368 research outputs found

    Rate Control in Video Coding

    Get PDF

    Optimized Adaptive Encoding Based on Visual Attention

    Get PDF

    Improved Method to Select the Lagrange Multiplier for Rate-Distortion Based Motion Estimation in Video Coding

    Get PDF
    The motion estimation (ME) process used in the H.264/AVC reference software is based on minimizing a cost function that involves two terms (distortion and rate) that are properly balanced through a Lagrangian parameter, usually denoted as lambda(motion). In this paper we propose an algorithm to improve the conventional way of estimating lambda(motion) and, consequently, the ME process. First, we show that the conventional estimation of lambda(motion) turns out to be significantly less accurate when ME-compromising events, which make the ME process to perform poorly, happen. Second, with the aim of improving the coding efficiency in these cases, an efficient algorithm is proposed that allows the encoder to choose between three different values of lambda(motion) for the Inter 16x16 partition size. To be more precise, for this partition size, the proposed algorithm allows the encoder to additionally test lambda(motion) = 0 and lambda(motion) arbitrarily large, which corresponds to minimum distortion and minimum rate solutions, respectively. By testing these two extreme values, the algorithm avoids making large ME errors. The experimental results on video segments exhibiting this type of ME-compromising events reveal an average rate reduction of 2.20% for the same coding quality with respect to the JM15.1 reference software of H.264/AVC. The algorithm has been also tested in comparison with a state-of-the-art algorithm called context adaptive Lagrange multiplier. Additionally, two illustrative examples of the subjective performance improvement are provided.This work has been partially supported by the National Grant TEC2011-26807 of the Spanish Ministry of Science and Innovation.Publicad

    A rate control algorithm for HEVC with hierarchical GOP structures

    Get PDF
    In this paper a buffer-constrained rate control (RC) algorithm for High Efficiency Video Coding (HEVC) with hierarchical group of pictures structures is proposed. Specifically, a quantization parameter (QP) cascading approach, which the QP value is increased from one temporal layer to the next, is employed to achieve high coding efficiency while maintaining the buffer fullness at secure levels. When compared to the current state-of-the-art RC algorithm, the experimental results show that our proposal achieves a slightly better rate-distortion performance and a remarkably better buffer control with an acceptable increase in computational complexity

    Rate distortion control in digital video coding

    Get PDF
    Lossy compression is widely applied for coding visual information in applications such as entertainment in order to achieve a high compression ratio. In this case, the video quality worsens as the compression ratio increases. Rate control tries to use the bit budget properly so the visual distortion is minimized. Rate control for H.264, the state-of-the-art hybrid video coder, is investigated. Based on the Rate-Distortion (R-D) slope analysis, an operational rate distortion optimization scheme for H.264 using Lagrangian multiplier method is proposed. The scheme tries to find the best path of quantization parameter (OP) options at each macroblock. The proposed scheme provides a smoother rate control that is able to cover a wider range of bit rates and for many sequences it outperforms the H.264 (JM92 version) rate control scheme in the sense of PSNR. The Bath University Matching Pursuit (BUMP) project develops a new matching pursuit (MP) technique as an alternative to transform video coders. By combining MP with precision limited quantization (PLO) and multi-pass embedded residual group encoder (MERGE), a very efficient coder is built that is able to produce an embedded bit stream, which is highly desirable for rate control. The problem of optimal bit allocation with a BUMP based video coder is investigated. An ad hoc scheme of simply limiting the maximum atom number shows an obvious performance improvement, which indicates a potential of efficiency improvement. An in depth study on the bit Rate-Atom character has been carried out and a rate estimation model has been proposed. The model gives a theoretical description of how the oit number changes. An adaptive rate estimation algorithm has been proposed. Experiments show that the algorithm provides extremely high estimation accuracy. The proposed R-D source model is then applied to bit allocation in the BUMP based video coder. An R-D slope unifying scheme was applied to optimize the performance of the coder'. It adopts the R-D model and fits well within the BUMP coder. The optimization can be performed in a straightforward way. Experiments show that the proposed method greatly improved performance of BUMP video coder, and outperforms H.264 in low and medium bit rates by up to 2 dB.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Low-complexity high prediction accuracy visual quality metrics and their applications in H.264/AVC encoding mode decision process

