253 research outputs found

    On Binary And Regular Matroids Without Small Minors

    Get PDF
    The results of this dissertation consist of excluded-minor results for Binary Matroids and excluded-minor results for Regular Matroids. Structural theorems on the relationship between minors and k-sums of matroids are developed here in order to provide some of these characterizations. Chapter 2 of the dissertation contains excluded-minor results for Binary Matroids. The first main result of this dissertation is a characterization of the internally 4-connected binary matroids with no minor that is isomorphic to the cycle matroid of the prism+e graph. This characterization generalizes results of Mayhew and Royle [18] for binary matroids and results of Dirac [8] and Lovász [15] for graphs. The results of this chapter are then extended from the class of internally 4-connected matroids to the class of 3-connected matroids. Chapter 3 of the dissertation contains the second main result, a decomposition theorem for regular matroids without certain minors. This decomposition theorem is used to obtain excluded-minor results for Regular Matroids. Wagner, Lovász, Oxley, Ding, Liu, and others have characterized many classes of graphs that are H-free for graphs H with at most twelve edges (see [7]). We extend several of these excluded-minor characterizations to regular matroids in Chapter 3. We also provide characterizations of regular matroids excluding several graphic matroids such as the octahedron, cube, and the Möbius Ladder on eight vertices. Both theoretical and computer-aided proofs of the results of Chapters 2 and 3 are provided in this dissertation

    Interval matroids and graphs

    Get PDF
    AbstractA base of the cycle space of a binary matroid M on E is said to be convex if its elements can be totally ordered in such a way that for every e ε E the set of elements of the base containing e is an interval. We show that a binary matroid is cographic iff it has a convex base of cycles; equivalently, graphic matroids can be represented as “interval matroids” (matroids associated in a natural way to interval systems). As a consequence, we obtain characterizations of planar graphs and cubic cyclically-4-edge-connected planar graphs in terms of convex bases of cycles

    Generalized Laminar Matroids

    Get PDF
    Nested matroids were introduced by Crapo in 1965 and have appeared frequently in the literature since then. A flat of a matroid MM is Hamiltonian if it has a spanning circuit. A matroid MM is nested if and only if its Hamiltonian flats form a chain under inclusion; MM is laminar if and only if, for every 11-element independent set XX, the Hamiltonian flats of MM containing XX form a chain under inclusion. We generalize these notions to define the classes of kk-closure-laminar and kk-laminar matroids. This paper focuses on structural properties of these classes noting that, while the second class is always minor-closed, the first is if and only if k≤3k \le 3. The main results are excluded-minor characterizations for the classes of 2-laminar and 2-closure-laminar matroids.Comment: 12 page

    Laminar Matroids

    Get PDF
    A laminar family is a collection A\mathscr{A} of subsets of a set EE such that, for any two intersecting sets, one is contained in the other. For a capacity function cc on A\mathscr{A}, let I\mathscr{I} be \{I:|I\cap A| \leq c(A)\text{ for all A\in\mathscr{A}}\}. Then I\mathscr{I} is the collection of independent sets of a (laminar) matroid on EE. We present a method of compacting laminar presentations, characterize the class of laminar matroids by their excluded minors, present a way to construct all laminar matroids using basic operations, and compare the class of laminar matroids to other well-known classes of matroids.Comment: 17 page

    Graphical representations of graphic frame matroids

    Full text link
    A frame matroid M is graphic if there is a graph G with cycle matroid isomorphic to M. In general, if there is one such graph, there will be many. Zaslavsky has shown that frame matroids are precisely those having a representation as a biased graph; this class includes graphic matroids, bicircular matroids, and Dowling geometries. Whitney characterized which graphs have isomorphic cycle matroids, and Matthews characterised which graphs have isomorphic graphic bicircular matroids. In this paper, we give a characterization of which biased graphs give rise to isomorphic graphic frame matroids
    • …
    corecore