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The 0-1 inverse maximum stable set problem

Yerim CHUNG, Marc DEMANGE

Résumé

Les problèmes inverses motivent de très nombreux travaux dans le cadre de

l’optimisation continue, notamment en géophysique. Dans le cadre combinatoire, les

problèmes inverses  ont été étudiés depuis le début des années 90 et donnent lieu à de

nombreux travaux depuis ces dernières années. Il s’agit, étant donné une instance d’un

problème et une solution réalisable, de modifier le moins possible le système de

paramètres (au sens d’une norme choisie) pour que la solution fixée devienne optimale.

Nous nous intéressons plus particulièrement à des problèmes inverses avec contraintes

0-1 pour lesquels il s’agit de modifier la structure du graphe instance (plutôt que ses

paramètres) afin de rendre une solution fixée optimale. Ainsi, nous envisageons des

problèmes inverses contre un algorithme spécifié.

Dans ce papier, on étudie le problème inverse de stable maximum en variables

bivalentes, contre un algorithme spécifié A (optimal ou non), noté IS{0,1}A. Le problème

IS{0,1}A consiste, étant donné un graphe simple G=(V,E), un stable S*, et un algorithme

A , à retirer un nombre minimum de sommets de G  pour que S*  soit choisi par

l’algorithme A dans le graphe modifié.

D’abord, nous étudions la difficulté du problème IS{0,1}A pour deux algorithmes très

classiques, Glouton et 2-Opt, ainsi que pour un algorithme optimal spécifié. Nous

montrons que le rapport d’approximation strictement meilleur que 2 est garanti pour

IS{0,1}2-Opt. Dans la deuxième partie, nous étudions des classes de graphes pour lesquelles

IS{0,1} est polynomial. Nous montrons que IS{0,1} est polynomial dans quelques classes de

graphes parfaits telles que les graphes de comparabilité et les graphes chordaux

(triangulés). Ainsi, nous comparons les difficultés de IS{0,1} et IS{0,1}2-Opt pour d’autres

classes de graphes.

Mots de clés : Optimisation combinatoire inverse, Stable maximum, Rapport

d’approximation, Graphes parfaits

Classification AMS : 90C27, 05C17.
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The 0-1 inverse maximum stable set problem

Yerim CHUNG ∗ Marc DEMANGE †

Abstract

In this paper we study the 0-1 inverse maximum stable set problem,
denoted by IS{0,1}. Given a graph and a stable set (not necessarily
maximum), it is to delete a minimum number of vertices to make the
given stable set maximum in the new graph. We also consider IS{0,1}
against a specific algorithm such as Greedy and 2opt, which is denoted by
IS{0,1},greedy and IS{0,1},2opt, respectively. We prove the NP-hardness
of these problems and an approximation ratio of 2 − Θ( 1√

log∆
) for

IS{0,1},2opt. In addition, we restrict IS{0,1} to some classes of perfect
graphs such as comparability and chordal graphs, and we study its
tractability. Finally, we compare the hardness of IS{0,1} and IS{0,1},2opt

for some other classes of graphs.

Key words: Combinatorial inverse optimization, Maximum stable set problem,
NP-hardness, Performance ratio, Perfect graphs.

1 Introduction

Given an instance of a weighted combinatorial optimization problem and its
feasible solution, the usual inverse problem is to modify as little as possible
(with respect to a fixed norm) the weight system to make the given solution op-
timal. This area has been extensively studied during the last decade [1, 11, 15].
Recall that a stable set in a graph G = (V,E) is a vertex set S ⊂ V of which
every two vertices are non connected by an edge. The maximum (weight) stable
set problem is to find a stable set of maximum size (weight); both problems are
known to be NP-hard [7]. It is shown in [5] that the inverse maximum weight
stable set problem is NP-hard. In this paper, we focus on its 0-1 version [5],
called 0-1 inverse maximum stable set problem and denoted by IS{0,1}, in which
every vertex has a weight 0 or 1. This problem can be seen as to modify the
structure of an instance of the original problem, since changing the weight of
a vertex from 1 to 0 corresponds to removing this vertex from the graph instance.

