1,667 research outputs found

    Provenance Circuits for Trees and Treelike Instances (Extended Version)

    Full text link
    Query evaluation in monadic second-order logic (MSO) is tractable on trees and treelike instances, even though it is hard for arbitrary instances. This tractability result has been extended to several tasks related to query evaluation, such as counting query results [3] or performing query evaluation on probabilistic trees [10]. These are two examples of the more general problem of computing augmented query output, that is referred to as provenance. This article presents a provenance framework for trees and treelike instances, by describing a linear-time construction of a circuit provenance representation for MSO queries. We show how this provenance can be connected to the usual definitions of semiring provenance on relational instances [20], even though we compute it in an unusual way, using tree automata; we do so via intrinsic definitions of provenance for general semirings, independent of the operational details of query evaluation. We show applications of this provenance to capture existing counting and probabilistic results on trees and treelike instances, and give novel consequences for probability evaluation.Comment: 48 pages. Presented at ICALP'1

    Answering SPARQL queries modulo RDF Schema with paths

    Get PDF
    SPARQL is the standard query language for RDF graphs. In its strict instantiation, it only offers querying according to the RDF semantics and would thus ignore the semantics of data expressed with respect to (RDF) schemas or (OWL) ontologies. Several extensions to SPARQL have been proposed to query RDF data modulo RDFS, i.e., interpreting the query with RDFS semantics and/or considering external ontologies. We introduce a general framework which allows for expressing query answering modulo a particular semantics in an homogeneous way. In this paper, we discuss extensions of SPARQL that use regular expressions to navigate RDF graphs and may be used to answer queries considering RDFS semantics. We also consider their embedding as extensions of SPARQL. These SPARQL extensions are interpreted within the proposed framework and their drawbacks are presented. In particular, we show that the PSPARQL query language, a strict extension of SPARQL offering transitive closure, allows for answering SPARQL queries modulo RDFS graphs with the same complexity as SPARQL through a simple transformation of the queries. We also consider languages which, in addition to paths, provide constraints. In particular, we present and compare nSPARQL and our proposal CPSPARQL. We show that CPSPARQL is expressive enough to answer full SPARQL queries modulo RDFS. Finally, we compare the expressiveness and complexity of both nSPARQL and the corresponding fragment of CPSPARQL, that we call cpSPARQL. We show that both languages have the same complexity through cpSPARQL, being a proper extension of SPARQL graph patterns, is more expressive than nSPARQL.Comment: RR-8394; alkhateeb2003

    Joining Extractions of Regular Expressions

    Get PDF
    Regular expressions with capture variables, also known as "regex formulas," extract relations of spans (interval positions) from text. These relations can be further manipulated via Relational Algebra as studied in the context of document spanners, Fagin et al.'s formal framework for information extraction. We investigate the complexity of querying text by Conjunctive Queries (CQs) and Unions of CQs (UCQs) on top of regex formulas. We show that the lower bounds (NP-completeness and W[1]-hardness) from the relational world also hold in our setting; in particular, hardness hits already single-character text! Yet, the upper bounds from the relational world do not carry over. Unlike the relational world, acyclic CQs, and even gamma-acyclic CQs, are hard to compute. The source of hardness is that it may be intractable to instantiate the relation defined by a regex formula, simply because it has an exponential number of tuples. Yet, we are able to establish general upper bounds. In particular, UCQs can be evaluated with polynomial delay, provided that every CQ has a bounded number of atoms (while unions and projection can be arbitrary). Furthermore, UCQ evaluation is solvable with FPT (Fixed-Parameter Tractable) delay when the parameter is the size of the UCQ

    Formal Verification of Differential Privacy for Interactive Systems

    Full text link
    Differential privacy is a promising approach to privacy preserving data analysis with a well-developed theory for functions. Despite recent work on implementing systems that aim to provide differential privacy, the problem of formally verifying that these systems have differential privacy has not been adequately addressed. This paper presents the first results towards automated verification of source code for differentially private interactive systems. We develop a formal probabilistic automaton model of differential privacy for systems by adapting prior work on differential privacy for functions. The main technical result of the paper is a sound proof technique based on a form of probabilistic bisimulation relation for proving that a system modeled as a probabilistic automaton satisfies differential privacy. The novelty lies in the way we track quantitative privacy leakage bounds using a relation family instead of a single relation. We illustrate the proof technique on a representative automaton motivated by PINQ, an implemented system that is intended to provide differential privacy. To make our proof technique easier to apply to realistic systems, we prove a form of refinement theorem and apply it to show that a refinement of the abstract PINQ automaton also satisfies our differential privacy definition. Finally, we begin the process of automating our proof technique by providing an algorithm for mechanically checking a restricted class of relations from the proof technique.Comment: 65 pages with 1 figur
    corecore