (not counting the wire-transpositions)
is Γlep M2,1 . If we make a different choice for the universal set of gates for circuits, and a different
choice for the finite portion Γlep M2,1 of the generating set of lep M2,1 then the inequalities remain the
same, except for the constants c1, co .

The inequality |C f | � | f |lep M2,1 is obvious, since a word w over Γlep M2,1 ∪ {τi, j: 1 � i < j} is auto-
matically a circuit of size |w|.

For the other inequality, we want to simulate each gate of the circuit C f by a word over Γlep M2,1 ∪
{τi, j: 1 � i < j}. The reasoning is the same for every gate, so let us just focus on an or gate. The
essential difference between circuit gates and elements of lep M2,1 is that in a circuit, a gate (with
2 input wires, for example) can be applied to any two wires in the circuit; on the other hand, the
functions in lep M2,1 are applied to the first few wires. However, the circuit gate or, applied to (i, i +1)
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can be simulated by an element of Γlep M2,1 and a few wire transpositions, since we have: ori,i+1(.) =
γor ◦ τ2,i+1 ◦ τ1,i(.).

The output wire of ori,i+1(.) is wire number i, whereas the output wire of γor ◦τ2,i+1 ◦τ1,i(.) is wire
number 1. However, instead of permuting all the wires in order to place the output of γorτ2,i+1τ1,i(.)

on wire i, we just leave the output of γorτ2,i+1τ1,i(.) on wire 1 for now. The simulation of the next
gate will then use appropriate transpositions τ2, j · τ1,k for fetch the correct input wires for the next
gate. Thus, each gate of C f is simulated by one function in Γlep M2,1 and a bounded number of wire-
transpositions in {τi, j: 1 � i < j}.

At the output end of the circuit, a permutation of the n output wires is needed in order to send
the outputs to the correct wires; any permutation of n elements can be realized with < n (� |C f |)
transpositions. (The inequality n � |C f | holds because since we count the output ports in the circuit
size.) �
Remark. The above proposition motivates our choice of generating set of the form Γ ∪{τi, j: 1 � i < j}
(with Γ finite) for lep Mk,1; in particular, it motivates the inclusion of all the position transposi-
tions τi, j in the generating set. The proposition also motivates the definition of word-length in which
τi, j has word-length 1 for all j > i � 1.

Next we will study the distortion of lep Mk,1 in Mk,1. We first need some lemmas (that are not
difficult; see [10]).

Lemma 2.5. (See Lemma 3.3 in [6].) If P , Q , R ⊆ A∗ are such that P A∗ ∩ Q A∗ = R A∗ and R is a prefix code,
then R ⊆ P ∪ Q .

Lemma 2.6. Let P , Q ⊂ A∗ be finite prefix codes, and let θ : P A∗ → Q A∗ be a right-ideal homomorphism
with domain P A∗ and image Q A∗ . Let S be a prefix code with S ⊂ Q A∗ . Then θ−1(S) is a prefix code and
θ−1(S A∗) = θ−1(S)A∗ .

Notation. For a right-ideal homomorphism ϕ : Dom(ϕ) = P A∗ → Im(ϕ) = Q A∗ , where P , Q ⊂ A∗ are
finite prefix codes, we define

�(ϕ) = max
{|z|: z ∈ P ∪ Q

}
.

For any finite prefix code C ⊂ A∗ we define

�(C) = max
{|z|: z ∈ C

}
.

Lemma 2.7. Let ϕ: Dom(ϕ) = P A∗ −→ Im(ϕ) = Q A∗ be a right-ideal homomorphism, where P and Q are
finite prefix codes. Let R ⊂ A∗ be any finite prefix code. Then we have:

(1) �(ϕ−1(R)) < �(ϕ) + �(R),
(2) �(ϕ(R)) < �(ϕ) + �(R).

For any right-ideal homomorphisms ϕi (with i = 1, . . . , N), the composite map ϕN ◦ · · · ◦ ϕ1(.)

is a right-ideal homomorphism. We say that right-ideal homomorphisms Φi (with i = 1, . . . , N) are
directly composable iff Dom(Φi+1) = Im(Φi), for i = 1, . . . , N − 1. The next lemma shows that we can
replace composition by direct composition.

Lemma 2.8. Let ϕi : Dom(ϕi) = Pi A∗ −→ Im(ϕi) = Q i A∗ be a right-ideal homomorphism (for i = 1, . . . , N),
where Pi and Q i are finite prefix codes. Then each ϕi has a (not necessarily essential) restriction to a right-ideal
homomorphism Φi with the following properties:

• ΦN ◦ · · · ◦ Φ1(.) = ϕN ◦ · · · ◦ ϕ1(.);
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• Dom(Φi+1) = Im(Φi), for i = 1, . . . , N − 1;

• �(Φi) �
∑N

j=1 �(ϕ j) for every i = 1, . . . , N.

Proof. We use induction on N . For N = 1 there is nothing to prove. So we let N > 1 and we assume
that the lemma holds for ϕi : Pi A∗ → Q i A∗ with i = 2, . . . , N , i.e., we assume that each ϕi (for i =
2, . . . , N) has a restriction ϕ′

i : P ′
i A∗ → Q ′

i A∗ such that ϕ′
N ◦ · · · ◦ ϕ′

2 = ϕN ◦ · · · ◦ ϕ2, P ′
i+1 = Q ′

i (for

i = 2, . . . , N − 1), and �(ϕ′
i ) �

∑N
j=2 �(ϕ j) for every i = 2, . . . , N . From P ′

i+1 = Q ′
i (for i = 2, . . . , N − 1)

it follows that �(ϕ′
N ◦ · · · ◦ ϕ′

2) � max{�(ϕ′
i ): i = 2, . . . , N} �

∑N
j=2 �(ϕ j).

Using the notation ϕ′[N,2] for ϕ′
N ◦ · · · ◦ ϕ′

2 we have Dom(ϕ′[N,2]) = P2 A∗ and Im(ϕ′[N,2]) = Q N A∗ .
When we compose ϕ1 and ϕ′[N,2] we obtain

ϕ−1
1 (Q 1 A∗ ∩ P2 A∗) Φ1−−→ Q 1 A∗ ∩ P2 A∗ Φ ′[N,2]−−−−→ ϕ′[N,2](Q 1 A∗ ∩ P2 A∗).

In this diagram, Φ1 is the restriction of ϕ1 to the domain ϕ−1
1 (Q 1 A∗ ∩ P2 A∗) and image Q 1 A∗ ∩ P2 A∗;

and Φ ′[N,2] is the restriction of ϕ′[N,2] to the domain Q 1 A∗ ∩ P2 A∗ and image ϕ′[N,2](Q 1 A∗ ∩ P2 A∗).
Hence, Φ ′[N,2] ◦ Φ1 = ϕ′[N,2] ◦ ϕ1, and Dom(Φ ′[N,2]) = Im(Φ1) (= Q 1 A∗ ∩ P2 A∗). So Φ1 and Φ ′[N,2] are
directly composable.

By Lemma 2.5 there is a prefix code S ⊂ A∗ such that S A∗ = Q 1 A∗ ∩ P2 A∗ and S ⊆ Q 1 ∪ P2. Hence,
�(S) � max{�(Q 1), �(P2)} � max{�(ϕ1), �(ϕ

′
2)} � max{�(ϕ1),

∑N
j=2 �(ϕ j)} �

∑N
j=1 �(ϕ j).

It follows also that ϕ−1
1 (Q 1 A∗ ∩ P2 A∗) = ϕ−1

1 (S A∗) = ϕ−1
1 (S)A∗ (the latter equality is from

Lemma 2.6). Since S ⊆ Q 1 ∪ P2 implies ϕ−1
1 (S) ⊆ ϕ−1

1 (Q 1) ∪ ϕ−1
1 (P2) = P1 ∪ ϕ−1

1 (P2), we
have �(ϕ−1

1 (S)) � max{�(P1), �(ϕ
−1
1 (P2))}. Obviously, �(P1) � �(ϕ1). Moreover, by Lemma 2.7,

�(ϕ−1
1 (P2)) � �(ϕ1) + �(P2). Since �(P2) � �(ϕ′

2) �
∑N

j=2 �(ϕ j) (the latter “�” by induction), we have

�(ϕ−1
1 (S)) � �(ϕ1) + ∑N

j=2 �(ϕ j) = ∑N
j=1 �(ϕ j).

Since the domain code of Φ1 is ϕ−1
1 (S) and its image code is S , we conclude that �(Φ1) �∑N

j=1 �(ϕ j).
Let us now consider any Φ ′

[i,2] , for i = 1, . . . , N . By definition, Φ ′
[i,2] is the restriction of ϕ′

i ◦ · · · ◦ϕ′
2

to the domain S A∗ . So the domain code of Φ ′
[i,2] is S , and we just proved that �(S) �

∑N
j=1 �(ϕ j).

The image code of Φ ′
[i,2] is ϕ′

i ◦ · · · ◦ ϕ′
2(S). Since S ⊆ Q 1 ∪ P2 we have

ϕ′
i ◦ · · · ◦ ϕ′

2(S) ⊆ ϕ′
i ◦ · · · ◦ ϕ′

2(Q 1) ∪ ϕ′
i ◦ · · · ◦ ϕ′

2(P2) = ϕ′
i ◦ · · · ◦ ϕ′

2(Q 1) ∪ Q ′
i .

