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Abstract. We provide a new proof of a theorem of Saks which is an
extension of Greene’s Theorem to acyclic digraphs, by reducing it to
a similar, known extension of Greene and Kleitman’s Theorem. This
suggests that the Greene-Kleitman Theorem is stronger than Greene’s
Theorem on posets. We leave it as an open question whether the same
holds for all digraphs, that is, does Berge’s conjecture concerning path
partitions in digraphs imply the extension of Greene’s theorem to all
digraphs (conjectured by Aharoni, Hartman and Hoffman)?

1 Introduction

Dilworth’s well known theorem [7] states that in a partially ordered set the size of
a maximum antichain equals the size of a minimum chain partition. Greene and
Kleitman [13] generalized Dilworth’s theorem to a min-max theorem for the max-
imum cardinality of the union of k antichains (k ∈ N). Previously, Greene [12]
had proved a similar min-max theorem where the role of chains and antichains is
interchanged. Linial [15] conjectured that the theorems of Greene-Kleitman and
Greene can be extended to all digraphs by replacing the equality by an inequality.
Later, Berge [3] made a stronger conjecture than Linial’s extending the Greene-
Kleitman theorem to all digraphs, and Aharoni, Hartman and Hoffman (AHH)
[1] made a similar conjecture which extends Greene’s theorem to all digraphs,
and is stronger than Linial’s conjecture. Both conjectures of Berge and Aharoni-
Hartman-Hoffman were proved for all acyclic digraphs (see [15], [6],[17], [5] and
[1]). For k = 1 Berge’s conjecture holds by the Gallai-Milgram theorem [11],
and the Aharoni-Hartman-Hoffman conjecture holds by the Gallai-Roy theorem
[10,16]. Recently, Berger and Hartman [4] proved Berge’s conjecture for k = 2.
For other values of k (except for the extreme upper values), all of the conjectures
mentioned above are open. For a survey of the subject see [14].

The purpose of this paper is reduce the Aharoni-Hartman-Hoffman conjec-
ture for acyclic digraphs to Berge’s conjecture. Furthermore, a polynomial al-
gorithm is given proving the AHH Conjecture, based on an oracle for Berge’s
Conjecture. If the same holds for all digraphs, then it will be sufficient to prove
Berge’s conjecture, and the rest of the conjectures will follow.

2 Preliminaries and the Main Result

Let G = (V,E) be a directed graph and let |V | = n. If L is a collection of subsets
of V , we set

⋃

L := {x;x ∈ A for some A ∈ L}. The cardinality of the set X is
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denoted by |X|.
A path P in G is a sequence of distinct vertices (v1, v2, . . . , vl) such that (vi, vi+1) ∈
E, for i = 1, 2, . . . , l − 1. Let the cardinality of P be |P | = l. If a path P is of
cardinality one, then we say it is trivial.
For positive integers q, k, a q-path system is a family Pq := {P1, P2, . . . , Pq} of
q pairwise disjoint paths, a k-colouring is a family Ck := {C1, C2, . . . , Ck} of k
pairwise disjoint independent sets, also called colour classes.

Denote λq := max |
⋃

Pq| and αk := max |
⋃

Ck| where the maximum is taken
over all q-path systems and k-colourings, respectively, and |

⋃

Pq| (|
⋃

Ck|) de-
note the number of vertices covered by Pq (Ck). A q-path system with |

⋃

Pq| =
λq is called optimal.

A family P of paths is called a path partition of G if all its members are
pairwise disjoint, and ∪P = V . The k-norm |P|k of a path partition P =
{P1, . . . , Pm} is defined by |P|k :=

∑m

i=1
min{|Pi|, k}. Denote by P0 the set

of trivial paths in P, and by P≥k (P>k) the sets of paths in P of cardinality at
least (more than) k. A partition which minimizes |P|k is called k-optimal. Let
πk(G) = min|P|k where the minimum is taken over all possible path partitions
in G. If k is the cardinality of the smallest non-trivial path on P, then clearly,
|P|k = k|P≥k|+ |P0|.

Similarly, a colouring C is a family of pairwise disjoint independent sets
where ∪C = V . The q-norm |C|q of a colouring C = {C1, . . . , Cm} is defined
by |C|q :=

∑m

i=1
min{|Ci|, q}. Let χq(G) = min|C|q where the minimum is taken

over all possible colourings in G.