    Get PDF
    In this thesis, we develop a new general framework for computing full reference image quality scores in the discrete wavelet domain using the Haar wavelet. The proposed framework presents an excellent tradeoff between accuracy and complexity. In our framework, quality metrics are categorized as either map-based, which generate a quality (distortion) map to be pooled for the final score, e.g., structural similarity (SSIM), or non map-based, which only give a final score, e.g., Peak signal-to-noise ratio (PSNR). For mapbased metrics, the proposed framework defines a contrast map in the wavelet domain for pooling the quality maps. We also derive a formula to enable the framework to automatically calculate the appropriate level of wavelet decomposition for error-based metrics at a desired viewing distance. To consider the effect of very fine image details in quality assessment, the proposed method defines a multi-level edge map for each image, which comprises only the most informative image subbands. To clarify the application of the framework in computing quality scores, we give some examples showing how the framework can be applied to improve well-known metrics such as SSIM, visual information fidelity (VIF), PSNR, and absolute difference. We compare the complexity of various algorithms obtained by the framework to the Intel IPP-based H.264 baseline profile encoding using C/C++ implementations. We evaluate the overall performance of the proposed metrics, including their prediction accuracy, on two well-known image quality databases and one video quality database. All the simulation results confirm the efficiency of the proposed framework and quality assessment metrics in improving the prediction accuracy and also reduction of the computational complexity. For example, by using the framework, we can compute the VIF at about 5% of the complexity of its original version, but with higher accuracy. In the next step, we study how H.264 coding mode decision can benefit from our developed metrics. We integrate the proposed SSEA metric as the distortion measure inside the H.264 mode decision process. The H.264/AVC JM reference software is used as the implementation and verification platform. We propose a search algorithm to determine the Lagrange multiplier value for each quantization parameter (QP). The search is applied on three different types of video sequences having various motion activity features, and the resulting Lagrange multiplier values are tabulated for each of them. Based on our proposed Framework we propose a new quality metric PSNRA, and use it in this part (mode decision). The simulated rate-distortion (RD) curves show that at the same PSNRA, with the SSEA-based mode decision, the bitrate is reduced about 5% on average compared to the conventional SSE-based approach for the sequences with low and medium motion activities. It is notable that the computational complexity is not increased at all by using the proposed SSEA-based approach instead of the conventional SSE-based method. Therefore, the proposed mode decision algorithm can be used in real-time video coding

    SSIM-Inspired Quality Assessment, Compression, and Processing for Visual Communications

    Get PDF
    Objective Image and Video Quality Assessment (I/VQA) measures predict image/video quality as perceived by human beings - the ultimate consumers of visual data. Existing research in the area is mainly limited to benchmarking and monitoring of visual data. The use of I/VQA measures in the design and optimization of image/video processing algorithms and systems is more desirable, challenging and fruitful but has not been well explored. Among the recently proposed objective I/VQA approaches, the structural similarity (SSIM) index and its variants have emerged as promising measures that show superior performance as compared to the widely used mean squared error (MSE) and are computationally simple compared with other state-of-the-art perceptual quality measures. In addition, SSIM has a number of desirable mathematical properties for optimization tasks. The goal of this research is to break the tradition of using MSE as the optimization criterion for image and video processing algorithms. We tackle several important problems in visual communication applications by exploiting SSIM-inspired design and optimization to achieve significantly better performance. Firstly, the original SSIM is a Full-Reference IQA (FR-IQA) measure that requires access to the original reference image, making it impractical in many visual communication applications. We propose a general purpose Reduced-Reference IQA (RR-IQA) method that can estimate SSIM with high accuracy with the help of a small number of RR features extracted from the original image. Furthermore, we introduce and demonstrate the novel idea of partially repairing an image using RR features. Secondly, image processing algorithms such as image de-noising and image super-resolution are required at various stages of visual communication systems, starting from image acquisition to image display at the receiver. We incorporate SSIM into the framework of sparse signal representation and non-local means methods and demonstrate improved performance in image de-noising and super-resolution. Thirdly, we incorporate SSIM into the framework of perceptual video compression. We propose an SSIM-based rate-distortion optimization scheme and an SSIM-inspired divisive optimization method that transforms the DCT domain frame residuals to a perceptually uniform space. Both approaches demonstrate the potential to largely improve the rate-distortion performance of state-of-the-art video codecs. Finally, in real-world visual communications, it is a common experience that end-users receive video with significantly time-varying quality due to the variations in video content/complexity, codec configuration, and network conditions. How human visual quality of experience (QoE) changes with such time-varying video quality is not yet well-understood. We propose a quality adaptation model that is asymmetrically tuned to increasing and decreasing quality. The model improves upon the direct SSIM approach in predicting subjective perceptual experience of time-varying video quality
    • …
    corecore