Therefore: �(ϕ′
i ◦ · · · ◦ ϕ′

2(S)) � max{�(ϕ′
i ◦ · · · ◦ ϕ′

2(Q 1)), �(Q ′
i )}.

We have �(Q ′
i ) � �(ϕ′

i ) �
∑N

j=2 �(ϕ j) (the last “�” by induction).
By Lemma 2.7, �(ϕ′

i ◦ · · ·◦ϕ′
2(Q 1)) � �(ϕ′

i ◦ · · ·◦ϕ′
2)+�(Q 1) � �(ϕ′

i ◦ · · ·◦ϕ′
2)+�(ϕ1). And �(ϕ′

i ◦ · · ·◦
ϕ′

2) � max{�(ϕ′
j): j = 2, . . . , i}, because Dom(ϕ′

r+1) = Im(ϕ′
r) for all r = 2, . . . , N − 1. And by induction,

�(ϕ′
j) �

∑N
j=2 �(ϕ j). Hence, �(ϕ′

i ◦ · · · ◦ ϕ′
2(Q 1)) �

∑N
j=1 �(ϕ j).

Thus, �(Φ ′
[i,2]) �

∑N
j=1 �(ϕ j) for every i = 2, . . . , N .

Finally, we factor Φ ′[N,2] as Φ ′[N,2] = ΦN ◦ · · · ◦ Φ2, where Φi (for i = 2, . . . , N) is defined to be the
restriction of ϕ′

i to the domain ϕ′
i−1 ◦ · · · ◦ ϕ′

2(S A∗) (= Φ ′
[i−1,2](S A∗)). Since Dom(ϕ′

r+1) = Im(ϕ′
r) (for

all r = 2, . . . , N − 1), the domain of ϕ′
i is equal to the image of ϕ′

i−1 ◦ · · · ◦ ϕ′
2. So, the domain code

of Φi is ϕ′
i−1 ◦ · · · ◦ ϕ′

2(S), and its image code is ϕ′
i ◦ ϕ′

i−1 ◦ · · · ◦ ϕ′
2(S). Since we already proved that

�(ϕ′
i ◦ · · · ◦ ϕ′

2(S)) �
∑N

j=1 �(ϕ j) (for all i), it follows that �(Φi) �
∑N

j=1 �(ϕ j). �
In the next theorem we show that the distortion of lep Mk,1 in Mk,1 is at most quadratic (over the

generators considered so far, which include the bit position transpositions). Combined with Proposi-
tion 2.4, this means the following:
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Assume circuits are built with gates that are not constrained to have fixed-length inputs and outputs, but
assume the input–output function has fixed-length inputs and outputs. Then the resulting circuits are not much
more compact than conventional circuits, built from gates that have fixed-length inputs and outputs (we gain
at most a square-root in size).

Theorem 2.9 (Distortion of lep Mk,1 in Mk,1). The word-length (or Cayley graph) distortion of lep Mk,1 in Mk,1
has a quadratic upper bound; in other words, for all x ∈ lep Mk,1:

|x|lep Mk,1 � c · (|x|Mk,1

)2

where c � 1 is a constant. Here the generating sets used are ΓMk,1 ∪ {τi, j: 1 � i < j} for Mk,1 , and Γlep Mk,1 ∪
{τi, j: 1 � i < j} for lep Mk,1 , where ΓMk,1 and Γlep Mk,1 are finite. By |x|Mk,1 and |x|lep Mk,1 we denote the
word-length of x over ΓMk,1 ∪ {τi, j: 1 � i < j}, respectively Γlep Mk,1 ∪ {τi, j: 1 � i < j}.

Proof. We only prove the result for k = 2; a similar proof applies for any k. We abbreviate the set
{τi, j: 1 � i < j} by τ . The choice of the finite sets ΓMk,1 and Γlep Mk,1 does not matter (it only affects
the constant c in the theorem). By Corollary 3.6 in [9] we can choose ΓMk,1 so that each γ ∈ ΓMk,1

satisfies the following (recall that �(S) denotes the length of the longest words in a set S):

�
(
domC(γ ) ∪ imC(γ )

)
� 2, and∣∣∣∣γ (x)

∣∣ − |x|∣∣ � 1 for all x ∈ Dom(γ ).

Let ϕ ∈ lep Mk,1, and let w = αN . . . α1 be a shortest word over the generating set ΓMk,1 ∪τ of Mk,1,
representing ϕ . So N = |ϕ|Mk,1 . We restrict each partial function αi to a partial function α′

i such
that imC(α′

i) = domC(α′
i+1) for i = 1, . . . , N − 1, according to Lemma 2.8. Hence, αN ◦ · · · ◦ α1(.) =

α′
N ◦ · · · ◦ α′

1(.), and �(α′
i) �

∑N
j=1 �(α j) for every i = 1, . . . , N . Then αN ◦ · · · ◦ α1(.) is a function

{0,1}m{0,1}∗ → Q {0,1}∗ , representing ϕ , and we will identify αN ◦ · · · ◦ α1(.) with ϕ . It follows that
domC(α′

1) = domC(ϕ) = {0,1}m , and imC(α′
N ) = imC(ϕ) = Q ⊆ {0,1}n . More generally, it follows that

imC(α′
i ◦ · · · ◦ α′

1) = imC(α′
i), and domC(α′

N ◦ · · · ◦ α′
i) = domC(α′

i).

Since �(α′
i) �

∑N
j=1 �(α j), and �(α j) � 2 for all j, we have for every i = 1, . . . , N: �(α′

i) � 2N .
From here on we will simply denote �(α′

i) by �i . Now, we will replace each α′
i ∈ Mk,1 by βi ∈

lep Mk,1, such that domC(βi) = {0,1}�i , and imC(βi) ⊆ {0,1}�i+1 ; so βi is length-equality preserving.
This will be done by artificially lengthening those words in domC(α′

i) that have length < �i and those
words in imC(α′

i) that have length < �i+1. Moreover, we make βi defined on all of {0,1}�i . In detail,
βi is defined as follows:

• If �i � �i+1:

βi(uz) = vz0�i+1−�i−|v|+|u| for all u ∈ domC
(
α′

i

)
, and z ∈ {0,1}�i−|u|; here v = α′

i(u);
βi(x) = x0�i+1−�i for all x /∈ Dom

(
α′

i

)
, |x| = �i .

• If �i > �i+1:

βi(uz1z2) = vz1 for all u ∈ domC
(
α′

i

)
and all z1, z2 ∈ {0,1}∗ with

|z1| = �i+1 − |v|, |z2| = �i − �i+1 + |v| − |u|; here, v = α′
i(u);

βi(x1x2) = x1 for all x1, x2 ∈ {0,1}∗ such that x1x2 /∈ Dom
(
α′

i

)
, with

|x1| = �i+1, |x2| = �i − �i+1.
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Claim. βN ◦ · · · ◦ β1(.) = ϕ .

Proof. We observe first that domC(β1) = domC(α′
1) (= domC(ϕ) = {0,1}m). Next, assume by induction

that for every x ∈ {0,1}m: α′
i−1 ◦ · · · ◦ α′

1(x) = u is a prefix of βi−1 ◦ · · · ◦ β1(x) = uz. Then βi(uz) =
vz0�i+1−�i−|v|+|u| (if �i � �i+1); or βi(uz) = vz1 (if �i � �i+1, with |z1| = �i+1 − |v| and z = z1z2). In
either case we find that α′

i(α
′
i−1 ◦ · · · ◦ α′

1(x)) = v is a prefix of βi(βi−1 ◦ · · · ◦ β1(x)) = βi(uz).
Hence, when i = N we obtain for any x ∈ {0,1}m: βN ◦· · ·◦β1(x) = ys is a prefix of α′

N ◦· · ·◦α′
1(x) =

ϕ(x) = y for some y and s with |ys| = �N = n. Since y ∈ imC(ϕ) ⊆ {0,1}n we conclude that s is empty,
hence βN ◦ · · · ◦ β1(x) = α′

N ◦ · · · ◦ α′
1(x). �

At this point we have expressed ϕ as a product of N elements βi ∈ lep Mk,1, where N = |ϕ|Mk,1 .
We now want to find the word-length of each βi over Γlep Mk,1 ∪ τ , in order to find an upper bound
on the total word-length of ϕ over Γlep Mk,1 ∪ τ . As we saw above, �i � 2N for every i = 1, . . . , N .

We examine each generator in ΓMk,1 ∪ τ .
If αi ∈ τ then βi ∈ τ , so in this case |βi |lep Mk,1 = 1.
Suppose now that αi ∈ ΓMk,1 . By Proposition 2.4 it is sufficient to construct a circuit that com-

putes βi ; the circuit can then be immediately translated into a word over Γlep Mk,1 ∪ τ with linear
increase in length.

