Discrete Mathematics 27 (1979) 331-336 © North-Holland Publishing Company

COMMUNICATION

INTERVAL MATROIDS AND GRAPHS

F. JAEGER

I.R.M.A., B.P. 53, 38041 Grenoble Cédex, France

Communicated by D.J.A. Welsh Received 15 May 1979

A base of the cycle space of a binary matroid M on E is said to be convex if its elements can be totally ordered in such a way that for every $e \in E$ the set of elements of the base containing e is an interval. We show that a binary matroid is cographic iff it has a convex base of cycles; equivalently, graphic matroids can be represented as "interval matroids" (matroids associated in a natural way to interval systems). As a consequence, we obtain characterizations of planar graphs and cubic cyclically-4-edge-connected planar graphs in terms of convex bases of cycles.

1. Definitions

The definitions not given here will be found in [1] or [2]. Let E be a finite non-empty set; $\mathcal{P}(E)$ will be considered as a vector space over GF(2) (the addition being the symmetric difference of subsets). A binary matroid on E will be defined here as a pair $M = (E, \mathcal{C})$ where \mathcal{C} is a subspace of $\mathcal{P}(E)$; the elements of C are the cycles of M and C is called the cycle space of M; a base of cycles of M is a base of \mathcal{C} ; a base of M is a maximal (with respect to inclusion) subset of E containing no non-empty cycle of M. Let B be a base of M; $\forall e \in E - B, B \cup \{e\}$ contains an unique non-empty cycle C_e of M; $\{C_e \mid e \in E - B\}$ is a base of cycles of M; any base of cycles of M which can be constructed in this way will be called a fundamental base of cycles of M.

Two elements of $\mathcal{P}(E)$ will be said to be orthogonal if the cardinality of their intersection is even. Given a subspace \mathscr{C} of $\mathscr{P}(E)$, the set of elements of $\mathscr{P}(E)$ orthogonal to every element of $\mathscr C$ is a subspace of $\mathscr P(E)$ denoted by $\mathscr C'$; let us recall that $(\mathcal{C}^{\perp})^{\perp} \equiv \mathcal{C}$ and that \mathcal{C} and \mathcal{C}^{\perp} are called *orthogonal subspaces* of $\mathcal{P}(E)$; the associated binary matroids $M = (E, \mathcal{C})$ and $M^* = (E, \mathcal{C}^{\perp})$ are said to be dual matroids (M is the dual of M^* and conversely); the cycles of M^* are called cocycles of M.

Let H be a graph with vertex-set V and edge set E; $\forall S \subseteq V$, let $\omega_H(S)$ denote the set of edges of H with exactly one end in S. A cycle of H is a subset C of E such that:

$$\forall v \in V \mid C \cap \omega_H(\{v\}) \mid \equiv 0 \pmod{2}$$
.

332 F. Jaeger

A cocycle of H is any subset of E of the form $\omega_H(S)$ $(S \subseteq V)$.

(Note that our definition of a cocycle is different of that given in [2] since we consider as cocycles not only the minimal cutsets, but all edge-disjoint unions of minimal cutsets).

The set \mathscr{C} of cycles of H and the set \mathscr{H} of cocycles of H are orthogonal subspaces of $\mathscr{P}(E)$; $M = (E, \mathscr{C})$ is the cycle matroid of H, and its dual $M^* = (E, \mathscr{H})$ is the cocycle matroid of H.

A binary matroid will be said *graphic* (respectively: *cographic*) if it is isomorphic to the cycle matroid (respectively: cocycle matroid) of some graph.

A graph is planar if and only if its cycle matroid is cographic (Whitney's Duality Theorem).

2. Cographic matroids, interval matroids and convex bases of cycles

2.1. Interval matroids

N denotes the set of integers.

An interval of N is a set of the form: $\{n \in \mathbb{N} \mid p \le n \le q\}$ for some $p, q \in \mathbb{N}$.

An interval system is a finite non-empty family $(I_e, e \in E)$ of intervals of N.

A cycle of the interval system $(I_e, e \in E)$ is a subset C of E such that: $\forall n \in \mathbb{N}$, $|\{e \in C \mid n \in I_e\}| \equiv 0 \pmod{2}$.

The set $\mathscr C$ of cycles of $(I_e, e \in E)$ is a subspace of $\mathscr P(E)$, and the associated binary matroid $M = (E, \mathscr C)$ is the cycle matroid of $(I_e, e \in E)$.

A binary matroid will be called an *interval matroid* if it is isomorphic to the cycle matroid of some interval system.

2.2. A characterization of cographic matroids

Let $M = (E, \mathcal{C})$ be a binary matroid. A subset \mathcal{G} of \mathcal{C} will be said to be convex if there exists an injection σ from \mathcal{G} to \mathbb{N} such that: $\forall e \in E, \{\sigma(C) \mid C \in \mathcal{G}, e \in C\}$ is an interval of \mathbb{N} ; it is clear that every subset of a convex subset of \mathcal{C} is also convex.