Theorem 1 (Greene-Kleitman[13]) If G is a graph of a poset, then αk(G) =
πk(G) for all 1 ≤ k ≤ λ1.

Theorem 2 (Greene[12]) If G is a graph of a poset, then λq(G) = χq(G) for
all 1 ≤ q ≤ α1.

The inequality αk(G) ≤ πk(G) is trivial since any path P (chain) in a poset
induces a clique which can meet a k-colouring by at most min{|Pi|, k} vertices.
Similarly, every independent set (antichain) C in a poset can meet a q-path
system by at most min{|Ci|, q} vertices, implying the inequality λq(G) ≤ χq(G).
The other direction of the inequalities is less trivial and was conjectured by
Linial to be true for all digraphs:

Conjecture 3 (Linial[15]) Let G be a digraph, and k, q positive integers. Then

1. αk(G) ≥ πk(G)
2. λq(G) ≥ χq(G)

For any graph G, a k-colouring Ck is orthogonal to a path partition if each
Pi ∈ P meets exactly min{|Pi|, k} different colour classes in Ck. Similarly, a
colouring C is orthogonal to a q-path system Pq if each Ci ∈ C meets exactly
min{|Ci|, q} different paths in Pq.
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Conjecture 4 (Berge’s Strong Path Partition Conjecture [3]) Let G be
a digraph, k a positive integer, and P a k-optimal path partition. Then there
exists a k-colouring Ck orthogonal to P.

This conjecture implies Conjecture 3-(1). The following is an equivalent con-
jecture to Conjecture 4:

Conjecture 5 (Equivalent to Conjecture 4) Let G be a digraph, k a posi-
tive integer, and let P be some path partition in G. Then either there exists a k-
colouring Ck orthogonal to P, or there exists a path partition P ′ with |P ′|k < |P|k

The following conjecture extends Greene’s Theorem to all digraphs and im-
plies part 2 of Conjecture 3, in a similar way that Berge’s Conjecture extends
the Greene-Kleitman Theorem:

Conjecture 6 (Aharoni, Hartman, Hoffman (AHH) [1]) Let G be a di-
graph, q a positive integer, and Pq an optimal q-path system. Then there exists
a colouring C orthogonal to Pq.

Conjecture 7 (Equivalent to Conjecture 6) Let G be a digraph, q a posi-
tive integer, and Pq some q-path system in G. Then either there exists a colouring
C orthogonal to Pq, or there exists a q-path system P ′q with |P ′q| > |Pq|.

Conjecture 4 implies Conjecture 3-(1) and it holds for k = 1 by the Gallai-
Milgram [11] theorem. Conjecture 6 implies Conjecture 3-(2) and it holds for
q = 1 by the Gallai-Roy [10,16] theorem.

The following definition of Frank [9] helps us in uniting all Conjectures 3-6.

Definition 8 A q-path system Pq = {P1, P2, . . . , Pq} and a k-colouring Ck =
{C1, C2, . . . , Ck} are orthogonal if

1. V = (∪Pq)
⋃

(∪Ck)
2. |Pi ∩ Cj | = 1 for 1 ≤ i ≤ q, 1 ≤ j ≤ k

For a q-path system Pq, the associated path partition P is defined by P :=
Pq ∪ {{x};x /∈ ∪Pq}. Similarly, the associated colouring to a k-colouring Ck is
defined by C := Ck ∪ {{x};x /∈ ∪Ck}.

Observation 9 1. Let Pq be a q-path system orthogonal to Ck, a k-colouring,
for some integers q and k. Then Ck is orthogonal to the associated path
partition P := Pq ∪ {{x};x /∈ ∪Pq} and the associated colouring C := Ck ∪
{{x};x /∈ ∪Ck} is orthogonal to Pq.

2. Conversely, if Ck is orthogonal to some path partition P, then Ck is orthog-
onal to Pq := P≥k. Note that Ck is also orthogonal to Pq where Pq consists
of paths of cardinality more than k, and any number of paths of cardinality
exactly k are included in Pq.