Since domC(αi) ⊆ {0,1}�2, we can restrict αi so that its domain code becomes a subset of {0,1}2;
next, we extend αi to a map α′′

i that acts as the identity map on {0,1}2 where αi was undefined. The
image code of α′′

i is a subset of {0,1}�3. In order to compute βi we first introduce a circuit C(α′′
i ) that

computes α′′
i . A difficulty here is that α′′

i does not produce fixed-length outputs in general, whereas
C(α′′

i ) has to work with fixed-length inputs and outputs; so the output of C(α′′
i ) represents the output

of α′′
i indirectly, as follows:

The circuit C(α′′
i ) has two input bits u = u1u2 ∈ {0,1}2, and 5 output bits: First there are 3 output

bits 03−|v|v ∈ {0,1}3, where v = α′′
i (u); second, there are two more output bits, c1c2 ∈ {0,1}2, defined

by c1c2 = bin(3−|v|) (the binary representation of the non-negative integer 3−|v|). Hence, c1c2 = 00
if |v| = 3, c1c2 = 01 if |v| = 2, c1c2 = 10 if |v| = 1; since |v| > 0, the value c1c2 = 11 will not occur.
Thus c1c203−|v|v contains the same information as v , but has the advantage of having a fixed length
(always 5). The circuit C(α′′

i ) can be built with a small constant number of and, or, not, fork gates, and
we will not need to know the details.

We now build a circuit for βi .

• Circuit for βi if �i � �i+1:

On input uz ∈ {0,1}�i (with u ∈ {0,1}2), we want to produce the output vz0�i+1−�i−|v|+|u| , where
v = α′′

i (u).
We first apply the circuit C(α′′

i ), thus obtaining c1c203−|v|vz. Then we apply two fork operations
(always to the last bit in z) to produce c1c203−|v|vzbb, where b is the last bit of z. Applying a nega-
tion to the first b and an and operation, we obtain c1c203−|v|vz0. Applying �i+1 − �i − 1 more fork
operations to the last 0 yields c1c203−|v|vz0�i+1−�i−1.

Next, we want to move 03−|v| to the right of the output, in order to obtain c1c2 vz03−|v|+�i+1−�i−1.
For this effect we introduce a controlled cycle. Let κ : x1x2x3 ∈ {0,1}3 �−→ x3x1x2 be the usual cyclic
permutations of 3 bit positions. The controlled cycle acts as the identity map when c1c2 = 00 or 11,
τ1,2 when c1c2 = 01, and κ when c1c2 = 10. More precisely,

κc : c1c2x1x2x3 ∈ {0,1}5 �−→
{

c1c2x1x2x3 if c1c2 = 00 or 11,

c1c2x2x1x3 if c1c2 = 01,

c1c2x3x1x2 if c1c2 = 10.

We apply �i copies of κc(c1, c2, .,.,.) (all controlled by the same value of c1c2) to 03−|v|vz. The first
κc(c1, c2, .,.,.) is applied to the 3 bits 03−|v|v , producing 3 bits y1 y2 y3; the second κc(c1, c2, .,.,.) is
applied to y2 y3 and the first bit of z, producing 3 bits y′

1 y′
2 y′

3; the third κc(c1, c2, .,.,.) is applied to
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y′
2 y′

3 and the second bit of z, etc. So, each one of the �i copies of κc acts one bit further down than
the previous copy of κc . This will yield c1c2 vz03−|v|+�i+1−�i−1. Finally, to make c1c2 disappear, we
apply two fork operations to c1, then a negation and an and, to make a 0 appear. We combine this 0
with c1 and c2 by and gates, thus transforming 0c1c2 into 0. Finally, an or operation between this 0
and the first bit of v makes this 0 disappear.

The number of gates used to compute βi is O (�i+1 + �i), which is � O (N).

• Circuit for βi if �i > �i+1:

On input uz ∈ {0,1}�i (with u ∈ {0,1}2), we want to produce the output vz1, where v = α′′
i (u).

We first apply the circuit C(α′′
i ), which yields the output c1c203−|v|vz. Now we want to erase the

�i − �i+1 + 1 last bits of z. For this we apply two fork operations to the last bit of z (let us call it b),
then a negation and an and, to make a 0 appear. We combine this 0 with the last �i − �i+1 bits of z,
using that many and gates, turning all these bits into a single 0; finally, an or operation between this 0
and the bit of the remainder of z makes this 0 disappear. At this point, the output is c1c203−|v|v Z1,
where Z1 is the prefix of length �i+1 − 1 of z.

Next, we apply O (�i+1) position transpositions to Z1 in order move the two last bits of Z1 to the
front of Z1. Let b1b2 be the last two bits of Z1; so, Z1 = z0b1b2 (where z0 is the prefix of length
�i+1 − 3 of z); at this point, the output of the circuit is c1c203−|v|vb1b2z0.

We now introduce a fixed small circuit with 7 input bits and 5 output bits, defined by the follow-
ing input–output map:

ωc : c1c2x1x2x3b1b2 ∈ {0,1}7 �−→
{

c1c2x1x2x3 if c1c2 = 00 or 11,

c1c2x1x2b1 if c1c2 = 01,

c1c2x3b1b2 if c1c2 = 10.

When this map is applied to c1c203−|v|vb1b2 the output is therefore given by

ωc : c1c203−|v|vb1b2 ∈ {0,1}7 �−→
{ c1c2 v if |v| = 3,

c1c2 vb1 if |v| = 2,

c1c2 vb1b2 if |v| = 1.

A circuit for ωc can be built with a small fixed number of and, or, not, fork gates, and we will not need
to know the details.

After applying ωc to c1c203−|v|vb1b2z0 the output has length �i+1 + 2; the “+2” comes from c1c2.
The output is c1c2 vz0, or c1c2 vb1z0, or c1c2 vb1b2z0, depending on whether |v| = 3,2, or 1.

We need to move b1b2 or b1 (or nothing) back to the right-most positions of z0. We do this by
applying �i+1 copies of the controlled cycle κc(c1, c2, .,.,.) (all copies controlled by the same value
of c1c2). We proceed in the same way as when we used κc in the previous case, and we obtain the
output c1c2 vz0 (if |v| = 3), or c1c2 vz0b1 (if |v| = 2), or c1c2 vz0b1b2 (if |v| = 1).

Finally, we erase c1c2 in the same way as in the previous case, thus obtaining the final output. The
number of gates used to compute βi is O (�i+1 + �i) � O (N).

This completes the construction of a circuit for βi . Through this circuit, βi : {0,1}�i → {0,1}�i+1 is
expressed as a word over the generating set Γlep Mk,1 ∪ τ , of length � O (�i+1 + �i) � O (N).

Since we have described ϕ as a product of N = |ϕ|Mk,1 elements βi ∈ lep Mk,1, each of word-
length O (N), we conclude that ϕ has word-length � O (N2) over the generating set Γlep Mk,1 ∪ τ of
lep Mk,1. �
Question. Does the distortion of lep Mk,1 in Mk,1 (over the generators of Theorem 2.9) have an upper
bound that is less than quadratic?
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3. Word-length asymmetry vs. computational asymmetry

Proposition 3.1. The word-length asymmetry function λ of the Thompson group lp G2,1 within the Thompson
monoid lep M2,1 is linearly equivalent to the computational asymmetry function α:

α �lin λ.

Here the generating set used for lep M2,1 is Γlep M2,1 ∪ {τi, j: 0 � i < j}, where Γlep M2,1 is finite. The gates used
for circuits are any finite universal set of gates, together with the wire-swapping operations {τi, j: 0 � i < j}.

We can choose Γlep M2,1 to consist exactly of the gates used in the circuits; then α = λ.

Proof. For any g ∈ lp G2,1 we have

C
(

g−1) � c0 · ∣∣g−1
∣∣
lep M2,1

� c0 · λ(|g|lep M2,1

)
� c0 · λ(

c1 · C(g)
)
.

The first and last “�” come from Proposition 2.4 (since lp G2,1 ⊂ lep M2,1), and the middle “�” comes
from the definition of λ; c0 and c1 are positive constants. Hence,

α(n) � c0 · λ(c1n) for all n.

In a very similar way we prove that λ(n) � c′
0 · α(c′

1n) for some positive constants c′
0, c′

1. �
Proposition 3.2. The word-length asymmetry function λM2,1 of the Thompson group lp G2,1 within the
Thompson monoid M2,1 is polynomially equivalent to the word-length asymmetry function λlep M2,1 of lp G2,1
within the Thompson monoid lep M2,1 . More precisely we have for all n:

λM2,1 (n) � c0 · λlep M2,1

(
c1n2),

λlep M2,1 (n) � c′
0 · (λM2,1

(
c′

1n
))2

,

where c0 , c1 , c′
0 , c′

1 are positive constants. Here the generating set used for lep M2,1 is Γlep M2,1 ∪ {τi, j: 0 �
i < j}, where Γlep M2,1 is finite. The generating set used for M2,1 is ΓM2,1 ∪ {τi, j: 0 � i < j}, where ΓM2,1 is
a finite generating set of M2,1 .

Proof. For any g ∈ lp G2,1 we have

∣∣g−1
∣∣

M2,1
� c0 · ∣∣g−1

∣∣
lep M2,1

� c0 · λlep M2,1

(|g|lep M2,1

)
� c0 · λlep M2,1

(
c1 · |g|2M2,1

)
.