We also consider IS{0,1} against a specific (optimal or not) algorithm. We
denote this problem by IS{0,1},A, where A is a fixed algorithm (this notion

∗CERMSEM, Paris 1 University, France, Yerim.Chung@malix.univ-paris1.fr
†DIS department, ESSEC, France, demange@essec.fr
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appeared first in [2]). It is to modify the instance (as in the usual inverse
problem) to make A choose the fixed solution. More formally, it is defined
as follows: given an undirected graph G=(V,E), a stable set S∗ and a specific
algorithm A, IS{0,1},A(G, S∗) is to delete a minimum number of vertices of
V \ S∗ such that S∗ can be returned by A in the new instance.

Algorithms Greedy and 2opt are both very natural and practical for approxi-
mating maximum stable set. The former repeatedly selects a vertex of minimum
degree and removes it from the graph together with all of its neighbors. The
latter is a local search algorithm that computes a 2-optimal stable set S, i.e.
neither ∀v /∈ S, S ∪ {v} nor ∀u ∈ S, ∀v, w /∈ S, (S \ {u}) ∪ {v, w} is a stable
set. In this work, we study IS{0,1},opt, IS{0,1},greedy and IS{0,1},2opt. IS{0,1}
corresponds to the case where A is any optimal algorithm. Similarly, we define
the strict problem of IS{0,1},A, denoted by ÎS{0,1},A, which is to modify the
structure of a given instance to force S∗ to be selected by A as an unique
solution in the new instance.

In section 2, we prove the NP-hardness of IS{0,1},opt, IS{0,1},greedy and
IS{0,1},2opt. In section 3, we show that the performance ratio 2 − Θ( 1√

log∆
) is

guaranteed for IS{0,1},2opt. In section 4, we restrict IS{0,1} to some classes of
perfect graphs such as comparability graphs and chordal graphs. We study its
tractability in these classes. Finally, in section 5, we compare the hardness of
IS{0,1} andIS{0,1},2opt for some other classes of graphs.

Notation.
Graph theory notation
G: the complement of a graph G
G[V ′]: the subgraph of G, induced by V ′ ⊂ V
(G, w): a weighted graph with weight w
Gw: the graph obtained from (G, w) by multiplication of vertices (to be defined
in the text)
Gw: the graph obtained from (G, w) by co-multiplication of vertices (to be
defined in the text)
Γ(v): the set of the adjacent vertices of a vertex v
∆(G): the maximum vertex degree of the graph G

Combinatorial problems notation
S: the maximum stable set problem
α(G): the stability number of G: the optimal value of the problem S
K: the maximum clique problem
ω(G): the clique number of G: the optimal value of the problem K
χ(G): the chromatic number of G: the fewest number of colors needed to cover
the vertices of G
κ(G): the clique cover number of G: the fewest number of cliques needed to
cover the vertices of G
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V C: the minimum vertex-covering problem
Sk: the maximum k-colorable subgraph problem
αk(G): the size of the largest k-colorable subgraph of G: the optimal value of
the problem Sk

PWSk: the maximum weight k-colorable subgraph problem with polynomially
bounded weights
αw,k(G): the maximum weight of a k-colorable subgraph of G: the optimal
value of the problem PWSk

SS∗
: the problem of finding a maximum |S∗|-colorable subgraph containing S∗

αS∗
(G): the size of the largest |S∗|-colorable subset of G which contains S∗:

the optimal value of the problem SS∗

Inverse problems notations
IP: the inverse problem of a combinatorial optimization problem P
ÎP : the strict inverse problem of P
IP{0,1}: the 0-1 inverse problem of P for any optimal algorithm
ÎP {0,1}: the strict 0-1 inverse problem of P for any optimal algorithm
IP{0,1},A: the 0-1 inverse problem of P against a specific (optimal or not)
algorithm A
ÎP {0,1},A: the strict 0-1 inverse problem of P against a specific algorithm A

Approximation theory notations
λP (G): the value of the approximated solution of P on a graph G
βP (G): the value of the optimal solution of P on a graph G
ρP (G) = βP (G)

λP (G) : the approximation ratio of P on a graph G
P1 ∝ P2: a polynomial time reduction of P1 to P2.