3. Similarly, if a colouring C is orthogonal to some q-path system Pq, then Pq

is orthogonal to the k-colouring Ck := C≥q, where C≥q denotes the set of
independent sets in C of size at least q.
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4. Furthermore, if Pq and Ck are orthogonal then αk(G) ≥ πk(G) and λq(G) ≥
χq(G), implying Linial’s conjectures for these values of k and q.

Theorem 10 Conjecture 7 can be reduced to Conjecture 5 for acyclic digraphs.

Corollary 11 Theorem 1 implies Theorem 2, i.e. Greene-Kleitman’s Theorem
implies Greene’s Theorem.

Proof of Corollary: Assume Theorem 1 holds. Then any optimal k-colouring
Ck in a graph of a poset must be orthogonal to an optimal path partition P be-
cause in a poset each P ∈ P can meet at most min{|P |, k} vertices from Ck.
If some P would meet less than min{|P |, k} vertices from Ck, we would have
αk(G) < πk(G), contrary to Theorem 1. Hence Conjecture 4 holds for posets,
implying by Theorem 10 that Conjecture 6 holds, and hence Greene’s Theorem
(Theorem 2) follows.

3 Proof of Theorem 10

3.1 Outline of Proof:

We assume that Conjecture 5 is true. Given any path partition P, and positive
integer k, we assume that we have some Oracle that either finds a k-colouring
Ck orthogonal to P, or finds a path partition P ′ with |P ′|k < |P|k. Let q ≥ 1,
and let Pq be a q-path system. We will show that Conjecture 7 holds for Pq. Let
P be the path partition associated with Pq. We prove that either there exists
a k, 1 ≤ k ≤ minP∈Pq |P |, and a k- colouring Ck orthogonal to P, implying by
Observation 9-(1) and (2) that C := Ck ∪ {{x};x /∈ ∪Ck} is orthogonal to Pq, or
we find another q-path system P ′q with |P ′q| > |Pq|.

The proof is algorithmic and it uses a network constructed from G as in Frank
[9]. We define a flow f which corresponds to the path partition P associated with
Pq. We begin with k = 1. If P is 1-optimal, then by the Gallai -Milgram Theorem
(or Conjecture 4 for k = 1) there exists an independent set C1 orthogonal to it,
implying that C := C1 ∪ {{x};x /∈ ∪Ck} is orthogonal to Pq (by Observation
9) and we are done. Otherwise, P is not 1-optimal, and the Oracle finds a path
partition P ′ with |P ′|1 < |P|1. Let f ′ be the flow corresponding to P ′. Then f ′−f
is a feasible flow in the residual network Nf ′ corresponding to f ′. Depending on
f ′, we either increase k by one, or we show that f ′−f can be used to find a new
flow f ′′ which satisfies two main conditions:

1. f ′′ corresponds to a path partition P ′′ in G.
2. P ′′ contains a q-path system which covers more vertices than Pq, contra-

dicting the optimality of Pq.

We prove that if no k-colouring Ck exists which is orthogonal to P, for all 1 ≤
k ≤ minP∈Pq |P |, then a new flow is found, yielding a k-path which covers more
vertices than Pq. This will imply Conjecture 7.

In general digraphs, the subgraph P ′′, corresponding to f ′′, may contain
cycles and the proof may fail.
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3.2 Details of Proof:

We proceed to define the network N , the flow f corresponding to a path partition
P, the residual network Nf corresponding to f , and the criterion for either
increasing k, or finding a flow f ′′ which contradicts the optimality of Pq.

The network We describe the network N as in [9]. Assume G = (V,E) where
V = {v1, v2, . . . , vn}, and k ≥ 1. Associate a network N = (V ,E, a, c, s, t) with
G as follows:

Let V = {s, t, v′
1, v

′
2, . . . , v

′
n, v′′

1 , v′′
2 , . . . , v′′

n}, E = {(s, v′
i); i = 1, 2, . . . , n} ∪

{(v′′
i , t); i = 1, 2, . . . , n} ∪ {(v′

i, v
′′
j ); (vi, vj) ∈ E} ∪ {(v′

i, v
′′
i ); 1 ≤ i ≤ n} ∪ {(s, t)}.