Proposition 1. Let M be a binary matroid. The following conditions are equivalent:

- (a) M is cographic.
- (b) M has a convex base of cycles.
- (c) The dual of M is an interval matroid.

Proof. (a) \Rightarrow (b). Let H be a graph with vertex set $V = \{v_1, \ldots, v_n\}$ and edge-set L: let $M = (E, \mathcal{H})$ be the cocycle matroid of H; we shall construct a convex base of \mathcal{H} . $V_1 \in \{1, \ldots, n-1\}$ let $V_i = \{v_1, \ldots, v_i\}$ and $K_i = \omega_H(V_i)$. Let $e \in E$. If e is a

loop, e belongs to no K_i . Otherwise let v_k and v_l (k < l) be the two ends of e; then:

$$e \in K_i \Leftrightarrow v_k \in V_i, v_l \notin V_i \Leftrightarrow k \leq i < l.$$

Hence $\{K_i \mid i \in \{1, ..., n-1\}$ is a convex subset of \mathcal{X} . Moreover:

$$\omega_H(\{v_i\}) = K_i;$$
 $\omega_H(\{v_i\}) = K_{i-1} + K_i \quad \forall i \in \{2, ..., n-1\},$

since $\{\omega_H(\{v_i\}) \mid i \in \{1, \dots, n-1\}\}$ spans \mathcal{H} , it follows that $\{K_i \mid i \in \{1, \dots, n-1\}\}$ spans \mathcal{H} . Hence $\{K_i \mid i \in \{1, \dots, n-1\}\}$ contains a base of \mathcal{H} , and this is a convex base of cycles of M.

(b) \Rightarrow (c). Let $M = (E, \mathcal{C})$ be a binary matroid with a convex base of cycles $\{C_i \mid i \in \{1, \ldots, r\}\}\$; we may assume that: $\forall e \in E, \{i \in \{1, \ldots, r\} \mid e \in C_i\}$ is an interval I_e of N.

Then for a given $i \in \{1, ..., r\}$ and $K \subseteq E$:

$$K \cap C_i = \{e \in K \mid e \in C_i\} = \{e \in K \mid i \in I_e\}.$$

Hence, for a given $K \subseteq E$:

$$\forall i \in \{1,\ldots,r\}, |K \cap C_i| \equiv 0 \pmod{2}$$

if and only if

$$\forall i \in \{1, \ldots, r\}, |\{e \in K \mid i \in I_e\}| \equiv 0 \pmod{2}.$$

This means that the set of cocycles of M is identical to the set of cycles of the interval system $(I_c, e \in E)$, or, equivalently, that the dual of M is the cycle matroid of the interval system $(I_c, e \in E)$.

(c) \Rightarrow (a). Let $(I_e, e \in E)$ be an interval system and $M = (E, \mathcal{C})$ be its cycle matroid; we must show that the dual of M is cographic; clearly we may assume that $\bigcup_{e \in E} I_e$ is of the form $\{1, \ldots, r\}$ and that $I_e \neq \emptyset$ $\forall e \in E$. $\forall e \in E$ we shall denote by p_e and q_e the elements of $\{1, \ldots, r\}$ such that $I_e = \{n \in \mathbb{N} \mid p_e \leq n \leq q_e\}$.

Let us construct a graph H as follows. H has r+1 vertices v_1, \ldots, v_{r+1} ; for every element e of E we shall define an edge $\phi(e)$ of H with ends v_{p_e} , v_{q_e+1} . $\forall i \in \{1, \ldots, r\}$ let $V_i = \{v_1, \ldots, v_i\}$. Then:

$$\begin{aligned} \{e \in E \mid i \in I_e\} &= \{e \in E \mid p_e \le i \le q_e\} \\ &= \{e \in E \mid v_{p_e} \in V_i, v_{q_e+1} \notin V_i\} \\ &= \{e \in E \mid \phi(e) \in \omega_H(V_i)\} \qquad \forall i \in \{1, \dots, r\}. \end{aligned}$$

or

$$\phi(\{e \in E \mid i \in I_e\}) = \omega_H(V_i) \quad \forall i \in \{1, \ldots, r\}.$$

We have seen in the first part of the proof that $\{\omega_{i,i}(V_i) \mid i \in \{1, ..., r\}\}$ is a spanning subset of the cocycle space of H.

Moreover, $\{\{e \in E \mid i \in I_e\} \mid i \in \{1, \dots, r\}\}$ is a spanning subset of the cocycle space of the interval system $(I_e, e \in E)$.

334 F. Jaeger

It follows that ϕ defines an isomorphism from the cocycle space of $(I_e, e \in E)$ to the cocycle space of H; hence the dual of M is isomorphic to the cocycle matroid of H.

This completes the proof.

Remark. The equivalence of (a) and (c) of Proposition 1 can be formulated as follows: A binary matroid is an interval matroid if and only if it is graphic.