Remark 1. In many cases, if P is polynomial, then IP is also polynomial [1].
Nevertheless, a counter example is given in [15]. Moreover, in most cases, if
P is NP -hard, then IP is also NP -hard. In particular, the NP -completeness
of the decision version of stable set problem (S ) leads to the NP -hardness
of the inverse maximum stable set problem (IS) by the following simple
reduction. Let (G = (V,E), k) be an instance of S. We construct an instance
(G′ = (V ′, E′), S∗) of IS by adding to G a stable set S∗ of size k = |S∗|
(V ′ = V ∪ S∗), and by connecting by an edge every vertex of S∗ to all vertices
of G (E′ = E ∪ {sv|∀s ∈ S∗,∀v ∈ V }). Then, α(G) ≤ k ⇔ S∗ is a maximum
stable set of G′ ⇔ IS(G′, S∗) has an optimal value of 0. Consequently, IS
is NP -hard in every class of graphs stable under this transformation and for
which S is NP -hard. On the other hand, for the classes of graphs for which S
is NP -hard, it is also pertinent to consider the 0-1 inverse maximum stable set
problem against a specific approximated algorithm A, IS{0,1},A. �

Remark 2. Another natural distinction may arise in inverse framework
whether one aims for a fixed solution (as stated previously) or only for the opti-
mal value in the new instance. In the frame of the inverse maximum stable set
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problem, both points of view are equivalent. Given a graph G and a fixed value
k, one wants to remove the less possible number of vertices such that the new
graph has an independence number not greater than k. We consider a similar
reduction as in Remark 1: let us add to G an independent set Sk of size k com-
pletely connected to G. Then, if we denote by G′ the new graph, the problem
is exactly the same as the usual inverse problem IS{0,1} in G′, Sk being fixed.
So both problems are equivalent for any class of graphs which is stable under
this reduction (this is in particular the case for permutation graphs). How-
ever, this fact is not always true for the other combinatorial inverse problems. �

Remark 3. A natural weighted generalization of inverse maximum inde-
pendent set can be defined as follows: given a vertex-weighted graph, the
inverse maximum weight stable set problem IWS consists in minimizing
the total weight of vertices to delete so that the graph induced by the left
vertices has a weighted independence number of k or less. Remark 2 clearly
holds; so the version where a solution is fixed is equivalent. This problem is
NP -hard even if the graph instance is a stable set. Indeed, the Partition
problem simply reduces to IWS in polynomial time. Given an instance
of Partition, that is n numbers a1, · · · , an, we construct a weighted graph
(G = (V, ∅), w) of order |V | = n and without any edge (a stable set). The
weight function w is defined by w(vi) = ai for vi ∈ V , i ∈ I = {1, · · · , n}; let
k = 1

2

∑
i∈I ai. Then, IWS in this instance is clearly equivalent to the consid-

ered Partition instance. Note that this argument fails if weights are supposed
to be polynomially bounded. This paper only focuses on the unweighted case. �

2 Some hardness results

Proposition 2.1 IS{0,1}, IS{0,1},greedy and IS{0,1},2opt are NP-hard,
even if |S∗| = 1.