The first “�” holds because lp G2,1 ⊂ lep M2,1 ⊂ M2,1 and because of the choice of the generating sets.
The second “�” holds by the definition of λlep M2,1 . The third “�” comes from the quadratic distortion
of lep M2,1 in M2,1 (Theorem 2.9). For the same reasons we also have the following:

∣∣g−1
∣∣
lep M2,1

� c′
0 · ∣∣g−1

∣∣2
M2,1

� c′
0 · (λM2,1

(|g|M2,1

))2 � c′
0 · (λM2,1

(
c1 · |g|lep M2,1

))2

where c′
0, c′

1 are positive constants. �
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4. Reversible representation over the Thompson groups

Theorems 4.1 and 4.2 below introduce a representation of elements of the Thompson monoid
lep M2,1 by elements of the Thompson group G2,1, in analogy with the Toffoli representation (The-
orem 1.5 above), and the Fredkin representation (Theorem 1.6 above). Our representation preserves
complexity, up to a polynomial change, and uses only one constant-0 input. Note that although the
functions and circuits considered here use fixed-length inputs and outputs, the representation is over
the Thompson group G2,1, which includes functions with variable-length inputs and outputs.

In the theorem below, ΓG2,1 is any finite generating set of G2,1. We denote the length of a word w
by |w|, and we denote the size of a circuit C by |C |. The gates and, or, not will also be denoted
respectively by ∧, ∨, ¬. We distinguish between a word W f (over a generating set of G2,1) and the
element w f of G2,1 represented by W f .

Theorem 4.1 (Representation of boolean functions by the Thompson group). Let f : {0,1}m → {0,1}n be any
total function and let C f be a minimum-size circuit (made of ∧, ∨, ¬, fork-gates and wire-swappings τi, j) that
computes f . Then there exists a word W f over the generating set ΓG2,1 ∪ {τi,i+1: 1 � i} of G2,1 such that:

• For all x ∈ {0,1}m: w f (0x) = 0 f (x)x, where w f is the element of G2,1 represented by W f .
• The length of the word W f is bounded by |W f | � O (|C f |4).
• The largest subscript of any transposition τi,i+1 occurring in W f has an upper bound � |C f |2 + 2.

Proof. Wire-swappings in circuits are represented by the position transpositions τi,i+1 ∈ G2,1. The
gates not, or, and and of circuits are represented by the following elements of G2,1:

ϕ¬ =
[

0 1
1 0

]
, ϕ∨ =

[
0x1x2 1x1x2

(x1 ∨ x2)x1x2 (x1 ∨ x2)x1x2

]
, ϕ∧ =

[
0x1x2 1x1x2

(x1 ∧ x2)x1x2 (x1 ∧ x2)x1x2

]
,

where x1, x2 range over {0,1}. Hence the domain and image codes of ϕ∨ and ϕ∧ are all equal to
{0,1}3.

To represent fork we use the following element, in which we recognize σ ∈ F2,1, one of the com-
monly used generators of the Thompson group F2,1:

σ =
[

0 10 11
00 01 1

]
=

[
00 01 10 11

000 001 01 1

]
.

Note that σ agrees with fork only on input 0, but that is all we will need. By its very essence, the
forking operation cannot be represented by a length-equality preserving element of G2,1, because
G2,1 ∩ lep M2,1 = lp G2,1 (the group of length-preserving elements of G2,1). A small remark: In [6–8],
what we call “σ ” here, was called “σ−1.”

We will occasionally use the wire-swapping τi, j (1 � i < j); note that τi, j can be expressed in
terms of transpositions of neighboring wires as follows:

τi, j(.) = τi,i+1τi+1,i+2 . . . τ j−2, j−1τ j−1, jτ j−2, j−1 . . . τi+1,i+2τi,i+1(.)

so the word-length of τi, j over {τ�,�+1: 1 � �} is � 2( j − i) − 1.
For x = x1 . . . xm ∈ {0,1}m and f (x) = y = y1 . . . yn ∈ {0,1}n , we will construct a word W f over the

generators ΓG2,1 ∪ {τi,i+1: 1 � i} of G2,1, such that W f defines the map w f (.) : 0x �→ 0 f (x)x.
The circuit C f is partitioned into slices c� (� = 1, . . . , L). Two gates g1 and g2 are in the same slice

iff the length of the longest path from g1 to any input port is the same as the length of the longest
path from g2 to any input port. We assume that C f is strictly layered, i.e., each gate in slice c� only has
in-wires coming from slice c�−1, and out-wires going toward slice c�+1, for all �. To make a circuit C
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strictly layered we need to add at most |C |2 identity-gates (see p. 52 in [7]). The input–output map
of slice c� has the form

c�(.) : y(�−1) = y(�−1)
1 . . . y(�−1)

n�−1 ∈ {0,1}n�−1 �−→ y(�) = y(�)
1 . . . y(�)

n�
∈ {0,1}n� .

Then y(0) = x and y(L) = y, where x ∈ {0,1}m is the input and y ∈ {0,1}n is the output of C f . Each
slice is a circuit of depth 1.

Before studying in more detail how C f is built from slices, let us see how a slice is built from
gates (inductively, one gate at a time).

Let C be a depth-1 circuit with k + 1 gates, obtained by adding one gate to a depth-1 circuit K
with k gates. Let K (.) : x1 . . . xm �−→ y1 . . . yn be the input–output map of the circuit K . Assume by
induction that K is represented by a word W K over the generating set ΓG2,1 ∪ {τi,i+1: 1 � i} of G2,1.
The input–output map of W K is, by induction hypothesis,

w K (.) : 0x1 . . . xm �−→ 0y1 . . . ynx1 . . . xm.

The word W C that represents C over G2,1 is obtained as follows from W K ; there are several cases,
depending on the gate that is added to K to obtain C .

Case 1. An identity-gate (or a not-gate) is added to K to form C , i.e.,

C(.) : x1 . . . xmxm+1 �−→ y1 . . . ynxm+1(
or, C(.) : x1 . . . xmxm+1 �−→ y1 . . . ynxm+1

)
.

Then W C is given by

wC : 0x1x2 . . . xmxm+1
σ�−→ 00x1x2 . . . xmxm+1

τ3,m+3�−→ 00xm+1x2 . . . xmx1

ϕ∨�−→ xm+10xm+1x2 . . . xmx1
τ3,m+3�−→ xm+10x1x2 . . . xmxm+1

π�−→ 0x1x2 . . . xmxm+1xm+1

w K�−→ 0y1 . . . ynx1 . . . xmxm+1xm+1
π ′�−→ 0y1 . . . ynxm+1x1 . . . xmxm+1,

where π(.) = τm+1,m+2 . . . τ2,3τ1,2(.) shifts xm+1 from position 1 to position m + 2, while shifting
0x1 . . . xm one position to the left; and π ′(.) = τm+2,m+3 . . . τn+m+1,n+m+2τn+m+2,n+m+3(.) shifts xm+1
from position n + m + 3 to position n + 2, while shifting x1 . . . xm one position to the right.

So, W C = π ′W K πτ3,m+3ϕ∨τ3,m+3σ , noting that functions act on the left. Thus, |W C | = |W K | +
m +n + 5 if we use all of {τi, j: 1 � i < j} in the generating set; over {τi,i+1: 1 � i}, τ3,m+3 has length
� 2m − 1, hence |W C | � 3m + n + 4. If we denote the maximum index in the transpositions occurring
in W C by JC then we have JC = max{ J K ,n + m + 3}.

In case a not-gate is added (instead of an identity-gate), ϕ∨ is replaced by ϕ¬ϕ∨ in W C , and the
result is similar.

Case 2. An and-gate (or an or-gate) is added to K to form C , i.e.,

C(.) : x1 . . . xmxm+1xm+2 �−→ y1 . . . yn(xm+1 ∧ xm+2)(
or, C(.) : x1 . . . xmxm+1xm+2 �−→ y1 . . . yn(xm+1 ∨ xm+2)

)
.

Then W C is given by
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wC : 0x1x2 . . . xmxm+1xm+2
σ�−→ 00x1x2 . . . xmxm+1xm+2

τ2,m+3�−→ τ3,m+4�−→ 0xm+1xm+2x2 . . . xm0x1
ϕ∧�−→ (xm+1 ∧ xm+2)xm+1xm+2x2 . . . xm0x1

τ2,m+3�−→ τ3,m+4�−→ (xm+1 ∧ xm+2)0x1x2 . . . xmxm+1xm+2
π�−→ 0x1x2 . . . xm(xm+1 ∧ xm+2)xm+1xm+2

w K�−→ 0y1 . . . ynx1x2 . . . xm(xm+1 ∧ xm+2)xm+1xm+2

π ′�−→ 0y1 . . . yn(xm+1 ∧ xm+2)x1x2 . . . xmxm+1xm+2,

where π = τm+1,m+2 . . . τ2,3τ1,2 shifts (xm+1 ∧ xm+2) from position 1 to position m + 2, while shifting
0x1x2 . . . xm one position to the left; and π ′ = τm+2,m+3 . . . τm+n+1,m+n+2 shifts (xm+1 ∧ xm+2) from
position n + m + 2 to position m + 2, while shifting x1 . . . xm one position to the right.

