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A base of the cycle space of a binary matroid M on E is said to be convex if its elements can 
be totally ordered in such a way that for every e E E tk set of elements of the base containing e 
is an interval. \‘Ure show that a binary matroid is cographic iff it has a convex base of cycles; 
equivalently, gr:lphic matroids can be represented as “interval matroids“ (matroids associated 
in a natural way to interval systems). As a consequence, we obtain characterizations of planar 
graphs and cubic cyclically-4-edge-connected planar graphs in terms of convex bases of cycles. 

1, Ddhlitions 
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A cocycle of H is any ?iubset of E of the form q,(S) (SC V). 
(!Ute that our definition (-4 a cocycle is different of that given in [2] since we 
ccnsider as cocycles not only the minimal cutsets, but all edge-disjoint unions of 
miinimal cutsets). 

The set % of cycles of PI and the set X of cocycles of If are orthogonal 
aubq~aces of P(E); M = CE, %) is the cycle matroid of H, and its dual M* = (E, X) 
is the cocycle tlZdltroid of H. 

A binary matroid will be said grq~hic (respectively: cogmphic) if it is isomor- 
phk to the cycle matroid (respectively: cocycle matroid) of some graph. 

A graph is plavrar if and only if its cycle matroid is cographic (Whitney’s 
Duality Theorem). 

2, Cographic matroids, interval m&roids and convex bases of cycles, 

2.1, IntervcrB raiatroids 

M denotes the set of integers. 
An interval of N is a set of the form: {n E N ) p s rz s 4) for some p, q E N. 
An interva! sysfern is a finite non-empty family (I,., e E E) of intervals of N. 
A cycle of the interval system (I,, e E E) is a subset C of E such that: Yn EN, 

!(P c: C 1 M E &,)I = I) (mod 2). 

Tire set % of cycks of (,I,, e E E) is a subspace of P(E), and the associated 
binary matroid M = (E, %) is the cycle nzatsLoid of (I(,, e E E). 

A binary tnatroid will be called an irttervcrl rwtroid if it is isomorphic to the 

cycle matroid of sc3mc intervaf system. 

C.&. 3 3 A cfuwcterization of cogrccphic nlatroids 

L .i M =(E, %) be a b’ mary matroid. A subset 9’ of % will be said to be convex if 
the exists an injection \qr from Y to N such that: Ve E E, {u(C) 1 C E 9, e E C} is 

an intcrv;iP of R: it is clear that cvwy subset of a convex subset of % is also 

COIlVC Y. 
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loop, e belongs to no K,. Otherwise let Z)k and uI (k < 1) be the two ends of e; 
then: 

eEKieuk E Vi, Uiti Viaksi<Z. 

Hence{K,(iE{l,...,n-- 1) is a convex subset of X. Moreover: 

%f({QJ) = K,; ~H({Vi})= Ki.-l+Ki ‘diE(2, l . l 9 PI-~}, 

since {WH({UI)) 1 l\=. { 1, . . . , n - 1)) spans X, it follows that {Ki 1 i E { 1, . . . , n - 1)) 
spans X. Hence {KiIiE{I,...,n-1)) contains a base of X, and-this is a convex 
base of cycles of M. 

(b)+(c). Let M = (E, %) b e a binary matroid with a convex base of cycles 

{C, Ii&. . . , r)}; we may assume that: Ve E E, {i E { 1, . . . , r} 1 e E Ci} is an interval 
la, of h? 
Then for a given iE(l,...,r) and KcE: 

Kn~={eEKIeECi}={eEKIiEI,}. 

Hence, for a given Kc E: 

tliE{l,.... r}, (K nCil=O (mod 2j 

if and only if 

ViE{l,..., r}, I{e E K 1 i E IJI = 0 (mod 2). 

This means that the set of cocycles of M is identical to the set of cycles of the 
interval system (I,,, e E E), or, equivalently, that the dual of M is the cycle matroid 
of the interval system (I(,, e E E). 

(c)3 (a). Let (I,, e E E) be an interval system and M = (15, Ce) be its cycle 
matroid; we must show that the dual of M is cographic; clearly we may assume 
that U (,EE I, is of the form (1,. . . , r) and that’ ZC, # 0 Ve E E. tie E: E we shall 

, denote by ptB and q6, the elements of { 1, . , . , 
Let us construct a graph H as follows. 

every element e of E we shall define an 

WE&.., r) let Vi = { 01, . . . , Ui)e Then: 

r)such that l~D=--{n~N~p,~rzs~~). 
H has r+ 1 vertices u,, . . . , D,+,; for 
edge 4(e) of H with ends u,,~, u‘,,+.,. 

