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Abstract

Objective Image and Video Quality Assessment (I/VQA) measures predict image/video

quality as perceived by human beings - the ultimate consumers of visual data. Existing

research in the area is mainly limited to benchmarking and monitoring of visual data.

The use of I/VQA measures in the design and optimization of image/video processing

algorithms and systems is more desirable, challenging and fruitful but has not been well

explored. Among the recently proposed objective I/VQA approaches, the structural simi-

larity (SSIM) index and its variants have emerged as promising measures that show superior

performance as compared to the widely used mean squared error (MSE) and are compu-

tationally simple compared with other state-of-the-art perceptual quality measures. In

addition, SSIM has a number of desirable mathematical properties for optimization tasks.

The goal of this research is to break the tradition of using MSE as the optimization cri-

terion for image and video processing algorithms. We tackle several important problems

in visual communication applications by exploiting SSIM-inspired design and optimization

to achieve significantly better performance.

Firstly, the original SSIM is a Full-Reference IQA (FR-IQA) measure that requires ac-

cess to the original reference image, making it impractical in many visual communication

applications. We propose a general purpose Reduced-Reference IQA (RR-IQA) method

that can estimate SSIM with high accuracy with the help of a small number of RR fea-

tures extracted from the original image. Furthermore, we introduce and demonstrate the

novel idea of partially repairing an image using RR features. Secondly, image processing

algorithms such as image de-noising and image super-resolution are required at various

stages of visual communication systems, starting from image acquisition to image display

at the receiver. We incorporate SSIM into the framework of sparse signal representation

and non-local means methods and demonstrate improved performance in image de-noising

and super-resolution. Thirdly, we incorporate SSIM into the framework of perceptual

video compression. We propose an SSIM-based rate-distortion optimization scheme and

an SSIM-inspired divisive optimization method that transforms the DCT domain frame

residuals to a perceptually uniform space. Both approaches demonstrate the potential to

largely improve the rate-distortion performance of state-of-the-art video codecs. Finally, in
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real-world visual communications, it is a common experience that end-users receive video

with significantly time-varying quality due to the variations in video content/complexity,

codec configuration, and network conditions. How human visual quality of experience

(QoE) changes with such time-varying video quality is not yet well-understood. We pro-

pose a quality adaptation model that is asymmetrically tuned to increasing and decreasing

quality. The model improves upon the direct SSIM approach in predicting subjective

perceptual experience of time-varying video quality.
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Chapter 1

Introduction

1.1 Motivation

In recent years, images and videos have become integral parts of our lives. The current

applications range from casual documentation of events and visual communication, to the

more serious surveillance and medical fields. This expansion has led to an ever-increasing

demand for accurate and visually pleasing visual content. Over the past years, we observed

an exponential increase in the demand for image and video services. Every minute, over

48 hours of video content is being uploaded to YouTube and over two million video clips

are being downloaded [195]. These constitute only about 40% of the exponentially growing

Internet video streaming data, among which a significant portion is accessed via mobile

devices. Video traffic has emerged as the dominant traffic in today’s Internet and it is

predicted to increase much faster than other applications in the years to come. Particularly,

streaming traffic (which consists of Live and video-on-demand streaming, but excludes the

downloads of video content like P2P) counts for the biggest share in the whole video traffic

(predicted to count for more than 90% Internet traffic by 2016 according to source from

Cisco [34]). By 2017, mobile video will represent 66% of all mobile data traffic [35]. Figure

1.1 shows the trend of mobile video data growth over wireless networks. Since mobile

video content has much higher bit rates than other mobile content types, mobile video

1



will generate much of the mobile traffic growth through 2017. Mobile video will grow at

a Compound Annual Growth Rate (CAGR) of 75% between 2012 and 2017, the highest

growth rate of any mobile application category that we forecast. Of the 11.2 Exabytes

per month crossing the mobile network by 2017, 7.4 Exabytes will consist of video [35].

Recent advances in video capturing and display technologies will increase the presence of

high resolution and quality contents in digital video coding applications. The storage space

and bandwidth capacity involved in visual content production, storage, and delivery will

be stressed to fulfill the new resolution and quality requirements. The following are among

the main challenges the technology is increasingly encountering:

• The networks in service are not designed to accommodate the current traffic trends.

