COMMUNICATION

INTERVAL MATROIDS AND GRAPHS

F. JAEGER

I.R.M.A., B.P. 53, 38041 Grenoble Cédex, France

Communicated by D.J.A. Welsh
Received 15 May 1979

Abstract

A base of the cycle space of a binary matroid M on E is said to be convex if its elements can be totally ordered in such a way that for every $e \in E$ the set of elements of the base containing e is an interval. We show that a binary matroid is cographic iff it has a convex base of cycles; equivalently, graphic matroids can be represented as "interval matroids" (matroids associated in a natural way to interval systems). As a consequence, we obtain characterizations of planar graphs and cubic cyclically-4-edge-connected planar graphs in terms of convex bases of cycles.

1. Definitions

The definitions not given here will be found in [1] or [2]. Let E be a finite non-empty set; $\mathscr{P}(E)$ will be considered as a vector space over $G F(2)$ (the addition being the symmetric difference of subsets). A binary matroid on E will be defined here as a pair $M \equiv(E, \mathscr{C})$ where \mathscr{C} is a subspace of $\mathscr{P}(E)$; the elements of \mathscr{C} are the cycles of M and \mathscr{C} is called the cycle space of M; a base of cycles of M is a base of \mathscr{C}; a base of M is a maximal (with respect to inciusion) subset of E containing no non-empty cycle of M. Let B be a base of M; $\forall e \in E-B, B \cup\{e\}$ contains an unique non-empty cycle C_{q} of $M ;\left\{C_{p} \mid e \in E-B\right\}$ is a base of cycles of M : any base of cycles of M which can be constructed in this way will be called a fundamental base of cycles of M.

Two elements of $\mathscr{P}(E)$ will be said to be orthogonal if the cardinality of their intersection is even. Given a subspace \mathscr{C} of $\mathscr{P}(E)$, the set of clements of $\mathscr{P}(E)$ orthogonal to every element of \mathscr{C} is a subspace of $\mathscr{P}(E)$ denoted by ' \boldsymbol{C}^{\prime} ' let us
 the associated binary matroids $M \equiv\left(E, C_{6}\right)$ and $M^{*} \equiv\left(E, C_{6}^{1}\right)$ are said to be dual matrolds (M is the daal of M^{*+} and conversely): the cyeles of $M^{* *}$ are called cocycles of M.

Let H be a graph with vertex net V and edge set $E ; \forall S \subseteq V$, let $\omega_{H}(S)$ denote the set of edges of H with exuctly one end $\ln S$. A cycle of H is a subse: C of E such that:

$$
\forall v \in V \quad\left|C \cap \omega_{11}(\{v\})\right| \text { ㅎ⽟ } 0(\bmod 2) .
$$

A cocycle of H is any subset of E of the form $\omega_{H}(S)(S \subseteq V)$.
(Note that our definition of a cocycle is different of that given in [2] since we consider as cocycles not only the minimal cutsets, but all edge-disjoint unions of minimal cutsets).

The set \mathscr{C} of cycles of H and the set \mathscr{K} of cocycles of H are orthogonal subspaces of $\mathscr{P}(E) ; M=(E, \mathscr{C})$ is the cycle matroid of H, and its dual $M^{*}=(E, \mathscr{K})$ is the cocycle matroid of H.

A binary matroid will be said graphic (respectively: cographic) if it is isomorphis to the cycle matroid (respectively: cocycle matroid) of some graph.

A graph is planar if and only if its cycle matroid is cographic (Whitney's Duality Theorem).

2. Cographic matroids, interval matroids and convex bases of cycles

2.1. Interval matroids

N denotes the set of integers.
An interval of \mathbf{N} is a set of the form: $\{n \in \mathbf{N} \mid p \leqslant n \leqslant q\}$ for some $p, q \in \mathbf{N}$.
An interval system is a finite non-empty family ($I_{e}, e \in E$) of intervals of \mathbf{N}.
A cycle of the interval system $\left(I_{c}, e \in E\right)$ is a subset C of E such that: $\forall n \in \mathbf{N}$, $\left|\left\{\rho \in C \mid n \in I_{c}\right\}\right| \equiv 0(\bmod 2)$.

Tine set \mathscr{C} of cycles of $\left(I_{e}, e \in E\right)$ is a subspace of $\mathscr{P}(E)$, and the associated binary matroid $M=(E, \mathscr{C})$ is the cycle matroid of $\left(I_{e}, e \in E\right)$.

A binary matroid will be called an interval matroid if it is isomorphic to the cycle matroid of some interval system.

2.2. A characterization of cographic matroids

i... $M=(E, \mathscr{C})$ be a binary matroid. A subset \mathscr{P} of \mathscr{C} will be said to be convex if there exists an injection σ from \mathscr{S} to \mathbf{N} such that: $\forall e \in E,\{\sigma(C) \mid C \in \mathscr{S}, e \in C\}$ is an intcrval of \mathbf{N} : it is clear that every subset of a convex subset of \mathscr{C} is also convex.

