694 research outputs found

    On the Duality of Semiantichains and Unichain Coverings

    Full text link
    We study a min-max relation conjectured by Saks and West: For any two posets PP and QQ the size of a maximum semiantichain and the size of a minimum unichain covering in the product P×QP\times Q are equal. For positive we state conditions on PP and QQ that imply the min-max relation. Based on these conditions we identify some new families of posets where the conjecture holds and get easy proofs for several instances where the conjecture had been verified before. However, we also have examples showing that in general the min-max relation is false, i.e., we disprove the Saks-West conjecture.Comment: 10 pages, 3 figure

    An extremal problem on crossing vectors

    Full text link
    For positive integers ww and kk, two vectors AA and BB from Zw\mathbb{Z}^w are called kk-crossing if there are two coordinates ii and jj such that A[i]B[i]kA[i]-B[i]\geq k and B[j]A[j]kB[j]-A[j]\geq k. What is the maximum size of a family of pairwise 11-crossing and pairwise non-kk-crossing vectors in Zw\mathbb{Z}^w? We state a conjecture that the answer is kw1k^{w-1}. We prove the conjecture for w3w\leq 3 and provide weaker upper bounds for w4w\geq 4. Also, for all kk and ww, we construct several quite different examples of families of desired size kw1k^{w-1}. This research is motivated by a natural question concerning the width of the lattice of maximum antichains of a partially ordered set.Comment: Corrections and improvement

    Antichain cutsets of strongly connected posets

    Full text link
    Rival and Zaguia showed that the antichain cutsets of a finite Boolean lattice are exactly the level sets. We show that a similar characterization of antichain cutsets holds for any strongly connected poset of locally finite height. As a corollary, we get such a characterization for semimodular lattices, supersolvable lattices, Bruhat orders, locally shellable lattices, and many more. We also consider a generalization to strongly connected hypergraphs having finite edges.Comment: 12 pages; v2 contains minor fixes for publicatio
    corecore