So, W C = π ′W K πτ3,m+4τ2,m+3ϕ∧τ3,m+4τ2,m+3σ , hence |W C | = |W K |+n+m+7 if all of {τi, j: 1 �
i < j} is used in the generating set; over {τi,i+1: 1 � i}, τ3,m+4 and τ2,m+3 have length � 2(m +1)−1,
so |W C | � |W K | + 5m + n + 9. Moreover, JC = max{ J K ,m + n + 2}.

Case 3. A fork-gate is added to K to form C , i.e.,

C(.) : x1 . . . xmxm+1 �−→ y1 . . . ynxm+1xm+1.

Then W C is given by

wC : 0x1x2 . . . xmxm+1
σ 2�−→ 000x1x2 . . . xmxm+1

τ3,m+4�−→ 00xm+1x1x2 . . . xm0

ϕ∨�−→ xm+10xm+1x1x2 . . . xm0
τ1,m+4�−→ 00xm+1x1x2 . . . xmxm+1

ϕ∨�−→ xm+10xm+1x1x2 . . . xmxm+1

π�−→ 0x1x2 . . . xmxm+1xm+1xm+1
w K�−→ 0y1 . . . ynx1x2 . . . xmxm+1xm+1xm+1

π ′�−→ 0y1 . . . ynxm+1xm+1x1x2 . . . xmxm+1,

where π = τm+3,m+4 . . . τ1,2τm+3,m+4 . . . τ3,4 shifts the two copies of xm+1 at the left end from posi-
tions 1 and 3 to positions m + 3 and m + 4, while shifting 0 to position 1 and shifting x1 . . . xm two
positions to the left; and π ′ = τm+3,m+4 . . . τm+n+2,m+n+3τm+2,m+3 . . . τm+n+1,m+n+2 shifts xm+1xm+1
from positions m + n + 2 and m + n + 3 to positions m + 2 and m + 3, while shifting x1 . . . xm two
positions to the right.

So, W C = π ′W K πϕ∨τ1,m+4ϕ∨τ3,m+4σ
2, hence |W C | = |W K |+2m+n+10, if all of {τi, j: 1 � i < j}

is used in the generating set; over {τi,i+1: 1 � i}, τ1,m+4 has length � 2(m + 3) − 1 and τ3,m+4 has
length � 2m − 1. Hence, |W C | � |W K | + 6m + n + 14. Moreover, JC = max{ J K ,m + n + 3}.

In all cases, |W C | � |W K | + c · (m + n + 1) (for some constant c > 1), and J C � max{ J K ,n + m + 3}.
Thus, each slice c� , with input–output map c�(.) : y(�−1) �−→ y(�) , is represented by a word Wc�

with
map wc�

(.) : 0y(�−1) �−→ 0y(�) y(�−1) , such that |Wc�
| � c · (n2

�−1 + n2
�) (for some constant c > 1), and

Jc�
� n�−1 + n� + c.
Regarding wire-crossings, we do not include them into other slices; we put the wire-crossings into

pure wire-crossing slices. So we consider two kinds of slices: Slices entirely made of wire-crossings
and identities, slices without any wire-crossings. Wire-crossings in circuits are identical to the group
elements τi,i+1.

We now construct the word W f from the words Wc�
(� = 1, . . . , L). First observe that since the

map wc�
(.) is a right-ideal isomorphism (being an element of G2,1), we not only have

wc�
(.) : 0y(�−1) �−→ 0y(�) y(�−1)
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but also

wc�
(.) : 0y(�−1) y(�−2) . . . y(1) y(0) �−→ 0y(�) y(�−1) y(�−2) . . . y(1) y(0).

Then, by concatenating all Wc�
(and by recalling that y = y(L) and x = y(0)) we obtain

wcL wcL−1 . . . wc2 wc1 (.) : 0x �−→ 0yy(L−1) . . . y(2) y(1)x.

Let πC f be the position permutation that shifts y right to the positions just right of x:

πC f : 0yy(L−1) . . . y(2) y(1)x �−→ 0y(L−1) . . . y(2) y(1)xy.

Observe that for (WcL−1 . . . Wc2 Wc1 )
−1 we have

(wcL−1 . . . wc2 wc1 )
−1(.) : 0y(L−1) . . . y(2) y(1)xy �−→ 0xy.

Then we have:

wcL wcL−1 . . . wc2 wc1πC f (wcL−1 . . . wc2 wc1 )
−1(.) : 0x �−→ 0xy.

By using the position permutation πm,n : 0xy �−→ 0yx, we now see how to define W f :

W f = πm,n WcL WcL−1 . . . Wc2 Wc1πC f (WcL−1 . . . Wc2 Wc1 )
−1.

Then we have:

w f (.) : 0x �−→ 0yx,

where y = f (x).
Finally, we need to examine the length of the word W f in terms of the size of the circuit C f that

computes f : {0,1}m → {0,1}n .
The position permutation πm,n shifts the n = |y| letters of y to the left over the m = |x| positions

of x. So, πm,n can be written as the product of nm transpositions in {τi,i+1: 1 � i}, with maximum
subscript Jπm,n � m + n + 1.

The position permutation πC f shifts y to the right from positions in the interval [2,n + 1] within

the string 0yy(L−1) . . . y(2) y(1)x to positions in the interval [2 + ∑L−1
i=0 ni,2 + ∑L

i=0 ni] within the

string 0y(L−1) . . . y(2) y(1)xy. Note that
∑L

i=0 ni = |C f | (the size of the circuit C f ), and nL = |y| = n,

n0 = |x| = m. We shift y starting with the right-most letters of y. This takes n
∑L−1

i=0 ni = n(|C f | − n)

transpositions in {τi,i+1: 1 � i}, with maximum subscript JπC f
= |C f | + 2.

We saw already that |Wc�
| � c(n2

�−1 + n2
�), and Jc�

� n�−1 + n� + c, for some constant c > 1. Note

that
∑L

i=0 n2
i � (

∑L
i=0 ni)

2 = |C f |2. Hence we have: |W f | � co|C f |2, for some constant co > 1. More-
over, the largest subscript in any transposition occurring in W f is J W f � |C f | + 2.

Recall that we assumed that our circuit C f was strictly layered, and that the circuit size has to be
squared (at most) in order to make the circuit strictly layered. Thus, if C f was originally not strictly
layered, our bounds become |W f | � co|C f |4, and J W f � |C f |2 + 2. �

The next theorem gives a representation of a boolean permutation by an element of the Thompson
group G2,1; the main point of the theorem is the polynomial bound on the word-length in terms of
circuit size.
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Theorem 4.2 (Representation of permutations by the Thompson group). Let g : {0,1}m → {0,1}m be any
permutation and let C g and C g−1 be minimum-size circuits that compute g, respectively g−1 . Then there
exists a word W (g,g−1) over the generating set ΓG2,1 ∪ {τi,i+1: 1 � i} of G2,1 , representing an element
w(g,g−1) ∈ G2,1 such that:

• For all x ∈ Dom(g) and all y ∈ Im(g):

w(g,g−1)(0x) = 0g(x), and (w(g,g−1))
−1(0y) = 0g−1(y),

where (w(g,g−1))
−1 ∈ G2,1 is represented by the free-group inverse (W (g,g−1))

−1 of the word W (g,g−1) .

• w(g,g−1)(.) and (w(g,g−1))
−1 stabilize both 0{0,1}∗ and 1{0,1}∗ .

• We have a length upper bound |W (g,g−1)| = |(W (g,g−1))
−1| � O (|C g |4 + |C g−1 |4).

• The largest subscript of transpositions τi,i+1 occurring in W (g,g−1) is � max{|C g |2, |C g−1 |2} + 2.

Note that we distinguish between the word W (g,g−1) (over a generating set of G2,1) and the
element w(g,g−1) of G2,1 represented by W (g,g−1) . Also, note that although g is length-preserving
(g ∈ lp G2,1), w(g,g−1) ∈ G2,1 is not length-preserving.

Proof. Consider the position permutation π : 0yx �−→ 0xy, for all x, y ∈ {0,1}m; we express π as a
composition of � m2 position transpositions of the form τi,i+1. Let W g be the word constructed in
Theorem 4.1 for g , and let W g−1 be the word constructed for g−1. We define W (g,g−1) by

W (g,g−1) = (W g−1 )
−1πW g .

Then for all x ∈ Dom(g) we have: w(g,g−1) : 0x �−→ 0y, where y = g(x). More precisely, for all x ∈
domC(g),

0x
w g−−→ 0g(x)x = 0yx π−→ 0xy = 0g−1(y)

(w g−1 )−1

−−−−−−→ 0y = 0g(x).

Since domC(g) is a maximal prefix code, w(g,g−1) maps 0{0,1}∗ into 0{0,1}∗ (where defined).

Similarly, for all y ∈ Im(g) = Dom(g−1) we have: (w(g,g−1))
−1 : 0y �−→ 0x, where x = g−1(y),

y = g(x). Since domC(g−1) is a maximal prefix code, (w(g,g−1))
−1 maps 0{0,1}∗ into 0{0,1}∗ (where

defined). Hence, elements of 0{0,1}∗ are never images of 1{0,1}∗ . Thus, 1{0,1}∗ is also stabilized by
w(g,g−1) and by (w(g,g−1))

−1.

