16 research outputs found

    The 0-1 inverse maximum stable set problem

    Get PDF
    Given an instance of a weighted combinatorial optimization problem and its feasible solution, the usual inverse problem is to modify as little as possible (with respect to a fixed norm) the given weight system to make the giiven feasible solution optimal. We focus on its 0-1 version, which is to modify as little as possible the structure of the given instance so that the fixed solution becomes optimal in the new instance. In this paper, we consider the 0-1 inverse maximum stable set problem against a specific (optimal or not) algorithm, which is to delete as few vertices as possible so that the fixed stable set S* can be returned as a solution by the given algorithm in the new instance. Firstly, we study the hardness and approximation results of the 0-1 inverse maximum stable set problem against the algorithms. Greedy and 2-opt. Secondly, we identify classes of graphs for which the 0-1 inverse maximum stable set problem can be polynomially solvable. We prove the tractability of the problem for several classes of perfect graphs such as comparability graphs and chordal graphs.Combinatorial inverse optimization, maximum stable set problem, NP-hardness, performance ratio, perfect graphs.

    Note on maximal split-stable subgraphs

    Get PDF
    A multigraph G=(V,R∪B) with red and blue edges is an R/B-split graph if V is the union of a red and a blue stable set. Gavril has shown that R/B-split graphs yield a common generalization of split graphs and König–Egerváry graphs. Moreover, R/B-split graphs can be recognized in linear time. In this note, we address the corresponding optimization problem: identify a set of vertices of maximal cardinality that decomposes into a red and a blue stable set. This problem is NP-hard in general. We investigate the complexity of special and related cases (e.g., (anti-)chains in partial orders and stable matroid bases) and exhibit some NP-hard cases as well as polynomial ones

    Some results on triangle partitions

    Full text link
    We show that there exist efficient algorithms for the triangle packing problem in colored permutation graphs, complete multipartite graphs, distance-hereditary graphs, k-modular permutation graphs and complements of k-partite graphs (when k is fixed). We show that there is an efficient algorithm for C_4-packing on bipartite permutation graphs and we show that C_4-packing on bipartite graphs is NP-complete. We characterize the cobipartite graphs that have a triangle partition

    On Path Partitions and Colourings in Digraphs

    Get PDF
    Abstract. We provide a new proof of a theorem of Saks which is an extension of Greene's Theorem to acyclic digraphs, by reducing it to a similar, known extension of Greene and Kleitman's Theorem. This suggests that the Greene-Kleitman Theorem is stronger than Greene's Theorem on posets. We leave it as an open question whether the same holds for all digraphs, that is, does Berge's conjecture concerning path partitions in digraphs imply the extension of Greene's theorem to all digraphs (conjecture

    Berge's conjecture on directed path partitions—a survey

    Get PDF
    AbstractBerge's conjecture from 1982 on path partitions in directed graphs generalizes and extends Dilworth's theorem and the Greene–Kleitman theorem which are well known for partially ordered sets. The conjecture relates path partitions to a collection of k independent sets, for each k⩾1. The conjecture is still open and intriguing for all k>1.11Only recently it was proved Berger and Ben-Arroyo Hartman [56] for k=2 (added in proof). In this paper, we will survey partial results on the conjecture, look into different proof techniques for these results, and relate the conjecture to other theorems, conjectures and open problems of Berge and other mathematicians

    On the approximation of Min Split-coloring and Min Cocoloring

    Full text link
    corecore