All of the arc capacities c(e) are equal to one, while the costs a(e) are:

a(e) =







1 if e = (v′
i, v

′′
i )

k if e = (s, t)
0 otherwise

We denote the value of a feasible flow f by val(f) and its cost by cost(f).

Path partitions and flows Since all the capacities are one we may assume
that a feasible flow in N is integral. We define a full feasible flow as a flow which
satisfies that for each vi ∈ V (G), at least one of the edges (s, v′

i) or (v′′
i , t) has

non-zero flow. For example, a maximal flow (i.e. a flow f s.t. there exists no
other flow f ′, f ≤ f ′) is a full flow.

Assume we have a full feasible flow f in N of value v. We associate with it a
partition P = P(f) of V (G) into paths defined as follows: If f(v′

i, v
′′
j ) = 1, i 6= j,

then (vi, vj) ∈ E[P], and if f(v′
i, v

′′
i ) = 1 then (vi) is a trivial path in P. Since

f is full each vertex in V (G) is covered by P, and since all the capacities are
one, P is indeed a collection of disjoint paths. If G is not acyclic, then P is a
collection of disjoint paths and cycles.

If P = P(f) is a path partition, and k is less than or equal to the smallest
non-trivial path in P, then

|P|k = k|P≥k|+ |P0| = k|P>1|+ |P0| = k(n− val(f)) + cost(f) (1)

Conversely, given a path partition P in G, we associate with it the flow
f := fP defined by: If (vi) ∈ P

0 then f(s, v′
i) = f(v′

i, v
′′
i ) = f(v′′

i , t) = 1. For
each (vi, vj) ∈ E[P] define f(s, v′

i) = f(v′
i, v

′′
j ) = f(v′′

j , t) = 1. The flow in all
other edges is defined as zero. It is easy to check that fP is a full feasible flow
with val(f) = n − |P>1|, and cost(f) = |P0|. If k ≤ minP∈P>1 |P |, then the
equation in formula (1) holds.

The residual network For a given flow f in N , the residual network Nf is
defined to be:

Nf = (V ,Ef , af , cf , s, t)
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where

Ef := {e ∈ E; f(e) < c(e)} ∪ {←−e ; e ∈ E and f(e) > 0}.

Here if e = (u, v) then ←−e = (v, u) is its reverse. The residual capacity cf :
Ef → R

+ is defined as cf ≡ 1. The cost function af : Ef → R is defined as:
af (e) := a(e) for every e ∈ E, and af (←−e ) := −a(e) for every e ∈ E.

Lemma 12 ( see[2]) 1. If f is a feasible flow in a network N , and g is a
feasible flow in the residual network Nf , then f + g is a feasible flow in the
original network N defined as follows: (f + g)(e) = f(e) + g(e) − g(←−e ) for
every e ∈ E. (If e /∈ Ef , ←−e /∈ Ef , we let g(e) = 0, g(←−e ) = 0, respectively).
The flow f + g satisfies val(f + g) = val(f) + val(g) and cost(f + g) =
cost(f) + cost(g).

2. Similarly, if f, f ′ are two feasible flows in a network N , then f ′ − f is a
feasible flow in the residual network Nf of value val(f ′) − val(f) and cost
cost(f ′)− cost(f). The flow f ′− f in Nf is defined as follows: If e ∈ E ∩Ef

then (f ′−f)(e) = (f ′(e)−f(e))+ where x+ = max{x, 0}. Similarly, if e ∈ E,
and ←−e ∈ Ef , then (f ′ − f)(←−e ) = (f(e)− f(′(e))+.

3. Since all the capacities are one, f ′−f can be represented as the sum of flows
along s− t paths and cycles in Nf , each having flow value of 0, 1 or −1.

For a full feasible flow f define

wk(f) := k · val(f)− cost(f) (2)

If f is the flow corresponding to a path partition P, then by Equation (1),
|P|k = kn− wk(f).

Lemma 13 Let P and P ′ be path partitions with |P ′|k < |P|k, and assume
that all non-trivial paths in P and P ′ are of cardinality at least k. Let f and
f ′ be feasible flows in N corresponding to P and P ′, respectively. Let f ′ − f =
f1 + f2 + ...+ fm, where each fi is an s− t-flow in Nf of value 0, 1 or −1. Then
there exists some fi0 ( 1 ≤ i0 ≤ m) with wk(fi0) > 0.