The length of the word W (g,g−1) is bounded as follows: We have |W g | � co|C g |4, and |(W g−1 )−1| =
|W g−1 | � co|C g−1 |4, by Theorem 4.1. Moreover, π can be expressed as the composition of � m2

(< |C g |2) transpositions in {τi,i+1: 1 � i}.
The bound on the subscripts also follows from Theorem 4.1. �

5. Distortion vs. computational asymmetry

We show in this section that the computational asymmetry function α(.) is polynomially related
to a certain distortion of the group lp G2,1.

By Theorem 4.2, for every element g ∈ lp G2,1 there is an element w(g,g−1) ∈ G2,1 which agrees
with g on 0{0,1}∗ , and which stabilizes 0{0,1}∗ and 1{0,1}∗ . The main property of W (g,g−1) is that

its length is polynomially bounded by the circuit sizes of g and g−1; that fact will be crucial later.
First we want to study how w(g,g−1) is related to g . Recall that we distinguish between the word
W (g,g−1) (over a generating set of G2,1) and the element w(g,g−1) of G2,1 represented by W (g,g−1) .

Theorem 4.2 inspires the following concepts.
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Definition 5.1. Let G be a subgroup of G2,1. For any prefix codes P1, . . . , Pk ⊂ {0,1}∗ , the joint stabilizer
(in G) of the right ideals P1{0,1}∗, . . . , Pk{0,1}∗ is defined by

StabG(P1, . . . , Pk) = {
g ∈ G: g

(
Pi{0,1}∗) ⊆ Pi{0,1}∗ for every i = 1, . . . ,k

}
.

The fixator (in G) of P1{0,1}∗ is defined by

FixG(P1) = {
g ∈ G: g(x) = x for all x ∈ P1{0,1}∗}.

The fixator is also called “point-wise stabilizer.”

The following is an easy consequence of the definition: FixG(Pi) is a subgroup of G (⊆ G2,1), for
i = 1, . . . ,k. If the prefix codes P1, . . . , Pk are such that the right ideals P1{0,1}∗, . . . , Pk{0,1}∗ are
two-by-two disjoint, and such that P1 ∪ · · · ∪ Pk is a maximal prefix code, then StabG(P1, . . . , Pk) is
closed under inverse. Hence in this case StabG(P1, . . . , Pk) is a subgroup of G .

In particular, we will consider the following groups:

• The joint stabilizer of 0{0,1}∗ and 1{0,1}∗ ,

StabG(0,1) = {
g ∈ G: g

(
0{0,1}∗) ⊆ 0{0,1}∗ and g

(
1{0,1}∗) ⊆ 1{0,1}∗}.

• The fixator of 0{0,1}∗ ,

FixG(0) = {
g ∈ G: g(x) = x for all x ∈ 0{0,1}∗}.

• The fixator of 1{0,1}∗ ,

FixG(1) = {
g ∈ G: g(x) = x for all x ∈ 1{0,1}∗}.

Clearly, FixG(0) and FixG(1) are subgroups of StabG(0,1).

Lemma 5.2 (Self-embeddings of G2,1). Let G be a subgroup of G2,1 . Then G is isomorphic to FixG(1) and to
FixG(0) by the following isomorphisms:

Λ0 : g ∈ G �−→ (g)0 ∈ FixG(1),

Λ1 : g ∈ G �−→ (g)1 ∈ FixG(0),

where (g)0 and (g)1 defined as follows for any g ∈ G2,1:

(g)0:

{
0x ∈ 0{0,1}∗ �−→ 0g(x),
1x ∈ 1{0,1}∗ �−→ 1x,

(g)1:

{
1x ∈ 1{0,1}∗ �−→ 1g(x),
0x ∈ 0{0,1}∗ �−→ 0x.

Proof. It is straightforward to verify that Λ0 and Λ1 are injective homomorphisms. That Λ0 is onto
FixG(1) can be seen from the fact that every element of FixG(1) has a table of the form

[
0x1 · · · 0xn 1
0y1 · · · 0yn 1

]

where {x1, . . . , xn} and {y1, . . . , yn} are two maximal prefix codes, and
[ x1 ··· xn

y1 ··· yn

]
is an arbitrary ele-

ment of G . �
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Lemma 5.3. Let G be a subgroup of G2,1 . Then the direct product G × G is isomorphic to StabG(0,1) by the
isomorphism

Λ : ( f , g) ∈ G × G �−→ (
0x �→ 0 f (x),1x �→ 1g(x)

) ∈ StabG(0,1).

Proof. It is straightforward to verify that Λ is a homomorphism. That Λ is onto StabG(0,1) and
injective follows from the fact that every element of StabG(0,1) has a table of the form

[
0x1 · · · 0xm 1x′

1 · · · 1x′
n

0y1 · · · 0ym 1y′
1 · · · 1y′

n

]

where {x1, . . . , xm}, {y1, . . . , ym}, {x′
1, . . . , x′

n}, and {y′
1, . . . , y′

n}, are maximal prefix codes, and[ x1 ··· xm

y1 ··· ym

]
and

[ x′
1 ··· x′

n

y′
1 ··· y′

n

]
are arbitrary elements of G (⊆ G2,1). �

Lemmas 5.2 and 5.3 reveal certain self-similarity properties of the Thompson group G2,1. (Self-
similarity of groups with total action on an infinite tree is an important subject, see [28]. However,
the action of G2,1 is partial, so much of the known theory does not apply directly.)

The stabilizer and the fixators above have some interesting properties.

Lemma 5.4.

(1) For all f , g ∈ G: ( f )0(g)1 = (g)1( f )0
(i.e., the commutator of FixG(0) and FixG(1) is the identity).

(2) FixG(0) · FixG(1) = StabG(0,1) and FixG(0) ∩ FixG(1) = 1;
(3) StabG(0,1) is the internal direct product of FixG(0) and FixG(1).

(This is equivalent to the combination of (1) and (2).)
(4) For all f , g ∈ G: Λ( f , g) = Λ0( f ) · Λ1(g), Λ0( f ) = Λ( f ,1), and Λ1(g) = Λ(1, g).

Moreover, FixG(0) = Λ1(G), FixG(1) = Λ0(G), and StabG(0,1) = Λ(G × G).

Proof. The proof is a straightforward verification. �
Lemma 5.5. For every position transposition τi, j , with 1 � i < j, we have

(τi, j)0 = τ2,i+1 ◦ τ3, j+1 ◦ (τ1,2)0 ◦ τ3, j+1 ◦ τ2,i+1.

Hence, assuming (τ1,2)0 ∈ ΓG2,1 , and abbreviating {τi, j: 0 < i < j} by τ , we have:

∣∣(τi, j)0
∣∣
ΓG2,1 ∪τ

� 5.

Proof. Recall that for (τ1,2)0 we have, by definition, (τ1,2)0(1w) = 1w , and (τ1,2)0(0x2x3 w) =
0x3x2 w , for all w ∈ {0,1}∗ and x2, x3 ∈ {0,1}. The proof of the lemma is a straightforward verifi-
cation. �

Now we arrive at the relation between w(g,g−1) and g .

Lemma 5.6. For all g ∈ lp G2,1 the following relation holds between g and w(g,g−1):

w(g,g−1) · (g)−1
0 , (g)−1

0 · w(g,g−1) ∈ Fixlp G2,1(0).

Equivalently,
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(g)0 · Fixlp G2,1(0) = w(g,g−1) · Fixlp G2,1(0), and

Fixlp G2,1 (0) · (g)0 = Fixlp G2,1(0) · w(g,g−1).

Proof. By Theorem 4.2 we have w(g,g−1)(0x) = 0g(x) for all x ∈ Dom(g). So, w(g,g−1) and (g)0 act
in the same way on 0{0,1}∗ . Also, both w(g,g−1) and (g)0 map 0{0,1}∗ into 0{0,1}∗ , and both map
1{0,1}∗ into 1{0,1}∗ . The lemma follows from this. �

We abbreviate {τi, j: 0 < i < j} by τ . The element w(g,g−1) of G2,1, represented by the word
W (g,g−1) , belongs to Stablp G2,1(0,1) as we saw in Theorem 4.2. However, the word W (g,g−1) itself
is a sequence over the generating set ΓG2,1 ∪ τ of G2,1. Therefore, in order to follow the action of
W (g,g−1) and of its prefixes we need to take Fix(0) as a subgroup of G2,1. This leads us to the Schreier
left coset graph of FixG2,1(0) within G2,1, over the generating set ΓG2,1 ∪ τ . By definition this Schreier
graph has vertex set G2,1/FixG2,1(0), i.e., the left cosets, of the form g · FixG2,1(0) with g ∈ G2,1. And it

has directed edges of the form g · FixG2,1(0)
γ−→ γ g · FixG2,1(0) for g ∈ G2,1, γ ∈ ΓG2,1 ∪ τ . Lemma 5.6

implies that for all g ∈ lp G2,1,

(g)0 · FixG2,1(0) = w(g,g−1) · FixG2,1(0).