(eEElkf,,)=(eEE 

=(eE E 

=(eEE 

or 

up,, E vi, f’c,(. 1 I @ v, 1 
d-de) E w,,( vi>) Vk{l,...,r}. 

V,) ViE{l,. . . , r), 



It follows that 4 defincss an ;~wmorphbm from the cocycle tipace of (I,, e c E) to 

the cocyclc ripace of W; hence Ihe dual of M is isomorphic to the cocycle matroid 

of l-f. 

This complctcs the proof. 

Remasrk, The equivalence of la) and (c) of Proposition 1 can be formulated as 

follows: A binary matroid i-0 an interval matroid if and only if it is graphic. 

3, Some charaderizstions of planar graphs 

3.1, Gen~erul plunar gruphs 

Proposition 2, A grupC~ is planur if and only if it has LI convex base of cycks. 

This is a 

theorem. 
direct cWlscqucnce of Proposition 1 together with Whitney’s duality 

32. Cubic cyclically-&edge-connected planar graphs 

A cubic graph H is said to be cyclicallp4-edge-convzected if: VS c V(H), S # Q): 
1m,,(S)~ 2 3 with cquzlity if and only if ISI = 1 or ISi = I V(H)1 - 1. 

Proposition 3. A cyclically-4-edge-cornnected cubic graph is planar if md only if it 
has n convex furzdamental base of cycles. 

Proof. Let ?.: be a cyclically-4-edge-connected cubic graph. 
(a) If I-! has a (“onvex fundamental base of cycles, I-! is planar by Propositiorl 2. 
(b\ Conversely, if H is planar, let us assume that H is represented in the p:ane 

and that H* is a gcometrk dual of H (see [3, Chapter 31). The cycle matroid of H 
is isomorphic to the cocycle matroid of H”‘. Moreover it is easy to prove that H” 
is a triangulation of the plane with the following properties: 

l kr has no loops and no multiple edges; 
l every triangle of H* is the boundary of some face of I-I*. 

By a theorem of H. Whitney ([4], extended by W.T. Tutte in [S]), H* contains an 
Hamiltonian cycle; hence H* contains an Hamilionian chain K. This means that 
the verticrs of H” can be labelled v,, . . . , v,, ima such a way that each edge of K 
has two consecutive ends vi, v,, 1 (i E { 1, . . . , n -. 1)). 

‘diE{I,. . . , IZ- I} let Vi =(zY~, . . , (Vi: and k’i =wH*(V~). 

It will be easily seen that {.K, 1 i E { 1, . . . , n - 1)) is :rt fundamental base of cocycles 
of ff* rind tIiat it is convex (see the first part of the proof of Proposition 1). 

keen&-e, by duality, H lhas a convex fundamenral base of cycles. 



3.3. A renttrrk on the Four-Color ‘theorem 

It is known thtit a loopless graph W is vertex-colorable with 4 colors iti E(H) 6s 

the union of two cocycles of H (see for instance [6]). 

For planar graphs the dual statement is as follows: a planar bridgelet;s graph H 

(represented in the plane) is face-colorable with 4 colors ifl E(H) is the union of 

two cycles of H. 

Remarks, If H is cubic. E(H) is the union of two cycles of W iff H is 

edge-colorable with 3 colors ([6]>. 
It is well-known that the four-Color Theorem (171) is equivalcrlt to the 

fallowing: every cyclically-4-cdgc-cannected planar cubic graph is edge-colorable 
with 3 colors. 

Usirlg Propositions 2 and 3 it is now easy to show that the following statcmcrlts 
are ccluivalcnt to the Four-Color Theoremi: 

Aa) For every bridgeless graph H with a convex base of cycles, E(H) is the 
union of two cycles of H. 

4h) For every bridgeless graph H with a convex fundamental base of cycles, 
E(H) is the union of two cycles oi’ H. 

(c) Every bridgeless cubic graph with a convex fundamental base of cycles is 
edge-3-colorable. 

Remark. It is shown in [8] and [9] that for every bridgeless graph H, E(H) is the 
union of 3 cycles of H. 

Suppose that these 3 cycles form a convex subset of the cycle space of H (we shall 
say that they form a conuex 3-cycle cover o-f H). Assume that the 3 cycles are C,, 
C,, C, with: 

,e E C, , e E C, * e&G. 

It is then easy to check that Cz U (C, t C3) = E(H). 
Conversely, any set of two cycles the union of which is E(H) becomes by 

addition of the empty cycle a convex 3-cycle cover of H. 
Hence the statement: E(H) is the union of two cycles of H can be replaced in 

(a) and (b) by: H has a convex 3-cycle cover. 
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