Proof: From |P ′|k−|P|k < 0, it follows from (1) and (2) that wk(f ′)−wk(f) > 0.
By Lemma 12,

wk(f ′)−wk(f) = k·val(f ′)−cost(f ′)−(k·val(f)−cost(f)) = k·val(f ′−f)−cost(f ′−f) =

= wk(f ′ − f) = k · val(Σm
i=1fi)− cost(Σm

i=1fi) = Σm
i=1wk(fi) > 0

Hence, there must be some fi0 , (1 ≤ i0 ≤ m) with wk(fi0) > 0.
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The Algorithm and proof of correctness

0. Input: G , q ≥ 1, Pq

1. Initialize: k ← 1; P := Pq ∪ {{x};x /∈ ∪Pq}; f ← fP
2. while (k ≤ minP∈Pq |P |) do
3. begin
4. if (∃Ck orthogonal to P) then Stop
5. Let P ′ with |P ′|k < |P|k, and wk(fi0) > 0. If (val(fi0) = 0 or 1 ) then find improved P ′q. Stop
6. else (val(fi0) = −1) then k ← k + 1
7. end

Remarks:

1. In line 4, the Oracle, as implied by Conjecture 5, finds a k-colouring Ck

orthogonal to P. By Observation 9, C = Ck ∪ {{x};x /∈ ∪Ck} is orthogonal
to Pq, and we are done.

2. Otherwise, (line 5) the Oracle finds a path partition P ′ with |P ′|k < |P|k.
We assume that all non-trivial paths in P ′ are of cardinality at least k.
(Otherwise, we just break up paths of cardinality less than k into single
vertices). Lemma 13 implies the existence of fi0 with val(fi0) = 0, 1 or −1
and wk(fi0) > 0

Lemma 14 Let P be a path partition and f = fP . If there exist flows fj0 and
fj1 in Nf satisfying val(fj0) = 1, val(fj1) = −1, cost(fj0) + cost(fj1) < 0, then
there exists a flow f ′ in Nf with val(f ′) = 0 and cost(f ′) < 0.

Proof: If fj0 and fj1 are disjoint, then f ′ = fj0 + fj1 is a flow satisfying
val(f ′) = val(fj0) + val(fj1) = 0 and cost(f ′) = cost(fj0) + cost(fj1) < 0.
Otherwise, fj0 + fj1 is a collection of cycles (not necessarily disjoint!) of total
negative cost. One of these cycles must have a negative cost, and corresponds to
a flow f ′ in Nf with val(f ′) = 0 and cost(f ′) < 0.

We are now ready to prove the correctness of the algorithm:

Theorem 15 Given a q-path system Pq, the algorithm above either finds a
colouring C orthogonal to it, or a q-path system P ′′q with |

⋃

P ′′q| > |
⋃

Pq|.

Proof: In line 1, k is initialized to 1, the path partition P associated with P q

is constructed, and a flow f corresponding to P is defined in N . If the algorithm
stops at line 4, then by Remark (1) above we are done. Otherwise, the Oracle
finds a path partition P ′ with |P ′|k < |P|k. Let fi0 be the flow (of value 0,1 or
-1) as implied in Lemma 13. Let f ′′ := f + fi0 , and P ′′ := P(f ′′).

Case 1: Assume val(fi0) = 0. Since wk(fi0) > 0 it follows that cost(fi0) < 0
and f ′′ = f + fi0 is a flow with val(f ′′) = val(f) and cost(f ′′) < cost(f).
Then |P ′′>1| = |P>1| = n − val(f) ≤ q. However, |

⋃

P ′′>1| = n − cost(f ′′) >
n−cost(f) = |

⋃

Pq|. If Pq contains no trivial paths then P ′′>1 is a q-path system
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with |
⋃

P ′′q| > |
⋃

Pq| , and we are done. Otherwise, we add the necessary
number of trivial paths to P ′′>1 to make it a q-path system, and we are done
again.