We assume that ΓG2,1 = Γ −1
G2,1

, so the Schreier graph is symmetric, and hence it has a distance function
based on path length; we denote this distance by

dG/F (.,.) : G2,1/FixG2,1(0) × G2,1/FixG2,1(0) −→ N.

Lemma 5.7. There are injective morphisms

g ∈ lp G2,1 ↪→ g ∈ G2,1
�−→ (g)0 ∈ FixG2,1 (1)

�−→ (g)0 · FixG2,1(0) ∈ StabG2,1 (0,1)/FixG2,1(0),

and an inclusion map

(g)0 · FixG2,1 (0) ∈ StabG2,1(0,1)/FixG2,1 (0) ↪→ (g)0 · FixG2,1(0) ∈ G2,1/FixG2,1 (0).

In particular,

g ∈ G2,1 �−→ (g)0 · FixG2,1(0) ∈ G2,1/FixG2,1(0)

is an embedding of G2,1 , as a set, into the vertex set G2,1/FixG2,1(0) of the Schreier graph.

Proof. Recall that the map Λ0 : g ∈ G2,1 �−→ (g)0 ∈ FixG2,1(1) is a bijective morphism (Lemma 5.2).
Also, the map u ∈ FixG2,1(1) �−→ u · FixG2,1(0) ∈ G2,1/FixG2,1(0) is injective; indeed, if u · FixG2,1(0) =
v · FixG2,1(0) with u, v ∈ FixG2,1(1) then v−1u ∈ FixG2,1(0) ∩ FixG2,1 (1) = {1}.

The map g ∈ G2,1 �−→ (g)0 · FixG2,1(0) ∈ StabG2,1(0,1)/FixG2,1(0) is a surjective group homomor-
phism since FixG2,1(0) is a normal subgroup of StabG2,1(0,1). Since FixG2,1 (0) ∩ FixG(1) = {1}, this
homomorphism is injective from FixG2,1(1) onto StabG2,1(0,1)/FixG2,1(0).

The combination of these maps provides an isomorphism from G2,1 onto StabG2,1(0,1)/FixG2,1(0).
Hence we also have an embedding of G2,1, as a set, into the vertex set G2,1/FixG2,1 (0) of the Schreier
graph. �

Since by Lemma 5.7 we can consider G2,1 as a subset of the vertex set G2,1/FixG2,1 (0) of the
Schreier graph, the path-distance dG/F (.,.) on G2,1/FixG2,1(0) leads to a distance on G2,1, inherited
from dG/F (.,.):
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Definition 5.8. For all g, g′ ∈ G2,1 the Schreier graph distance inherited by G2,1 is

D(g, g′) = dG/F
(
(g)0 · FixG2,1 (0), (g′)0 · FixG2,1(0)

)
.

The comparison of the Schreier graph distance D(.,.) on lp G2,1 with the word-length that lp G2,1
inherits from its embedding into lep M2,1 leads to the following distortion of lp G2,1:

Definition 5.9. In lp G2,1 we consider the distortion

Δ(n) = max
{

D(1, g): |g|lep M2,1 � n, g ∈ lp G2,1
}
.

We now state and prove the main theorem relating Δ(.) and α. Recall that α(.) is the computa-
tional asymmetry function of boolean permutations, defined in terms of circuit size.

Theorem 5.10 (Computational asymmetry vs. distortion). The computational asymmetry function α(.) and
the distortion Δ(.) of lp G2,1 are polynomially related. More precisely, for all n ∈ N:

(
α(n)

)1/2 � c′ · Δ(n) � cn4 + c · (α(cn)
)4

where c � c′ � 1 are constants.

Proof. The theorem follows immediately from Lemmas 5.11 and 5.12. �
Lemma 5.11. There is a constant c � 1 such that for all n ∈ N: Δ(n) � cn4 + c · (α(cn))4 .

Proof. By Lemma 5.6, (g)0 · FixG2,1(0) = w(g,g−1) · FixG2,1(0), hence

d
(
FixG2,1(0), (g)0 · FixG2,1(0)

) = d
(
FixG2,1(0), w(g,g−1) · FixG2,1(0)

)
.

Since the word W (g,g−1) and the Schreier graph use the same generating set, namely ΓG2,1 ∪ τ , we
have

d
(
FixG2,1(0), w(g,g−1) · FixG2,1(0)

)
� |W (g,g−1)|.

By Theorem 4.2, |W (g,g−1)| � O (|C g |4 +|C g−1 |4). And by the definition of the computational asymme-
try function, |C g−1 | � α(|C g |). Hence

d
(
FixG2,1(0), (g)0 · FixG2,1(0)

)
� O

(|C g |4 + |C g−1 |4) � O
(|C g |4 + α

(|C g |
)4)

.

By Proposition 2.4, |C g | = O (|g|lep M2,1 ). Hence, for some constants c,′′ c′ � 1,

d
(
FixG2,1(0), (g)0 · FixG2,1(0)

)
� c′ · |g|4lep M2,1

+ c′ · α(
c′′ · |g|lep M2,1

)4
.

Thus,

max
{

d
(
FixG2,1 (0), (g)0 · FixG2,1 (0)

)
: |g|lep M2,1 � n, g ∈ lp G2,1

}
� c′n4 + c′α(c′′n)4.

By Definition 5.9 of the distortion function Δ we have therefore

Δ(n) � c′n4 + c′α(c′′n)4.

This proves the lemma. �
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Lemma 5.12. There is a constant c � 1 such that for all n ∈ N: α(n) � c · Δ(cn)2 .

Proof. We first prove the following.

Claim. For every g ∈ lp G2,1 , the inverse permutation g−1 can be computed by a circuit C g−1 of size |C g−1 | �
c · d(FixG2,1(0), (g)0 · FixG2,1(0))2 , for some constant c � 1.

Proof. There is a word W ′ of length |W ′| = d(FixG2,1 (0), (g)0 · FixG2,1(0)) over ΓG2,1 ∪ τ that labels
a shortest path from FixG2,1(0) to (g)0 · FixG2,1(0) in the Schreier graph of G2,1/FixG2,1(0). Let W =
(W ′)−1 (the free-group inverse of W ′), so |W | = |W ′|. Let w be the element of G2,1 represented
by W . Then W labels a shortest path from FixG2,1 (0) to (g−1)0 · FixG2,1(0) in the Schreier graph of
G2,1/FixG2,1(0); this path has length |W | = |W ′| = d(FixG2,1(0), (g)0 · FixG2,1(0)) = d(FixG2,1(0), (g−1)0 ·
FixG2,1(0)).

We have w · FixG2,1(0) = (g−1)0 · FixG2,1(0), thus for all x ∈ {0,1}∗: w(0x) = 0g−1(x). We now take
the word V W U over the generating set ΓM2,1 ∪ τ of the monoid M2,1, where we choose the words U
and V to be U = (and,not, fork, fork), and V = (or). The functions and, not, fork, or were defined in
Subsection 1.1. Then for all x = x1 . . . xn ∈ {0,1}∗ , with x1, . . . , xn ∈ {0,1}, we have

x1 . . . xn
fork−−→ x1x1 . . . xn

fork−−→ not−−→ x1x1x1 . . . xn
and−−→ 0x1 . . . xn

= 0x W−−→ 0g−1(x) or−→ g−1(x).

The last or combines 0 and the first bit of g−1(x), and this makes 0 disappear. Thus overall,
V W U (x) = g−1(x). The length is |V W U | = |W | + 5.

Since g−1 ∈ lp G2,1 ⊂ lep M2,1, Theorem 2.9 implies that there exists a word Z over the generators
Γlep M2,1 ∪ τ of lep M2,1 such that

(1) |Z | � c1 · |V W U |2, for some constant c1 � 1, and
(2) Z represents the same element of lep M2,1 as V W U , namely g−1.

Moreover, by Proposition 2.4, the word Z can be transformed into a circuit of size � c2 · |Z | (for some
constant c2 � 1). This proves that there is a circuit C g−1 for g−1 of size |C g−1 | � c · |W |2 (for some
constant c � 1). Since we saw that |W | = dG/F (FixG2,1(0), (g)0 · FixG2,1 (0)), the claim follows. �

By definition, D(1, g) = dG/F (FixG2,1(0), (g)0 · FixG2,1(0)). Hence, by the claim above:

|C g−1 | � c · (D(1, g)
)2

.

By Proposition 2.4 the word-length in lep M2,1 and the circuit size are linearly related; hence
|g|lep M2,1 � c0|C g |, for some constant c0 � 1. Therefore,

α(n) = max
{|C g−1 |: |C g | � n, g ∈ lp G2,1

}
� max

{|C g−1 |: |g|lep M2,1 � c0n, g ∈ lp G2,1
}

� max
{

c · (D(1, g)
)2

: |g|lep M2,1 � c0n, g ∈ lp G2,1
}

� c · (Δ(c0n)
)2

.

This proves the lemma. �
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6. Other distortion bounds

6.1. Other distortions in the Thompson groups and monoids

The next proposition gives more upper bounds on the computational asymmetry function α.