In practice, the multimedia content delivered over the networks suffers from various

kinds of distortions on the way to its destination. It is important for service providers

to be able to identify and quantify the quality degradations in order to maintain

the required Quality of Service (QoS). This situation gives rise to the desire for

accurate and efficient perceptual image and video quality assessment algorithms that

can estimate the subjective quality of the visual content at the receiver side under

various kinds of distortions;

• The volume of digital video data is notoriously huge. Transmission of raw video data

over communication channels of limited bandwidth is implausible. Video encoders

are primarily characterized in terms of the throughput of the channel and perceived

distortion of the reconstructed video. The main task of a video encoder is to convey

the sequence of images with minimal possible perceived distortion within available

bit rate. Distortion model used by a video encoder should ideally be in perfect

coherence with the actual “receiver” of video content, the Human Visual System

(HVS). The current video compression techniques do not use the distortion models

which correlate well with subjective scores and as a result optimize for the wrong

quality measure. The compression performance of video encoders can be improved

significantly by using a Video Quality Assessment (VQA) method that can help the

encoder to squeeze video data to just the “information” relevant to the HVS;

• Images and videos captured by modern cameras are invariably corrupted by noise.
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With increasing pixel resolution of image and video capturing devices, but more or

less the same aperture size, noise suppression has become more relevant. This creates

the need for better image restoration algorithms that can recover an image which is

perceptually as close as possible to the distortion-free image.

Figure 1.1: Global mobile video data traffic forecast (2012 - 2017)

Central to the image and video processing algorithms, designed to deal with challenges

mentioned above, is a constrained optimization problem. The solution to this problem

aims to generate an output that is as close as possible to the optimal, by maximizing its

similarity with the desired signal in the presence of constraint(s). Depending on the type

of application, the constraint term is defined based on factors such as available resources,

prior knowledge about the underlying unknown signal, among others. Central to such an

optimization problem is the way the similarity is measured, because an image can only be

as good as it is optimized for. Since the ultimate receivers of images are human eyes, the

correct optimization goal of image processing algorithms should be perceptual quality.

In most of the image and video processing algorithms, mean squared error (MSE)

has been the preferred choice as the optimization criterion due to its ease of use and
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popularity, irrespective of the nature of signals involved in a problem. Algorithms are

developed and optimized to generate the output image that has minimal MSE with respect

to the target image. MSE has been known as a poor indicator of perceived image and

video quality, however it is widely employed, mostly because of its simplicity and sound

mathematical properties for optimization purposes. The structural similarity (SSIM) index

[165], a recently proposed computationally simple image similarity measure, has shown

superior performance over MSE in predicting perceptual quality and has a number of

desirable mathematical properties for optimization tasks. The SSIM index has a great

potential as an optimization criterion for image and video processing applications.

1.2 Objectives

The main goal of this thesis is to demonstrate SSIM’s potential as a perceptual quality

measure for optimization of primary image and video processing algorithms in visual com-

munications. We provide SSIM-inspired novel methods for quality assessment, restoration,

and compression of visual data and demonstrate that output of the proposed methods is

visually more pleasing than that of the corresponding state-of-the-art MSE-optimal meth-

ods.

1.3 Contributions

The main contributions of this thesis are summarized as follows:

1. a general-purpose RR-IQA measure and an image repairing algorithm using reduced-

reference features;

2. SSIM-inspired sparsity based image restoration and non-local means image de-noising;

3. SSIM-Quantization model for rate-distortion optimization and SSIM-inspired adap-

tive quantization method for video compression;
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4. an asymmetric adaptation objective model to quantify the perceptual experience of

time-varying video quality.

1.4 Thesis Outline

The objective of this work is to break the trend of using MSE as the optimization crite-

rion for image and video processing algorithms and demonstrate that significantly better

performance can be achieved when SSIM is employed for the design and optimization of

image/video processing algorithms. This work targets several main optimization problems

in visual communications that are solved conventionally using MSE as the distortion mea-

sure. SSIM-inspired novel solutions and algorithms are devised to solve the optimization

problems.

The layout of this thesis is organized as follows. Chapter 2 discusses the related work on

the topics addressed in the thesis. We briefly describe characteristics of natural images in

the beginning of the chapter in order to provide an introduction to the properties of visual

data. We highlight the importance of perceptual image and video quality assessment in the

context of optimal image and video processing and compare the SSIM index to the MSE

as a model of image perception through examples and psycho-physical experiments. An

overview of previous work done on visual quality assessment, restoration, and compression

is presented at the end of the chapter.

