293 research outputs found

    Advancements of MultiRate Signal processing for Wireless Communication Networks: Current State Of the Art

    Get PDF
    With the hasty growth of internet contact and voice and information centric communications, many contact technologies have been urbanized to meet the stringent insist of high speed information transmission and viaduct the wide bandwidth gap among ever-increasing high-data-rate core system and bandwidth-hungry end-user complex. To make efficient consumption of the limited bandwidth of obtainable access routes and cope with the difficult channel environment, several standards have been projected for a variety of broadband access scheme over different access situation (twisted pairs, coaxial cables, optical fibers, and unchanging or mobile wireless admittance). These access situations may create dissimilar channel impairments and utter unique sets of signal dispensation algorithms and techniques to combat precise impairments. In the intended and implementation sphere of those systems, many research issues arise. In this paper we present advancements of multi-rate indication processing methodologies that are aggravated by this design trend. The thesis covers the contemporary confirmation of the current literature on intrusion suppression using multi-rate indication in wireless communiquE9; networks

    Paraunitary oversampled filter bank design for channel coding

    Get PDF
    Oversampled filter banks (OSFBs) have been considered for channel coding, since their redundancy can be utilised to permit the detection and correction of channel errors. In this paper, we propose an OSFB-based channel coder for a correlated additive Gaussian noise channel, of which the noise covariance matrix is assumed to be known. Based on a suitable factorisation of this matrix, we develop a design for the decoder's synthesis filter bank in order to minimise the noise power in the decoded signal, subject to admitting perfect reconstruction through paraunitarity of the filter bank. We demonstrate that this approach can lead to a significant reduction of the noise interference by exploiting both the correlation of the channel and the redundancy of the filter banks. Simulation results providing some insight into these mechanisms are provided

    Orthogonal transmultiplexers : extensions to digital subscriber line (DSL) communications

    Get PDF
    An orthogonal transmultiplexer which unifies multirate filter bank theory and communications theory is investigated in this dissertation. Various extensions of the orthogonal transmultiplexer techniques have been made for digital subscriber line communication applications. It is shown that the theoretical performance bounds of single carrier modulation based transceivers and multicarrier modulation based transceivers are the same under the same operational conditions. Single carrier based transceiver systems such as Quadrature Amplitude Modulation (QAM) and Carrierless Amplitude and Phase (CAP) modulation scheme, multicarrier based transceiver systems such as Orthogonal Frequency Division Multiplexing (OFDM) or Discrete Multi Tone (DMT) and Discrete Subband (Wavelet) Multicarrier based transceiver (DSBMT) techniques are considered in this investigation. The performance of DMT and DSBMT based transceiver systems for a narrow band interference and their robustness are also investigated. It is shown that the performance of a DMT based transceiver system is quite sensitive to the location and strength of a single tone (narrow band) interference. The performance sensitivity is highlighted in this work. It is shown that an adaptive interference exciser can alleviate the sensitivity problem of a DMT based system. The improved spectral properties of DSBMT technique reduces the performance sensitivity for variations of a narrow band interference. It is shown that DSBMT technique outperforms DMT and has a more robust performance than the latter. The superior performance robustness is shown in this work. Optimal orthogonal basis design using cosine modulated multirate filter bank is discussed. An adaptive linear combiner at the output of analysis filter bank is implemented to eliminate the intersymbol and interchannel interferences. It is shown that DSBMT is the most suitable technique for a narrow band interference environment. A blind channel identification and optimal MMSE based equalizer employing a nonmaximally decimated filter bank precoder / postequalizer structure is proposed. The performance of blind channel identification scheme is shown not to be sensitive to the characteristics of unknown channel. The performance of the proposed optimal MMSE based equalizer is shown to be superior to the zero-forcing equalizer

    Efficient implementation of filter bank multicarrier systems using circular fast convolution

    Get PDF
    In this paper, filter bank-based multicarrier systems using a fast convolution approach are investigated. We show that exploiting offset quadrature amplitude modulation enables us to perform FFT/IFFT-based convolution without overlapped processing, and the circular distortion can be discarded as a part of orthogonal interference terms. This property has two advantages. First, it leads to spectral efficiency enhancement in the system by removing the prototype filter transients. Second, the complexity of the system is significantly reduced as the result of using efficient FFT algorithms for convolution. The new scheme is compared with the conventional waveforms in terms of out-of-band radiation, orthogonality, spectral efficiency, and complexity. The performance of the receiver and the equalization methods are investigated and compared with other waveforms through simulations. Moreover, based on the time variant nature of the filter response of the proposed scheme, a pilot-based channel estimation technique with controlled transmit power is developed and analyzed through lower-bound derivations. The proposed transceiver is shown to be a competitive solution for future wireless networks

    Optimal design of nonuniform FIR transmultiplexer using semi-infinite programming