Proof. We transform the maximum clique problem K to IS{0,1},A for
A ∈ {opt, greedy, 2-opt}. Let I = (G = (V,E), k) be an instance of K, where
k is an integer and G is a graph of order |V | = n. We construct an instance
I ′ = (H = (V ′, E′), S∗, k′) of IS{0,1},A as follows:

- S∗ = {s∗}

- k′ = n− k

- V ′ = V ∪ {s∗} and E′ = E ∪ {vs∗ | v ∈ V }

4
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Figure 1: Construction of I ′ from I

Let us first point out that V0 ⊂ V is an optimal solution of IS{0,1},A for
A ∈ {opt, greedy, 2opt} if and only if H ′ = H[V ′ \ V0] is a clique, i.e. V0 is a
vertex-cover in H.
Algorithm Greedy: Since Greedy selects a vertex of minimum degree
and deletes all of its neighbors, it selects s∗ if and only if every vertex in
H ′ = H[V ′ \ V0] has at least the same degree as s∗, which means that H ′ is a
clique.
Algorithm opt and 2opt: Similarly, S∗ is optimal or 2-optimal in H ′ (in H ′

there exists no pair of vertices non connected to each other) if and only if H ′ is
a clique.
To conclude the proof, we note that G contains a k -clique K0 if and only if the
vertex set to delete to make H ′ complete corresponds to V ′ \ (K0 ∪ S∗) of size
k′ = n− k. Clearly, H ′ = H[V ′ \ (V ′ \ (K0 ∪ S∗))] = H[K0 ∪ S∗] is a complete
graph.
So, we have K ∝ IS{0,1},A for A ∈ {opt, greedy, 2-opt}, and consequently
IS{0,1},opt, IS{0,1},greedy and IS{0,1},2opt are NP -hard, even if |S∗| = 1. �

It is easy to verify that the strict problems ÎS{0,1}, ÎS{0,1},greedy and ÎS{0,1},2opt

are trivially solved in polynomial time for |S∗| = 1. However, these problems
are NP -hard for |S∗| ≥ 2. It can be shown in the very similar way as above if
we replace H by H̃ = (Ṽ , Ẽ), where Ṽ = V ∪{s∗1}∪{s∗2} and Ẽ = E∪{vs∗i | i ∈
{1, 2}, v ∈ V }). Note that the case |S∗| > 2 reduces to the case |S∗| = 2.
Indeed, increasing the size of S∗ by adding to H̃ a set of |S∗| − 2 vertices non
connected to any vertex of H̃ does not affect the reduction.

Corollary 2.1 ÎS{0,1},opt, ÎS{0,1},greedy and ÎS{0,1},2opt are NP-hard, for
|S∗| ≥ 2.
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Finding the complement of the maximum clique in a graph G is equivalent
to finding a minimum vertex-cover in G. Consequently, the vertices to delete
(the optimal solution of IS{0,1},A) corresponds to the minimum vertex cover
of G. If we use the same notation of the proof for a graph H, then we have
IS{0,1},A(H,S∗) ⇔ V C(G) for A ∈{opt, greedy, 2opt}. Moreover, it is straight-
forward to verify that this reduction (V C ∝ IS{0,1},A) preserves approximation.
So we have the following result:

Corollary 2.2 Let n be the order of an instance of IS{0,1},A.
If IS{0,1},opt, IS{0,1},greedy or IS{0,1},2opt is ρ(n)-approximated, then VC is
ρ(n + 1)-approximated.

3 Approximating IS{0,1},2opt

In the previous section, we pointed out that VC reduces to IS{0,1},2opt. In what
follows, we show that IS{0,1},2opt reduces to VC.
For this, given k disjoint graphs Gi = (Vi, Ei), i ∈ {1, · · · , k} (

⋂k
i=1 Vi = φ),

we define their union
⋃k

i=1 Gi by a graph G = (V,E) where V =
⋃k

i=1 Vi and
E =

⋃k
i=1 Ei. Note that a vertex-cover of G =

⋃k
i=1 Gi is just the union of

vertex-covers of Gi, i ∈ {1, · · · , k}.

Proposition 3.1 Let n be the order of an instance of V C and ∆ the
maximum vertex degree of an instance of IS{0,1},2opt.
If there exists a ρ(n)-approximation algorithm for VC, then there exists a ρ(∆)-
approximation algorithm for IS{0,1},2opt.