SSIM is a Full-Reference IQA (FR-IQA) scheme that requires full availability of the

reference image in order to estimate the quality of the distorted image. This makes it

impractical in visual communication applications, where we have no access to the reference

image at the receiver side. Reduced-reference image quality assessment (RR-IQA) provides

a practical solution for automatic image quality evaluations in various applications where

only partial information about the original reference image is accessible. We propose a

general purpose RR-IQA method in Chapter 3 that can estimate the SSIM index with

high accuracy. We introduce the novel idea of partially repairing an image using RR

features and use de-blurring as an example to demonstrate its application.

Image processing algorithms such as image de-noising and image super-resolution are
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required at various stages of visual communication starting from image acquisition to im-

age display at the receiver. In Chapter 4, we incorporate SSIM into the framework of

sparse signal representation and approximation. Specifically, the proposed optimization

problem solves for coefficients with minimum L0 norm and maximum SSIM index value.

Furthermore, a gradient descent algorithm is developed to achieve SSIM-optimal compro-

mise in combining the input and sparse dictionary reconstructed images. We demonstrate

the performance of the proposed method by using image de-noising and super-resolution

methods as examples.

Chapter 5 presents a novel SSIM-based non-local means image de-noising algorithm.

We incorporate SSIM into the framework of non-local means (NLM) image de-noising.

Specifically, a de-noised image patch is obtained by weighted averaging of neighboring

patches, where the similarity between patches as well as the weights assigned to the patches

are determined based on an estimation of SSIM.

Video compression is absolutely necessary for visual communication. We propose a rate-

distortion optimization (RDO) scheme based on the SSIM index in Chapter 6 . At the

frame level, an adaptive Lagrange multiplier selection method is proposed based on a novel

reduced-reference statistical SSIM estimation algorithm and a rate model1 that combines

the side information with the entropy of the transformed residuals. At the macroblock level,

the Lagrange multiplier is further adjusted based on an information theoretical approach1

that takes into account both the motion information content and perceptual uncertainty

of visual speed perception.

In Chapter 7, we propose a perceptual video coding framework based on the divisive

normalization scheme, which was found to be an effective approach to model the perceptual

sensitivity of biological vision, but has not been fully exploited in the context of video

coding. At the macroblock (MB) level, we derive the normalization factors based on the

SSIM index as an attempt to transform the DCT domain frame residuals to a perceptually

uniform space. We further develop an MB level perceptual mode selection scheme1 and a

frame level global quantization matrix optimization method.

We study the perceptual experience of time-varying video quality in Chapter 8. In real-

1proposed in collaboration with S. Wang, a visiting Ph.D. student from Peking University, Beijing.
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world visual communications, it is a common experience that end-users receive video with

significantly time-varying quality due to the variations in video content/complexity, codec

configuration, and network conditions. The way by which the human visual quality of

experience (QoE) changes with such time-varying video quality is not yet well-understood.

To investigate this issue, we conduct subjective experiments designed to examine the qual-

ity predictability between individual video segments of relatively constant quality and

combined videos consisting of multiple segments that have significantly different quality.

We propose a quality adaptation model that is asymmetrically tuned to increasing and

decreasing quality.

Finally, Chapter 9 concludes the thesis and discusses different avenues for future re-

search.

The research performed in this thesis lead to the development of state-of-the-art im-

age and video processing algorithms. The significant improvement in the performance of

the image and video processing algorithms due to the use of SSIM provides strong evi-

dence for convincing researchers to replace MSE with SSIM in image and video processing

applications.
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Chapter 2

Background

This chapter starts with a brief discussion about the characteristics of visual data followed

by an introduction of perceptual image and video processing. The SSIM index will then

be presented and compared to the MSE as a model of image perception through examples

and psycho-physical experiments. This chapter also performs a brief overview of previous

work done on visual quality assessment, restoration, and compression. The review is by no

means comprehensive and only summarizes relevant literature, while leading the interested

reader to more comprehensive reviews.

2.1 Characteristics of Natural Images

Natural or typical images and videos (a stack of images) refer to the visual data obtained

from a camera - these include pictures of physical scenes, man-made objects and natural

environments. The “amount” of incoming photons entering a camera, through an open

aperture, is recorded on an array of charge-coupled device (CCD) receptors. The analog

values measured in the form of difference of voltage are converted to digital form using an

analog-to-digital converter. The digital data is then transformed into an array of pixels

(picture elements).
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3Monday, August 10, 2009

Figure 2.1: Depiction of the image space

The knowledge of the nature of visual data, obtained as a result of the process explained

above, is very crucial for efficient processing, transmission, and storage of images and

videos. An important question that arises here is: how to fully describe the image statistics?

