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A base of the cycle space of a binary matroid M on E is said to be convex if its clements can
be totally ordered in such a way that for every e € E the set of elements of the base containing e
is an interval. \We show that a binary matroid is cographic iff it has a convex base of cycles;
cquivalently, graphic matroids can be represented as “interval matroids™ (matroids associated
in a natural way to interval systems). As a consequence, we obtain characterizations of planar
graphs and cubic cyclically-4-edge-connected planar graphs in terms of convex bases of cycles.

1. Definitions

The definitions not given here will be found in [1 or [2]. Let E be a finite
non-empty set; P(E) will be considered as a vector space over GF(2) (the
addition being the symmetric difference of subsets). A binary matroid on E will be
defined here as a pair M = (E, €) where € is a subspace of ?(E); the elements of
€ are the cycles of M and € is called the cycle space of M a base of cycles of M is
a base of €; a base of M is a maximal (with respect to inciusion) subset of E
containing no non-empty cycle of M. Let B be a base of M; Vee E=B, BU{e}
contains an unique non-empty cycle C, of M; {C, | ee E = B} is a base of cycles of
M: any base of cycles of M which can be constructed in this way will be called a
fundamental base of cycles of M.

Two elements of P(E) will be said to be orthogonal if the cardinality of their
intersection is even. Given a subspace € of P(E). the set of elements of P(E)
orthogonal to every element of € is a <ubspace of P(E) denoted by €': let us
recall that (€')' = € and that € and €' are called orthogonal subspaces of P(E).
the associated binary matroids M =(E, €) and M*=(E, €") are said to be dual
matrolds (M is the dual of M™ and conversely): the cycles of M* are called
cocycles of M,

Let H be a graph with vertex-set V and edge set E; VS < V. let @y (S) denote
the set of edges of H with exictly one end In S, A cycle of H is a subset C of E
such that:

YveV |CNw,({vhi=0 (mod?2),
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A cocycle of H is any subset of E of the form w,(S) (Sc V).

(Note that our definition of a cocycle is different of that given in [2] since we
censider as cocycles not only the minimal cutsets, but all edge-disjoint unions of
minimal cutsets).

The set € of cycles of H and the set ¥ of cocycles of H are orthogonal
subspaces of P(E); M = (E, €) is the cycle matroid of H, and its dual M*=(E, ¥)
is the cocycle matroid of H.

A binary matroid will be said graphic (respectively: cographic) if it is isomor-
phit to the cycle matroid (respectively: cocycle matroid) of some graph.

A graph is planar if and only if its cycle matroid is cographic (Whitney’s
Duality Theorem).

2. Cographic matroids, interval mairoids and convex bases of cycles

2.1. Interva! matroids

M denotes the set of integers.

An interval of N is a set of the form: {neN|p<n=gq} for some p,qeN.

An interval system is a finite non-empty family (I, e € E) of intervals of N.

A cycle of the interval system (I, e€ E) is a subset C of E such that: YneN,

fee Clnel} =0 (mod?2).

Tie set € of cycles of (I, ec E) is a subspace of P(E), and the associated
binary matroid M = (E, €) is the cycle matroid of (I,, e€ E).

A binary matroid will be called an interval matroid if it is isomorphic to the
“cycle matroid of some interval system.

2.2, A characterization of cographic matroids

1.t M =(E, €) be a binary matroid. A subset ¥ of € will be said to be convex if
there exists an injection o from & to N such that: Ve E, {0(C)|Ce ¥, ec C} is

an interval of Nuit is clear that every subset of a convex subset of € is also
CONveX.

Proposition 1. Let M be a binary mairoid. The following conditions are equivalent:
ta) M is cographic.
by M has a convex base of cycles
(¢) The dual of M is an interval matroid.

Proof. (0)=>(b). Let H be a graph with vertex set V={v,,...,v,} and edge-set
P let M= (EJ) be the cocycle matroid of H: we shall construct a convex base of
HoNve i =1} let Vi={v,...,0} and K, =w,(V,). Let ecE. If ¢ is a
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loop, e belongs to no K;. Otherwise let v, and v, (k <I) be the two ends of e;
then:

ceKiu eV, pgV,eksi<l
Hence {K;|ie{l,...,n—1} is a convex subset of %. Moreover:
oy({v)=K;; oy{vPD=K_+K; Vie{2,...,n-1},

since {wu({v,})|1<{l,...,n—1}} spans ¥, it follows that {K;|ie{l,...,n—1}}
spans ¥. Hence {K; |i€{l,..., n—1}} contains a base of ¥, and this is a convex
base of cycles of M.

(b)=>(c). Let M=(E, €) be a binary matroid with a convex base of cycles
{C.1ie{l,...,r}}; we may assume that: Ve E,{ic{l,...,r}| ec C}is an interval
I, of N.

Then for a given ie{l,...,r} and K< E:

KNC ={eecK|eeC}={ecK|iel}.
Hence, for a given K< E:

Vie{l,....r}, |[KNC|=0(mod?2)
if and only if

Vie{l,....r}, [{ecK|iel}=0(mod?2).