Proof. Let I = (G = (V,E), S∗ = {s1, · · · , sk} ⊂ V ) be an instance of
IS{0,1},2opt and ∆ its maximum vertex degree. Without loss of generality, we
can assume that S∗ is maximal (i.e. V \ S∗ =

⋃k
i=1 Γ(si) where Γ(si) denotes a

neighborhood of a vertex si). In the opposite case, every solution of IS{0,1},2opt

contains (V \ S∗) \
⋃k

i=1 Γ(si) with a better worse-case approximation ratio as
for the restricted instance G[(V \ S∗) \

⋃k
i=1 Γ(si)]. We consider an instance

H = (V ′, E′) of VC as follows:

- k = |S∗|

- ∀i ∈ {1, · · · , k}, let V ′
i = {u ∈ (V \ S∗) | Γ(u) ∩ S∗ = {si}}

(V ′
i ∩ V ′

j = φ, ∀i 6= j)

- V ′ =
⋃k

i=1 V ′
i , E′ =

⋃k
i=1 Ei, and H = (V ′, E′) = G[V ′

1 ]∪G[V ′
2 ]∪· · ·G[V ′

k]

6
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Figure 2: Construction of H (case |S∗| = 2)

It is easy to see that the minimum vertex-cover of H corresponds to the
minimum vertex set to delete from G to make S∗ 2-optimal, and con-
versely. Hence, we have βIS{0,1},2opt

(G, S∗)=βV C(H). On the other hand,
by applying an approximated algorithm for vertex-covering to each sub-
graph G[V ′

i ], i ∈ {1, · · · , k} of H, we can obtain an approximated solution
of IS{0,1},2opt. Hence, λIS{0,1},2opt

(G, S∗)=λV C(H). Consequently, we ob-
tain ρIS{0,1},2opt

(G, S∗) = ρV C(H). Since |V ′
i | ≤ ∆(G), the proposition holds. �

Recently, Karakostas [12] improved the approximation factor for the vertex-
covering problem to 2 − Θ( 1√

logn
), where n is the number of vertices. So we

have:

Corollary 3.1 IS{0,1},2opt can be approximated within ratio 2−Θ( 1√
log∆

).

We also deduce from the proof of proposition 3.1:

Corollary 3.2 IS{0,1},2opt is polynomially solved in triangle-free graphs.

Proof. Let G[V ′
i ] be a subgraph of G defined in the proof of Proposition

3.1. If G is triangle-free (i.e. G[V ′
i ] is a stable set, otherwise G contains

necessarily triangles), then G[V ′
i ] is a clique. It is tractable in polynomial time

to find a minimum vertex-cover in a clique. �

Recall that a graph G is called perfect if G satisfies the following properties [8]:

α(G[A]) = κ(G[A]) and ω(G[A]) = χ(G[A]), for all A ⊆ V

A graph G is perfect if and only if its complement G is perfect.

Corollary 3.3 IS{0,1},2opt is polynomially solved in perfect graphs.
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Proof. If G is perfect, then each G[V ′
i ] is also perfect. Furthermore,

since perfectness is stable under disjoint union of graphs, H is also perfect. It
is known [8] that the vertex-covering problem is solved in polynomial time in
perfect graphs, thus the corollary holds. �

Corollary 3.4 IS{0,1},2opt is polynomially solved in degree-bounded
graphs.

Proof. If G is degree-bounded, each subgraph G[V ′
i ] of H contains a

bounded number of vertices. Thus, we can find exhaustively a minimum
vertex-cover of each subgraph G[V ′

i ]. �

4 IS{0,1} for some classes of perfect graphs

In section 2, we have shown that the 0-1 inverse maximum stable set problem
against a specific algorithm is NP -hard for arbitrary graphs. Now, we turn our
attention to identify classes of graphs for which IS{0,1} (against every optimal
algorithm) is solvable in polynomial time.