Proposition 1. Let M be a binary maroid. The following conditions are equivalent:
(a) M is cographic.
(b) M has a convex base of cycles
(c) The dual of \mathbf{M} is an interval matroid.

Proof. (a) \Rightarrow (h). Let H be a graph with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and edge-set I: let $M=(E, \mathscr{K})$ be the cocycle matroid of H : we shall construct a convex base of $\mathscr{H} . V_{1} \in\{\ldots \ldots, n-1\}$ let $V_{1}=\left\{v_{1}, \ldots, v_{1}\right\}$ and $K_{1}=\omega_{11}\left(V_{i}\right)$. Let $e \in E$. If e is a
loop, e belongs to no K_{i}. Otherwise let v_{k} and $v_{l}(k<l)$ be the two ends of e; then:

$$
e \in K_{i} \Leftrightarrow v_{k} \in V_{i}, v_{l} \notin V_{i} \Leftrightarrow k \leqslant i<l .
$$

Hence $\left\{K_{i} \mid i \in\{1, \ldots, n-1\}\right.$ is a convex subset of \mathscr{K}. Moreover:

$$
\omega_{H}\left(\left\{v_{1}\right\}\right)=K_{1} ; \quad \omega_{H}\left(\left\{v_{i}\right\}\right)=K_{i-1}+K_{i} \quad \forall i \in\{2, \ldots, n-1\},
$$

since $\left\{\omega_{H}\left(\left\{v_{i}\right\}\right) \mid i \in\{1, \ldots, n-1\}\right\}$ spans \mathscr{K}, it follows that $\left\{K_{i} \mid i \in\{1, \ldots, n-1\}\right\}$ spans \mathscr{K}. Hence $\left\{K_{i} \mid i \in\{1, \ldots, n-1\}\right\}$ contains a base of \mathscr{K}, and this is a convex base of cycles of M.
(b) \Rightarrow (c). Let $M=(E, \mathscr{C})$ be a binary matroid with a convex base of cycles $\left\{C_{i} \mid i \in\{1, \ldots, r\}\right.$; we may assume that: $\forall e \in E,\left\{i \in\{1, \ldots, r\} \mid e \in C_{i}\right\}$ is an interval I_{c} of N.
Then for a given $i \in\{1, \ldots, r\}$ and $K \subseteq E$:

$$
K \cap C_{i}=\left\{e \in K \mid e \in C_{i}\right\}=\left\{e \in K \mid i \in I_{e}\right\} .
$$

Hence, for a given $K \subseteq E$:

$$
\forall i \in\{1, \ldots, r\}, \quad\left|K \cap C_{i}\right| \equiv 0(\bmod 2)
$$

if and only if

$$
\forall i \in\{1, \ldots, r\}, \quad\left|\left\{e \in K \mid i \in I_{c}\right\}\right| \equiv 0(\bmod 2) .
$$

This means that the set of cocycles of M is identical to the set of cycles of the interval system ($I_{c}, e \in E$), or, equivalently, that the dual of M is the cycle matroid of the interval system ($I_{c}, e \in E$).
(c) \Rightarrow (a). Let $\left(I_{e}, e \in E\right)$ be an interval system and $M=(\mathbb{E}, \mathscr{C})$ be its cycle matroid; we must show that the dual of M is cographic; clearly we may assume that $\bigcup_{e \in E} I_{e}$ is of the form $\{1, \ldots, r\}$ and that $I_{e} \neq \emptyset \quad \forall^{\prime} e \in E . \forall e \in E$ we shall denote by p_{c} and q_{c} the elements of $\{1, \ldots, r\}$ such that $I_{e}=\left\{n \in \mathbf{N} \mid p_{e} \leqslant n \leqslant q_{e}\right\}$.

Let us construct a graph H as follows. H has $r+1$ vertices v_{1}, \ldots, v_{r+1}; for every element e of E we shall define an edge $\phi(e)$ of H with ends $v_{p_{p},}, v_{q_{k}+1}$. $\forall i \in\{1, \ldots, r\}$ let $V_{i}=\left\{v_{1}, \ldots, v_{i}\right\}$. Then:

$$
\begin{aligned}
\left\{e \in E \mid i \in I_{c}\right\} & =\left\{e \in E \mid p_{c} \leqslant i \leqslant q_{e}\right\} \\
& =\left\{e \in E \mid v_{p_{e}} \in V_{i}, v_{c_{l}+1} \notin V_{i}\right\} \\
& =\left\{e \in E \mid \phi(e) \in \omega_{l_{11}}\left(V_{i}\right)\right\} \quad \forall i \in\{1, \ldots, r\} .
\end{aligned}
$$

or

$$
\phi\left(\left\{e \in E \mid i \in I_{v}\right\}\right)=\omega_{i l}\left(V_{i}\right) \quad \forall i \in\{1, \ldots, r\} .
$$

We have seen in the first part of the proof that $\left\{\omega_{11}\left(V_{i}\right) \mid i \in\{1, \ldots, r\}\right.$ is a spantining subset of the cocycle space of H.