This means that the set of cocycles of M is identical to the set of cycles of the
interval system (I, e € E), or, equivalently, that the dual of M is the cycle matroid
of the interval system (I, e€ E).

(c)=>(a). Let (I,ec E) be an interval system and M=(E, €) be its cycle
matroid; we must show that the dual of M is cographic; clearly we may assume
that |J,.p I, is of the form {1,...,r} and that I,#@ VeeE. Vee E we shall
denote by p, and g, the elements of {1, ..., r}such that I, ={neN|p,<n=gq,}.

Let us construct a graph H as follows. H has r+1 vertices vy,..., v,,,; for
every element e of E we shall define an edge ¢(e) of H with ends v,, v,
Vie{l,...,r} let V,={v,,..., ). Then:

{ecE|iel,}={ecE|p.<i<q,}
={ecE|v, e V,v, 2V}
=lec E| dle)e wy(V,)} Vie{l,..., r}L
or
o(ecE|ielLlh=w, (V) Vie{l,... r}L

We have seeti in the first part of the proof that {w, (V) |ie{l,....r}} is a
spanning subset of the cocycle space of H.

Moteover, {{ee E|ie L} ie{l,...,r}} is a spanning subset of the cocycle
space of the interval system (1, e€ E).
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It follows that ¢ defines an :somorphism from the cocycle space of (I, e€ E) to
the cocycle space of H; hence the dual of M is isomorphic to the cocycle matroid
of H.

This completes the proof.

Remark. The equivalence of (a) and (c¢) of Proposition 1 can be formulated as
follows: A binary matroid i an interval matroid if and only if it is graphic.

3. Some characterizations of planar graphs
3.1. General planar graphs
Proposition 2. A graph is planar if and only if it has a convex base of cycles.

This is a direct consequence of Proposition 1 together with Whitney's duality
theorem,

3.2. Cubic cyclically-4-edge-connected planar graphs

A cubic graph H is said to be cyclicallv-4-edge-connected if: VS < V(H), S# ():
ja,(S)] = 3 with equality if and only if |S]=1 or |S|=|V(H)|- 1.

Proposition 3. /i cyclically-4-edge-connected cubic graph is planar if and only if it
has a convex fundamental base of cycles.

Proof. Let IY be a cyclically-4-edge-connected cubic graph.
(a) If H has a convex fundamental base of cycles, H is planar by Proposition 2.
(b) Conversely, if H is planar, let us assume that H is represented in the p:ane
and that H* is a geometric dual of H (see [3, Chapter 3]). The cycle matroid of H
is isomorphic to the cocycle matroid of H*. Moreover it is easy to prove that H*
is a triangulation of the plane with the following properties:

e 1 has no loops and no multiple edges;
e cvery triangle of H* is the boundary of some face of H*.

By a theorem of H. Whitney ([4], extended by W.T. Tutte in [5]), H* contains an
Hamiltonian cycle; hence H* contains an Hamilionian chain K. This means that
the vertices of H* can be labelled vy, ..., v, in such a way that each edge of K
nas two consecutive ends v, v,,, (ie{l,...,n-1}).

Yie{l,...,n=1} let Vi={v,,...,v} and K;=wy(V)).

It will be easily seen that {K, |ie{l,..., n—1}} is a fundamental base of cocycles
of H* and that it is convex (see the first part of the proof of Proposition 1).
Hen-e, by duality, H has a convex fundamenial base of cycles.
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3.3. A remark on the Four-Color Theorem

It is known that a loopless graph H is vertex-colorabie with 4 colors iff E(H) is
the union of two cocycles of H (see for instance [6]).

For planar graphs the dual statement is as follows: a planar bridgeless graph H
(represented in the piane) is face-colorable with 4 colors iff E(H) is the union of
two cycles of H.

Remarks. If H is cubic. E(H) is the union of two cycles of H iff H is
edge-colorable with 3 colors ([6]).

It is well-known that the four-Color Theorem ([7]) is equivalent to the
following: every cyclically-4-edge-connected planar cubic graph is edge-colorable
with 2 colors.

Using Propositions 2 and 3 it is now casy to show that the following statements
are cauivalent to the Four-Color Theorem:

(a) For every bridgeless graph H with a convex base of cycles, E(F) is the
union of two cycles of H.

(b) For every bridgeless graph H with a convex fundamental base of cycles,
E(H) is the union of two cycles oi H.

(c) Every bridgeless cubic graph with a convex fundamental base of cycles is
edge-3-colorable. '

Remark. It is shown in [8] and [9] that for every bridgeless graph H, E(H) is the
union of 3 cycles of H.

Suppose that these 3 cycles form a convex subset of the cycle space of H (we shall
say that they form a convex 3-cycle cover of H). Assume that the 3 cycles are C|,
C,, C; with:

eeCecC; > ec(,.

It is then easy to check that C,U(C,+ G;) = E(H).

Conversely, any set of two cycles the union of which is E(H) becomes by
addition of the empty cycle a convex 3-cycle cover of H.

Hence the statement: E(H) is the union of two cycles of H can be replaced in
(a) and (b) by: H has a convex 3-cycle cover.
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