Given a perfect graph G = (V,E) and a stable set S∗, the 0-1 inverse maximum
stable set problem for G can be written as follows: Min |V0|

s.t. V0 ⊆ (V \ S∗)
|S∗| = α(G[V \ V0])

Since G[V \ V0] is perfect, we have α(G[V \ V0]) = κ(G[V \ V0]). In addition,
for any graph H, we have κ(H) = χ(H), α(H) = ω(H) and ω(H) ≤ χ(H),
α(H) ≤ κ(H). So, we obtain the following equivalences:

|S∗| = α(G[V \ V0])
⇔ |S∗| = κ(G[V \ V0])
⇔ |S∗| ≥ χ(G[V \ V0])

Thus, IS{0,1} in a perfect graph G = (V,E) can be rewritten as follows:
Max |V \ V0|

s.t. S∗ ⊆ V \ V0

|S∗| ≥ χ(G[V \ V0])

That is, for a given instance (a perfect graph G and a stable set S∗),
IS{0,1}(G, S∗) is equivalent to a problem of finding in G a maximum |S∗|-
colorable subgraph containing S∗, which we denote by SS∗

(G).

Proposition 4.1 For any perfect graph G, IS{0,1}(G, S∗) is equivalent to
SS∗

(G).

8
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In what follows, we reduce SS∗
to PWSk, the maximum weight k -colorable

subgraph problem, where the weights are polynomially bounded and k = |S∗|.

Proposition 4.2 SS∗
polynomially reduces to PWSk.

Proof. From the instance (H = (V,E), S∗ ⊆ V, k = |S∗| ≥ 1) of SS∗
, we

construct an instance (H,w) = ((V,E), w) of PWSk by assigning to nodes the
polynomially bounded weight function w defined by:

w(x) =

{
n = |V | for x ∈ S∗

1 otherwise

Let V
′
be a k -colorable subset of V which does not contain S∗ (i.e. ∃x ∈ S∗ s.t.

x /∈ V
′
), then the total weight of V

′
is at most equal to n×(|S∗|−1)+(n−1) =

n|S∗| − 1. Since S∗ is a k -colorable subgraph of weight n|S∗|, it means that V
′

is not of maximum weight. Consequently, every maximum weighted k -colorable
subgraph of (H,w) contains S∗ and satisfies:

αw,k(H,w) = (n− 1)|S∗|+ αS∗
(H)

This equality implies that both problems have the same optimal solution and
also SS∗

reduces to PWSk in polynomial time. �

Given a weighted graph (H,w) (weights are assumed to be integers), Golumbic
defined in [8] a non-weighted graph Hw, obtained from (H,w) by the so-called
multiplication of vertices: one replaces each vertex xi of weight wi by a
stable set of wi vertices x1

i , x
2
i , · · · , xwi

i and joins xs
i with xt

j iff xi and xj are
adjacent in (H,w). Similarly, we define co-multiplication of vertices, which
is to replace each vertex xi of weight wi by a wi-clique (a clique of size
wi). Let Hw be the graph constructed from (H,w) by co-multiplication of
vertices. Note that Hw = (H)w and Hw = (H)w, and that perfect graphs are
stable under multiplication of vertices [8] and under co-multiplication of vertices.

The following transformation is well known for maximum stable set problem
but also holds for maximum k-colorable subgraph problem (see [13]).

Proposition 4.3 PWSk(H,w) is equivalent to Sk(Hw) and the transfor-
mation is polynomial.

Proof. We have αw,k(H,w) = αk(Hw): since every maximal (for inclusion)
k -colorable subgraph of size W in Hw corresponds to a maximal subgraph of
weight W in (H,w), and conversely. �

We deduce from the propositions 4.1, 4.2 and 4.3:

Theorem 4.1 For a perfect graph G, IS{0,1}(G, S∗), PWSk(G, w) and
Sk(Gw) are equivalent to each other. Moreover, the transformations are poly-
nomial.