3. Some characterizations of planar graphs

3.1. General planar graphs

Proposition 2. A graph is planar if and only if it has a convex base of cycles.

This is a direct consequence of Proposition 1 together with Whitney's duality theorem.

3.2. Cubic cyclically-4-edge-connected planar graphs

A cubic graph H is said to be cyclically-4-edge-connected if: $\forall S \subset V(H)$, $S \neq \emptyset$: $|\omega_H(S)| \ge 3$ with equality if and only if |S| = 1 or |S| = |V(H)| - 1.

Proposition 3. A cyclically-4-edge-connected cubic graph is planar if and only if it has a convex fundamental base of cycles.

Proof. Let *I*? be a cyclically-4-edge-connected cubic graph.

- (a) If H has a convex fundamental base of cycles, H is planar by Proposition 2.
- (b) Conversely, if H is planar, let us assume that H is represented in the plane and that H^* is a geometric dual of H (see [3, Chapter 3]). The cycle matroid of H is isomorphic to the cocycle matroid of H^* . Moreover it is easy to prove that H^* is a triangulation of the plane with the following properties:
 - II has no loops and no multiple edges;
 - every triangle of H^* is the boundary of some face of H^* .

By a theorem of H. Whitney ([4], extended by W.T. Tutte in [5]), H^* contains an Hamiltonian cycle; hence H^* contains an Hamiltonian chain K. This means that the vertices of H^* can be labelled v_1, \ldots, v_n in such a way that each edge of K has two consecutive ends v_i, v_{i+1} $(i \in \{1, \ldots, n-1\})$.

$$\forall i \in \{1, \ldots, n-1\}$$
 let $V_i = \{v_1, \ldots, v_i\}$ and $K_i = \omega_{H^*}(V_i)$.

It will be easily seen that $\{K_i \mid i \in \{1, ..., n-1\}\}$ is a fundamental base of cocycles of H^* and that it is convex (see the first part of the proof of Proposition 1). Hence, by duality, H has a convex fundamental base of cycles.

3.3. A remark on the Four-Color Theorem

It is known that a loopless graph H is vertex-colorable with 4 colors iff E(H) is the union of two cocycles of H (see for instance [6]).

For planar graphs the dual statement is as follows: a planar bridgeless graph H (represented in the plane) is face-colorable with 4 colors iff E(H) is the union of two cycles of H.

Remarks. If H is cubic, E(H) is the union of two cycles of H iff H is edge-colorable with 3 colors ([6]).

It is well-known that the four-Color Theorem ([7]) is equivalent to the following: every cyclically-4-edge-connected planar cubic graph is edge-colorable with 3 colors.

Using Propositions 2 and 3 it is now easy to show that the following statements are equivalent to the Four-Color Theorem:

- (a) For every bridgeless graph H with a convex base of cycles, E(H) is the union of two cycles of H.
- (b) For every bridgeless graph H with a convex fundamental base of cycles, E(H) is the union of two cycles of H.
- (c) Every bridgeless cubic graph with a convex fundamental base of cycles is edge-3-colorable.

Remark. It is shown in [8] and [9] that for every bridgeless graph H, E(H) is the union of 3 cycles of H.

Suppose that these 3 cycles form a convex subset of the cycle space of H (we shall say that they form a convex 3-cycle cover of H). Assume that the 3 cycles are C_1 , C_2 , C_3 with:

$$e \in C_1, e \in C_3 \Rightarrow e \in C_2$$
.

It is then easy to check that $C_2 \cup (C_1 + C_3) = E(H)$.

Conversely, any set of two cycles the union of which is E(H) becomes by addition of the empty cycle a convex 3-cycle cover of H.

Hence the statement: E(H) is the union of two cycles of H can be replaced in (a) and (b) by: H has a convex 3-cycle cover.

References

- [1] C. Berge, Graphes et Hypergraphes (Dunod, Paris, 1974).
- [2] D.J.A. Welsh, Matroid Theory (Academic Press, London, 1976).
- [3] Q. Ore, The Four-Color Problem (Academic Press, New-York-London, 1967).
- [4] H. Whitney, A theorem on graphs, Ann. Math. 32 (1931) 378-390.

336 F. Jaeger

- [5] W.T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956) 99-116.
- [6] W.T. Tutte, On the algebraic theory of graph colorings. J. Combinatorial Theory 1 (1966) 15-50.
- [7] W. Haken and K. Appel, Every planar graph is four colorable, part 1; W. Haken, K. Appel and J. Koeh, Every planar graph is four colorable, part 11; Illinois J. of Math. 21 (1977) 429-567.
- [8] F. Jaeger, Flows and generalized ecloring theorems in graphs: To appear in the J. Combinatorial Theory (B).
- [9] F. Jaeger, On nowhere-zero flows in multigraphs. Proceedings of the Fifth British Combinatorial Conference (Aberdeen, July 1975), Congressus Numerantium XV (Utilitas Mathematica, Winnipegt 373-378.