22,915 research outputs found

    Tracking Angles of Departure and Arrival in a Mobile Millimeter Wave Channel

    Full text link
    Millimeter wave provides a very promising approach for meeting the ever-growing traffic demand in next generation wireless networks. To utilize this band, it is crucial to obtain the channel state information in order to perform beamforming and combining to compensate for severe path loss. In contrast to lower frequencies, a typical millimeter wave channel consists of a few dominant paths. Thus it is generally sufficient to estimate the path gains, angles of departure (AoDs), and angles of arrival (AoAs) of those paths. Proposed in this paper is a dual timescale model to characterize abrupt channel changes (e.g., blockage) and slow variations of AoDs and AoAs. This work focuses on tracking the slow variations and detecting abrupt changes. A Kalman filter based tracking algorithm and an abrupt change detection method are proposed. The tracking algorithm is compared with the adaptive algorithm due to Alkhateeb, Ayach, Leus and Heath (2014) in the case with single radio frequency chain. Simulation results show that to achieve the same tracking performance, the proposed algorithm requires much lower signal-to-noise-ratio (SNR) and much fewer pilots than the other algorithm. Moreover, the change detection method can always detect abrupt changes with moderate number of pilots and SNR.Comment: 6 pages, 7 figures, submitted to ICC 201

    Active Classification for POMDPs: a Kalman-like State Estimator

    Full text link
    The problem of state tracking with active observation control is considered for a system modeled by a discrete-time, finite-state Markov chain observed through conditionally Gaussian measurement vectors. The measurement model statistics are shaped by the underlying state and an exogenous control input, which influence the observations' quality. Exploiting an innovations approach, an approximate minimum mean-squared error (MMSE) filter is derived to estimate the Markov chain system state. To optimize the control strategy, the associated mean-squared error is used as an optimization criterion in a partially observable Markov decision process formulation. A stochastic dynamic programming algorithm is proposed to solve for the optimal solution. To enhance the quality of system state estimates, approximate MMSE smoothing estimators are also derived. Finally, the performance of the proposed framework is illustrated on the problem of physical activity detection in wireless body sensing networks. The power of the proposed framework lies within its ability to accommodate a broad spectrum of active classification applications including sensor management for object classification and tracking, estimation of sparse signals and radar scheduling.Comment: 38 pages, 6 figure

    Kalman-filter control schemes for fringe tracking. Development and application to VLTI/GRAVITY

    Full text link
    The implementation of fringe tracking for optical interferometers is inevitable when optimal exploitation of the instrumental capacities is desired. Fringe tracking allows continuous fringe observation, considerably increasing the sensitivity of the interferometric system. In addition to the correction of atmospheric path-length differences, a decent control algorithm should correct for disturbances introduced by instrumental vibrations, and deal with other errors propagating in the optical trains. We attempt to construct control schemes based on Kalman filters. Kalman filtering is an optimal data processing algorithm for tracking and correcting a system on which observations are performed. As a direct application, control schemes are designed for GRAVITY, a future four-telescope near-infrared beam combiner for the Very Large Telescope Interferometer (VLTI). We base our study on recent work in adaptive-optics control. The technique is to describe perturbations of fringe phases in terms of an a priori model. The model allows us to optimize the tracking of fringes, in that it is adapted to the prevailing perturbations. Since the model is of a parametric nature, a parameter identification needs to be included. Different possibilities exist to generalize to the four-telescope fringe tracking that is useful for GRAVITY. On the basis of a two-telescope Kalman-filtering control algorithm, a set of two properly working control algorithms for four-telescope fringe tracking is constructed. The control schemes are designed to take into account flux problems and low-signal baselines. First simulations of the fringe-tracking process indicate that the defined schemes meet the requirements for GRAVITY and allow us to distinguish in performance. In a future paper, we will compare the performances of classical fringe tracking to our Kalman-filter control.Comment: 17 pages, 8 figures, accepted for publication in A&

    Detection of abrupt changes in dynamic systems

    Get PDF
    Some of the basic ideas associated with the detection of abrupt changes in dynamic systems are presented. Multiple filter-based techniques and residual-based method and the multiple model and generalized likelihood ratio methods are considered. Issues such as the effect of unknown onset time on algorithm complexity and structure and robustness to model uncertainty are discussed
    corecore