    Get PDF
    This paper considers an optimum nonuniform FIR transmultiplexer design problem subject to specifications in the frequency domain. Our objective is to minimize the sum of the ripple energy for all the individual filters, subject to the specifications on amplitude and aliasing distortions, and to the passband and stopband specifications for the individual filters. This optimum nonuniform transmultiplexer design problem can be formulated as a quadratic semi-infinite programming problem. The dual parametrization algorithm is extended to this nonuniform transmultiplexer design problem. If the lengths of the filters are sufficiently long and the set of decimation integers is compatible, then a solution exists. Since the problem is formulated as a convex problem, if a solution exists, then the solution obtained is unique and the local solution is a global minimum

    Signals on Networks: Random Asynchronous and Multirate Processing, and Uncertainty Principles

    Get PDF
    The processing of signals defined on graphs has been of interest for many years, and finds applications in a diverse set of fields such as sensor networks, social and economic networks, and biological networks. In graph signal processing applications, signals are not defined as functions on a uniform time-domain grid but they are defined as vectors indexed by the vertices of a graph, where the underlying graph is assumed to model the irregular signal domain. Although analysis of such networked models is not new (it can be traced back to the consensus problem studied more than four decades ago), such models are studied recently from the view-point of signal processing, in which the analysis is based on the "graph operator" whose eigenvectors serve as a Fourier basis for the graph of interest. With the help of graph Fourier basis, a number of topics from classical signal processing (such as sampling, reconstruction, filtering, etc.) are extended to the case of graphs. The main contribution of this thesis is to provide new directions in the field of graph signal processing and provide further extensions of topics in classical signal processing. The first part of this thesis focuses on a random and asynchronous variant of "graph shift," i.e., localized communication between neighboring nodes. Since the dynamical behavior of randomized asynchronous updates is very different from standard graph shift (i.e., state-space models), this part of the thesis focuses on the convergence and stability behavior of such random asynchronous recursions. Although non-random variants of asynchronous state recursions (possibly with non-linear updates) are well-studied problems with early results dating back to the late 60's, this thesis considers the convergence (and stability) in the statistical mean-squared sense and presents the precise conditions for the stability by drawing parallels with switching systems. It is also shown that systems exhibit unexpected behavior under randomized asynchronicity: an unstable system (in the synchronous world) may be stabilized simply by the use of randomized asynchronicity. Moreover, randomized asynchronicity may result in a lower total computational complexity in certain parameter settings. The thesis presents applications of the random asynchronous model in the context of graph signal processing including an autonomous clustering of network of agents, and a node-asynchronous communication protocol that implements a given rational filter on the graph. The second part of the thesis focuses on extensions of the following topics in classical signal processing to the case of graph: multirate processing and filter banks, discrete uncertainty principles, and energy compaction filters for optimal filter design. The thesis also considers an application to the heat diffusion over networks. Multirate systems and filter banks find many applications in signal processing theory and implementations. Despite the possibility of extending 2-channel filter banks to bipartite graphs, this thesis shows that this relation cannot be generalized to M-channel systems on M-partite graphs. As a result, the extension of classical multirate theory to graphs is nontrivial, and such extensions cannot be obtained without certain mathematical restrictions on the graph. The thesis provides the necessary conditions on the graph such that fundamental building blocks of multirate processing remain valid in the graph domain. In particular, it is shown that when the underlying graph satisfies a condition called M-block cyclic property, classical multirate theory can be extended to the graphs. The uncertainty principle is an essential mathematical concept in science and engineering, and uncertainty principles generally state that a signal cannot have an arbitrarily "short" description in the original basis and in the Fourier basis simultaneously. Based on the fact that graph signal processing proposes two different bases (i.e., vertex and the graph Fourier domains) to represent graph signals, this thesis shows that the total number of nonzero elements of a graph signal and its representation in the graph Fourier domain is lower bounded by a quantity depending on the underlying graph. The thesis also presents the necessary and sufficient condition for the existence of 2-sparse and 3-sparse eigenvectors of a connected graph. When such eigenvectors exist, the uncertainty bound is very low, tight, and independent of the global structure of the graph. The thesis also considers the classical spectral concentration problem. In the context of polynomial graph filters, the problem reduces to the polynomial concentration problem studied more generally by Slepian in the 70's. The thesis studies the asymptotic behavior of the optimal solution in the case of narrow bandwidth. Different examples of graphs are also compared in order to show that the maximum energy compaction and the optimal filter depends heavily on the graph spectrum. In the last part, the thesis considers the estimation of the starting time of a heat diffusion process from its noisy measurements when there is a single point source located on a known vertex of a graph with unknown starting time. In particular, the Cramér-Rao lower bound for the estimation problem is derived, and it is shown that for graphs with higher connectivity the problem has a larger lower bound making the estimation problem more difficult.</p
    • 

    corecore