Moreover, $\left\{\left\{e \in E \mid i \in I_{e}\right\} \mid i \in\{1, \ldots, r\}\right\}$ is a spanning subset of the cocycle space of the interval system $\left(I_{p} ; \boldsymbol{e} \in E\right)$.

It follows that ϕ defines an isomorphism from the cocycle space of ($I_{e}, e \in E$) to the cocycle space of H; hence the dual of M is isomorphic to the cocycle matroid of H.

This completes the proof.

Remark. The equivalence of (a) and (c) of Proposition 1 can be formulated as follows: A binary matrod i an interval matroid if and only if it is graphic.

3. Some characterizations of planar graphs

3.1. General planar graphs

Proposition 2, A graph is planar if and only if it has a convex base of cycles.
This is a direct consequence of Proposition 1 together with Whitney's duality theorem.

3.2. Cubic cyclically-4-edge-connected planar graphs

A cubic graph H is said to be cyclically-4-edge-connected if: $\forall S \subset V(H), S \neq \emptyset$: $\left|\omega_{1,}(S)\right| \geqslant 3$ with equality if and only if $|S|=1$ or $|S|=|V(H)|-1$.

Proposition 3. A cyclically-4-edge-connected cubic graph is planar if and only if it has a convex fundamental base of cycies.

Proof. Let I be a cyclically-4-edge-connected cubic graph.
(a) If H has a convex fundamental base of cycles, H is planar by Proposition 2.
(b) Conversely, if H is planar, let us assume that H is represented in the pane and that H^{*} is a geometric dual of H (see [3, Chapter 3]). The cycle matroid of H is isomorphic to the cocycle matroid of \boldsymbol{H}^{*}. Moreover it is easy to prove that \boldsymbol{H}^{*} is a triangulation of the plane with the following properties:

- Il has no loops and no multiple edges;
- every triangle of H^{*} is the boundary of some face of H^{*}.

By a theorem of H. Whitney ([4], extended by W.T. Tutte in [5]), H^{*} contains an Hamiltonian cycle; hence \boldsymbol{H}^{*} contains an Hamilionian chain \boldsymbol{K}. This means that the vertices of H^{*} can be labelled v_{1}, \ldots, v_{n} in such a way that each edge of K has two consecutive ends; $v_{i}, v_{i+1}(i \in\{1, \ldots, n-1\})$.

$$
\forall i \in\{1, \ldots, n-1\} \quad \text { let } \quad V_{i}=\left\{v_{1}, \ldots, v_{i}\right\} \quad \text { and } \quad K_{i}=\omega_{\mathbf{H}^{*}}\left(V_{i}\right) \text {. }
$$

It will be easily seen that $\left\{K_{i} \mid i \in\{1, \ldots, n-1\}\right\}$ is a fundamental base of cocycles of H^{*} and that it is convex (see the first part of the proof of Proposition 1).

Hience, by duality, \boldsymbol{H} has a convex fundamenial base of cycles.

3.3. A remark on the Four-Color Theorem

It is known that a loopless graph H is vertex-colorabic with 4 colors iff $E(H)$ is the union of two cocycles of H (see for instance [6]).

For planar graphs the dual statement is as follows: a planar bridgeless graph H (represented in the plane) is face-colorable with 4 colors iff $E(H)$ is the union of two cycles of H.

Remarks. If H is cubic. $E(H)$ is the union of two cycles of H iff H is edge-colorable with 3 colors ([6]).

It is well-known that the four-Color Theorem ([7]) is equivalent to the following: every cyclically-4-edge-connected planar cubic graph is edge-colorable with ? colors.

Using Propositions 2 and 3 it is now easy to show that the following statements are couivalent to the Four-Color Theorem:
(a) For every bridgeless graph H with a convex base of cycles, $E(H)$ is the union of two cycles of H.
(b) For every bridgeless graph H with a convex fundamental base of cycles, $E(H)$ is the union of two cycles of H.
(c) Every bridgeless cubic graph with a convex fundamental base of cycles is edge-3-colorable.

Remark. It is shown in [8] and [9] that for every bridgeless graph $H, E(H)$ is the union of 3 cycles of H.

Suppose that these 3 cycles form a convex subset of the cycle space of H (we shall say that they form a convex 3 -cycle cover of H). Assume that the 3 cycles are C_{1}, C_{2}, C_{3} with:

$$
e \in C_{1}, e \in C_{3} \Rightarrow e \in C_{2} .
$$

It is then easy to check that $C_{2} \cup\left(C_{1}+C_{3}\right)=E(H)$.
Conversely, any set of two cycles the union of which is $E(H)$ becomes by addition of the empty cycle a convex 3-cycle cover of H.

Hence the statement: $E(H)$ is the union of two cycles of H can be replaced in (a) and (b) by: H has a convex 3 -cycle cover.

References

[1] C. Berge, Graphes et Hypergray hes (Dunod, Paris, 1974).
[2] D.J.A. Welsh. Matroid Theory (Academic Press, London, 1476).
[3] Q. Ore, The Four-Color Problem (Academic Press, New-York-Lond.n. 1967).
[4] H. Whitney, A theorem on graphs. Ann. Math. 32 (1931) 378-390).

 Theitity (i).