Proposition 6.1. Assume Γlep G2,1 ⊂ Γlep M2,1 ⊂ ΓM2,1 . Let δlp G,lep M = δ[|.|Γlp G2,1
∪τ , |.|Γlep M2,1

∪τ ] denote the

distortion function of lp G2,1 in the Thompson monoid lep M2,1 , based on word-length. Similarly, let δlp G,M =
δ[|.|Γlp G2,1

∪τ , |.|ΓM2,1∪τ ] denote the distortion function of lp G2,1 in the Thompson monoid M2,1 . Then for some

constant c � 1 and for all n ∈ N,

α(n) � c · δlp G,lep M(cn) � c · δlp G,M(cn).

Proof. We first prove that δlp G,lep M(n) � δlp G,M(n). Recall that by definition, δlp G,lep M(n) =
max{|g|lp G2,1 : g ∈ lp G2,1, |g|lep M2,1 � n}, and similarly for δlp G,M(n). Since Γlep M2,1 ⊂ ΓM2,1 we have
|x|lep M2,1 � |x|M2,1 . Hence, {|g|lp G2,1 : g ∈ lp G2,1, |g|lep M2,1 � n} ⊆ {|g|lp G2,1 : g ∈ lp G2,1, |g|M2,1 � n}.
By taking max over each of these two sets it follows that δlp G,lep M(n) � δlp G,M(n).

Next we prove that α(n) � c · δlp G,lep M(cn). For any g ∈ lp G2,1 we have C(g−1) � O (|g−1|lep M2,1 ),
by Proposition 3.2. Moreover, |g−1|lep M2,1 � |g−1|lp G2,1 since lp G2,1 is a subgroup of lep M2,1, and
since the generating set used for lp G2,1 (including all τi, j) is a subset of the generating set used
for lep M2,1. For any group with generating set closed under inverse we have |g−1|G = |g|G . And
by the definition of the distortion δlp G,lep M we have |g|lp G2,1 � δlp G,lep M(|g|lep M2,1 ). And again, by
Proposition 3.2, |g|lep M2,1 � O (C(g)). Putting all this together we have

C
(

g−1) � c1 · ∣∣g−1
∣∣
lep M2,1

� c1 · ∣∣g−1
∣∣
lp G2,1

= c1 · |g|lp G2,1

� c1 · δlp G,lep M
(|g|lep M2,1

)
� c1 · δlp G,lep M

(
c2C(g)

)
.

Thus, c1 · δlp G,lep M(c2C(g)) is an upper bound on C(g−1). Since, by definition, α(C(g)) is the smallest
upper bound on C(g−1), it follows that α(C(g)) � c1 · δlp G,lep M(c2C(g)). �

Recall that in Definition 5.9 of the distortion Δ we compared D(.,.) with the word-length in
lep M2,1. If, instead, we compare D(.,.) with the word-length in M2,1 we obtain the following distor-
tion of lp G2,1:

δ(n) = max
{

D(1, g): |g|M2,1 � n, g ∈ lp G2,1
}
.

Proposition 6.2. The distortion functions Δ(.) and δ(.) are polynomially related. More precisely, there are
constants c′, c1, c2 � 1 such that for all n ∈ N: Δ(n) � c1δ(n) � c2Δ(c′n2).

Proof. Let us assume first that Γlep M2,1 ⊆ ΓM2,1 , from which it follows that |g|M2,1 � |g|M2,1 . Therefore,
{D(1, g): |g|lep M2,1 � n} ⊆ {D(1, g): |g|M2,1 � n}. Hence, Δ(n) � δ(n).

By Theorem 2.9, |g|lep M2,1 � c · |g|2M2,1
. So, {D(1, g): |g|M2,1 � n} ⊆ {D(1, g): |g|lep M2,1 � cn2}.

Hence, δ(n) � Δ(cn2).
When we do not have Γlep M2,1 ⊆ ΓM2,1 , the constants in the theorem change, but the statement

remains the same. �
6.2. Monotone boolean functions and distortion

On {0,1}∗ we can define the product order, also called “bit-wise order.” It is a partial order (and in
fact, a lattice order), denoted by “�,” and defined as follows. First, 0 ≺ 1; next, for any u, v ∈ {0,1}∗
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we have u � v iff |u| = |v| and ui � vi for all i = 1, . . . , |u|, where ui (or vi ) denotes the ith bit of u
(respectively v).

By definition, a partial function f : {0,1}∗ → {0,1}∗ is monotone (also called “product-order pre-
serving”) iff for all u, v ∈ Dom( f ): u � v implies f (u) � f (v).

The following fact is well known (see e.g., [45, Section 4.5]): A function f : {0,1}m → {0,1}n is
monotone iff f can be computed by a combinational circuit that only uses gates of type and, or, fork,
and wire-swappings; i.e., not is absent. A circuit of this restricted type is called a monotone circuit.

Razborov [32] proved super-polynomial lower bounds for the size of monotone circuits that solve
the clique problem, and in [33] he proved super-polynomial lower bounds for the size of monotone
circuits that solve the perfect matching problem for bipartite graphs; the latter problem is in P. Tar-
dos [39], based on work by Alon and Boppana [1], gave an exponential lower bound for the size of
monotone circuits that solve a problem in P; see also [44] (Chapter 14 by Boppana and Sipser). Thus,
there exist problems that can be solved by polynomial-size circuits but for which monotone circuits
must have exponential size. In particular (for some constants b > 1, c > 0), there are infinitely many
monotone functions fn : {0,1}n → {0,1}n such that fn has a combinational circuit of size � nc , but fn

has no monotone circuit of size � bn .
Based on an alphabet A = {a1, . . . ,ak} with a1 ≺ a2 ≺ · · · ≺ ak we define a partial function

f : A∗ → A∗ to be monotone iff f preserves the product order of A∗ . The monotone functions en-
able us to define the following submonoid of the Thompson–Higman monoid lep Mk,1:

mon Mk,1 = {ϕ ∈ lep Mk,1: ϕ can be represented by a monotone function P → Q ,

where P and Q are prefix codes, with P maximal}.

An essential extension or restriction of an element of mon Mk,1 is again in mon Mk,1, so this set is
well defined as a subset of lep Mk,1. It is easily seen to be closed under composition, so mon Mk,1 is
a submonoid of lep Mk,1.

We saw that all monotone finite functions have circuits made from gates of type and, or, fork.
Hence mon M2,1 has the following generating set:

{and,or, fork} ∪ {τi, j: j > i � 1}.

The results about monotone circuit size imply the following distortion result. Here, “exponential”
refers to a function with a lower bound of the form n ∈ N �−→ exp(

c
√

c′n ), for some constants c′ > 0
and c � 1.

Proposition 6.3. Consider the monoid mon M2,1 over the generating set {and,or, fork} ∪ {τi, j: j > i � 1},
and the monoid lep M2,1 over the generating set Γlep M2,1 ∪ {τi, j: j > i � 1}, where Γlep M2,1 is finite. Then
mon M2,1 has exponential word-length distortion in lep M2,1 .

Proof. Let Γmon = {and,or, fork}. By Proposition 2.4 we have | f |Γlep M2,1
∪τ = |C f |, where |C f | denotes

the ordinary circuit size of f . By a similar argument we obtain: | f |Γmon∪τ = |mon C f |, where |mon C f |
denotes the monotone circuit size of f . We saw that as a consequence of the work of Razborov, Alon,
Boppana, and Tardos, there exists an infinite set of monotone functions that have polynomial-size
circuits but whose monotone circuit size is exponential. The exponential distortion follows. �

Since lep M2,1 has quadratic distortion in M2,1, mon M2,1 also has exponential word-length distor-
tion in M2,1.

6.3. Conclusion and open problems

The main theme of this paper is the distortion of groups within monoids, and the relation between
this distortion and one-way permutations. The Thompson–Higman groups and monoids, as well as
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some of their subgroups and submonoids, can serve as models of computation. Moreover, we can
define functions on those algebraic objects that, in addition to their own interest, are polynomially
related to computational complexity functions.

As usual, the most interesting questions remain open:

1. What is the distortion of the Thompson group G2,1 within the monoid M2,1? This is especially
interesting when we use finite generating sets ΓG2,1 and ΓM2,1 , or when we use generating sets
of the form ΓG2,1 ∪ τ and ΓM2,1 ∪ τ , where τ is the set of transpositions of letter positions.
The same question arises for the distortion of lp G2,1 within lep M2,1.

2. Let δlp G,lep M be the distortion of lp G2,1 within lep M2,1 over the generating sets Γlp G2,1 ∪ τ ,
respectively Γlep M2,1 ∪ τ . We saw in Proposition 6.1 that δlp G,lep M is an upper bound on the com-
putational asymmetry function α(.). Does α(.) also have a lower bound of the form (δlp G,lep M(.))c

for some constant c > 0?
Similarly, let δG,M(.) be the distortion of G2,1 within M2,1 over generating sets ΓG2,1 ∪ τ , respec-
tively ΓM2,1 ∪ τ . Does α(.) also have a lower bound (and an upper bound) of the form (δG,M(.))c

for a constant c > 0?

These questions (in combination) can be expected to be very difficult (especially with the gen-
erating set ΓG2,1 ∪ τ ), as they are closely related to the major open question whether one-way
permutations or one-way functions exist.
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