Case 2: If val(fi0) = −1 then k is increased unless k = minP∈Pq |P |. Assume
k = minP∈Pq |P |. From wk(fi0) > 0 we deduce that cost(fi0) ≤ −k− 1. If k = 1
then P contains t trivial paths, for some t ≥ 1, and q− t non-trivial paths. Now
|P ′′>1| = n − val(f ′′) = n − (val(f) + val(fi0)) = n − val(f) + 1 = |P>1| + 1 =
q − t + 1. But cost(fi0) ≤ −2, implying that P ′′>1 in addition to t − 1 trivial
paths is a q-path system which covers at least one more vertex than P q.

Assume now that k ≥ 2. Let P = (v1, v2, . . . , vk) be the shortest path in Pq.
Then fi1 = (s, v′

k, v′′
k , v′

k−1
, v′′

k−1
, . . . , v′

1, v
′′
1 , t) is a flow in Nf with val(fi1) = 1

and cost(fi1) = k. By applying Lemma 14 on the flows fi1 and fi0 we are
guaranteed the existence of a flow f ′ in Nf with val(f ′) = 0 and cost(f ′) < 0.
We let f ′′ := f + f ′. As was shown in Case 1, P ′′q = P ′′>1 is a q-path system
which covers more vertices than Pq.

Case 3.1: If val(fi0) = 1 and k = 1, then cost(fi0) ≤ 0. Then |P ′′>1| =
n−val(f ′′) = n−val(f)−1 ≤ q−1, and P ′′>1 covers n−cost(f ′′) ≥ n−cost(f) =
|
⋃

Pq| vertices. If we add any path from G −
⋃

P ′′>1 to the family P ′′>1, we
have a q-path system which covers more vertices than Pq, and we are done.

Case 3.2: Finally, if val(fi0) = 1 and k ≥ 2, then k was increased to its
current value because there exists a flow fi1 with val(fi1) = −1 and wk−1(fi1) >
0. From wk(fi0) > 0, and wk−1(fi1) > 0 we deduce that cost(fi0) < k and
cost(fi1) < −(k − 1). By Lemma 14, there exists a flow f ′ with val(f ′) = 0 and
cost(f ′) < 0. The rest follows as in Case 1. This completes the proof.

4 When G is not Acyclic

In an arbitrary digraph, which is not necessarily acyclic, we have no guarantee
that f ′′ := f + fi0 (where fi0 was defined in Lemma 13) corresponds to a path
partition. It may correspond to a partition of paths and cycles. However, we do
know that f ′ = f + Σm

i=1fi does correspond to a path partition (the partition
P ′!). Perhaps fi0 can be replaced by a collection of flows, thus yielding the
following conjecture:

Conjecture 16 Let G be digraph, k ≥ 1. Assume P and P ′ are path partitions
in G and |P ′|k < |P|k. We assume that all non-trivial paths in P and P ′ are of
cardinality at least k. Let f ( f ′) be the corresponding flow fP (respectively f ′

P)
in our network N . Let f ′−f =

∑m

i=1
fi be a decomposition of f ′−f such that for
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Fig. 1. G. P2 = {P1, P2}

any i, fi ∈ Nf and val(fi) ∈ {0,−1, 1}. Then there exists a subset I ⊆ {1, ...,m}
such that the flow S =

∑

i∈I fi satisfies:
(i) S ∈ Nf

(ii) P(f + S) is acyclic
(iii) wk(S) > 0
(iv) val(S) ∈ {0,−1, 1}

Mercier[8] has found a counterexample to this conjecture. Consider the graph
in Figure 1. Let k = 1, P = {(a, b, c, d, e), (f, g, h, i, j), (k), (l), (m), (n)} and
P ′ = {(a, k), (f, l), (n, j), (m, d, g, i, c, h, b, e)}.
Let f1 = (t, n′′, n′, j′′, i′, c′′, b′, e′′, d′, g′′, f ′, l′′, l′, s), and
f2 = (t,m′′,m′, d′′, c′, h′′, g′, i′′, h′, b′′, a′, k′′, k′, s). It is easy to verify that f ′ − f = f1 + f2,
where f ′ and f correspond to the path partitions P ′ and P, respectively. Since
both f1 and f2 are flows in Nf from t to s, it follows that val(f1+f2) = −2. How-
ever, P(f + fi) contains a cycle, for each i = 1, 2. This contradicts Conjecture
16.

Acknowledgment: I thank Eli Berger, and Fabien Mercier for their helpful
comments on this paper.
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