9
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Since the maximum k -colorable subgraph problem is not known to be polynomi-
ally solvable for every class of perfect graphs, we cannot deduce the tractability
of IS{0,1} for an arbitrary perfect graph. So, we study the complexity of IS{0,1}
restricted to some particular classes of perfect graphs.
Recall that a comparability graph (a classical class of perfect graphs) is an
undirected graph G = (V,E) admitting a transitive orientation F , that is a
binary relation on the vertices satisfying [8]: F ∩ F−1 = φ, F ∪ F−1 = E and
F 2 = {ac | ab, bc ∈ F,∀ b ∈ V } ⊆ F .

Remark. Comparability graphs and their complements, co-comparability graphs
are both stable under multiplication and co-multiplication of vertices. Let
(H,w) be a weighted comparability graph and F be its associated transitive
orientation. We define an orientation Fw of Hw (the graph obtained from (H,w)
by multiplication of vertices) as follows:

∀s ∈ {1, · · · , wi},∀t ∈ {1, · · · , wj}, xs
i x

t
j ∈ Fw iff xixj ∈ F .

Due to the transitivity of F, xs
i x

t
j ∈ Fw and xt

jx
u
k ∈ Fw imply xs

i x
u
k ∈ Fw, i.e.

Fw is transitive and Hw is a comparability graph.
For the graph Hw, obtained from (H,w) by co-multiplication of vertices, we
define the following orientation Fw: we first assign a transitive orientation to
every wi-clique (associated to the vertex xi of weight wi in (H,w)) and we
complete it by Fw on the edges of Hw. By construction of Hw, if we have
xs

i x
s′

i ∈ Fw and xs′

i xt
j ∈ Fw, then we also have xs

i x
t
j ∈ Fw. So, the transitivity

of F implies that Fw is transitive.
In addition, since Hw = (H)w and Hw = (H)w, this argument holds for co-
comparability graphs. �

Proposition 4.4 IS{0,1} is polynomially solvable for comparability graphs
and co-comparability graphs.

Proof. Frank, Greene and Kleitman proved the tractability of maximum
k -colorable subgraph problem in comparability graphs and their complements
[6], [9], [10]. Since comparability and co-comparability graphs are closed under
multiplication of vertices, we conclude by applying theorem 4.1. �

Recall that a permutation graph is a comparability graph whose complement is
also a comparability graph, and an interval graph is a (chordal) co-comparability
graph [8]. So, we have the following corollary:

Corollary 4.1 IS{0,1} is polynomially solvable for permutation graphs and
interval graphs.

An undirected graph G is called chordal (or triangulated) if every cycle of length
strictly greater than 3 has a chord. Since a chordal graph is perfect, we can use
theorem 4.1: IS{0,1}(G, S∗) ⇔ PWSk(G, w). On the other hand, Yannakakis
and Gavril proved in [14] that the maximum weight k -colorable subgraph prob-
lem is polynomially solvable in chordal graphs and their complements if k is
fixed, and NP -complete if k is not fixed. This leads the following corollary:
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Corollary 4.2 If k = |S∗| is fixed, IS{0,1} is polynomially solvable for
chordal and co-chordal graphs .

A graph is said to be (1, 2)-colorable if its vertex set can be covered by one clique
and two stable sets. We call K1S2 such a class of graphs; the problem of deciding
whether a given graph belongs to this class is known to be polynomial [3].

Proposition 4.5 If k = |S∗| is not fixed, IS{0,1} is NP-hard for (1, 2)-
colorable co-chordal graphs.

Proof. In fact, it is proved in [14] that Sk is NP -hard in split graphs (for
an unbounded k). Let us consider an instance (G, k) of this problem where
G is a split graph and add a stable set S∗ of size k completely connected
to the vertices of G. It is straightforward to verify that the resulting graph,
G̃, is (1, 2)-colorable and co-chordal. Moreover, SS∗

(G̃)(⇔ IS{0,1}(G̃, S∗))
corresponds exactly to finding a maximum size of k-colorable subgraph in G,
which completes the proof. �

Remark. Since interval graphs are not only chordal but also co-comparability
graphs, IS{0,1} is polynomially solvable for interval graphs even if k = |S∗| is
not fixed. Anyway, Yannakakis and Gavril proved in [14] the tractability of the
maximum weight k -colorable subgraph problem on interval graphs when k is
not fixed. �

Let us now consider the 0-1 inverse maximum clique problem, denoted by
IK{0,1}. It is defined as follows: given an undirected graph G = (V,E) and
a clique K∗ of G, delete as few vertices as possible from V \K∗ so that the fixed
clique K∗ becomes maximum in the new instance.
Clearly, IK{0,1}(G, K∗) is equivalent to IS{0,1}(G, K∗), which leads the corol-
laries:

Corollary 4.3 The problem IK{0,1} is NP-hard for arbitrary graphs.

Corollary 4.4 IK{0,1}(G, K∗) is polynomially solvable for perfect graphs
such as comparability, co-comparability, permutation and interval graphs, and
for chordal, co-chordal and split graphs if k = |K∗| is fixed.

5 Comparing IS{0,1} and IS{0,1},2opt

The hardness of IS{0,1} and IS{0,1},2opt depends on the nature of the graph
instance. It is interesting to identify classes of graphs for which IS{0,1} and
IS{0,1},2opt are both polynomially solvable, or the ones for which IS{0,1} is NP -
hard and IS{0,1},2opt is polynomial, and conversely.
For several classes of perfect graphs already mentioned in section 4, both
IS{0,1},2opt and IS{0,1} can be solved in polynomial time. On the other hand,
IS{0,1} is NP -hard in every graph for which S is NP -hard. In particular, IS{0,1}
is NP -hard in degree-bounded graphs [7] and triangle-free graphs [8]. On the
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contrary, for these graphs IS{0,1},2opt is proved (in section 3) to be polynomial.
In what follows we point out that it is not true for every class of graphs that
IS{0,1} is more difficult than IS{0,1},2opt. We devise a class G of graphs for
which IS{0,1} is polynomial and IS{0,1},2opt is NP -hard. From an arbitrary
graph G = (V,E), we construct a graph G′ = (V ′, E′) ∈ G as follows:

- V ′ = V ∪ {s1, s2} ∪ C1 ∪ C2, |Ci| > |V | ∀i ∈ {1, 2}

- E′ = E ∪ {s1v|v ∈ V ∪ C1 ∪ C2} ∪ {s2v|v ∈ C1 ∪ C2} ∪ {uivi|(ui, vi) ∈
Ci × Ci, i ∈ {1, 2}}

*S

( )EVG ,= 1C 2C

Figure 3: Instance G

G is the class of all graphs defined by this way. Given a graph which is decom-
posed by (G, {s1, s2}, C1, C2), it is polynomial to decide if it is in G.

Proposition 5.1 IS{0,1},2opt is NP -hard for the instance set of the form
(G′, S∗ = {s1, s2}), where G′ = (G, {s1, s2}, C1, C2) ∈ G. On the other hand,
IS{0,1} is polynomial on the same instance set.

Proof. Let us consider an instance of IS{0,1},2opt, (I = (G′, S∗ = {s1, s2})
where G′ = (G, {s1, s2}, C1, C2) ∈ G. Since every vertex of C1 and C2 is totally
connected to S∗, the existence of C1 and C2 does not affect the 2-optimality
of S∗. So, IS{0,1},2opt on I reduces to the problem of finding a vertex-cover in
the graph G, which concludes the NP -hardness of IS{0,1},2opt for this class of
instances.
On the other hand, every three vertices (u1, u2, v) ∈ C1 × C2 × V constitutes
a stable set. If one removes less than |V | vertices of V , then S∗ cannot be a
maximum stable set. Thus, an optimal solution of IS{0,1} in I is to remove all
vertices of V ( since |Ci| > |V | ∀i ∈ {1, 2}). �
Further research is needed to devise approximation algorithms for the problems
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IS{0,1},opt or IS{0,1},greedy that guarantee a performance ratio, and to find the
other classes of graphs for which IS{0,1} is tractable in polynomial time.
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