That is, given any combination of pixel values (supposing an already sampled image), can

we find the probability that this image could be taken by a digital camera at any time

in history? There are approximately 101000 possible 65 × 65 gray-scale images. This

gives us a good idea about how big is the space of all the images. Typical (natural)

images occupy an extremely tiny (and unknown-shape) space in the space of all images

as demonstrated by Figure 2.1. As an attempt to understand the statistical properties of

natural images, let us first take a look at the marginal distribution of two images from the

scene as shown in Figure 2.2. We can observe that the marginal distribution of the two

images vary significantly even though the images belong to the same scene. Therefore, we
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can conclude that marginal statistics of natural images may not be useful in defining the

space of all natural images. Next, we look at the joint statistics of closely located pixels in

the image shown in 2.3(a). Specifically, we draw a scatter plot between the pixel intensity

values which are located at a horizontal distance of one, two, and four pixels. Majority

of the points in the scatter plots lie along the diagonal line which is an evidence of strong

correlation between intensity values of neighboring pixels. The spread of points increases

as the distance between pixels increases, depicting the trend of decrease in correlation with

increase in pixel distance. We can conclude from Figure 2.3 that pixels in an image are not

independent of one another and there exists some sort of structure since there is a strong

correlation between neighboring pixels.

The current state of research in the area of natural image statistics has not yet been

able to find a good natural image model. The main observations include:

• second-order pixel correlations [50];

• importance of phases [16];

• optimal approximation by piecewise smooth functions [96];

• heavy-tail non-Gaussian marginals in wavelet domain [32,37];

• near elliptical shape of joint densities in wavelet domain [131];

• decay of dependency in the wavelet domain [82].

2.2 Perceptual Image and Video Quality Assessment

The Human Visual System (HVS) is optimized for processing the spatial information in

natural visual images [111]. We have learned in the previous section that visual con-

tent exhibits certain properties which are specific to natural images and videos. This

knowledge can applied to design better image and video quality assessment methods that

10
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Figure 2.2: Marginal statistics of pixel intensity

correlate well with the HVS. In the classical approach for image and video quality assess-

ment, the researchers use a bottom-up approach that builds the computational system of

the HVS in order to reach a realistic model of image quality perception [39, 80]. A top-

down philosophy, towards image and video quality assessment, makes hypotheses about

the overall functionality of the HVS. The main purpose of such an approach is to use a

simpler solution by treating HVS as a black-box and concentrating only on its input-output

relationship [127,165].

The use of image and video quality assessment methods in the design and optimiza-
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Figure 2.3: Second order statistics of pixel intensity

tion of image/video processing algorithms and systems is more desirable, challenging, and

fruitful as compared to benchmarking and monitoring of visual data. Existing image and

video quality assessment methods do not directly qualify for this job. To be deemed fit for

optimization of image and video processing algorithms, there are four desirable properties

in an image and video quality assessment method:

1. high correlation with subjective scores;

2. low computational complexity so that the algorithm is practically usable;
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3. accurate local quality prediction that can help determine varying local quality level

based on content;

4. good mathematical properties that can help in solving optimization problems i.e. a

valid distance metric that satisfies convexity, differentiability, symmetry, etc.

Most of the existing image and video quality assessment methods lack at least one of the

above mentioned characteristics. For example, Video Quality Metric (VQM) [104] is good

at predicting perceived video quality but is computationally very complex, does not provide

local quality map, and does not satisfy the desirable mathematical properties. According

to the best of our knowledge, there are only two image and video quality assessment

methods that satisfy all four requirements: MSE/PSNR (Peak Signal-to-Noise Ratio) and

SSIM. The remainder of this section introduces MSE and SSIM and also provides their

comparison based on the four points mentioned above.

2.2.1 Mean Squared Error

The goal of an image/video fidelity measure is to provide a quantitative comparison be-

tween two images/videos, where one of the image/video is considered pristine or treated

as a reference. The most widely method to measure image/video fidelity is PSNR, a

monotonic function of MSE.

The MSE between two images y and ŷ is

MSE(y, ŷ) =
1

L1L2

L1∑
i1=1

L2∑
i2=1

(y(i1, i2)− ŷ(i1, i2))2 , (2.1)

where L1 and L2 are the length and the width of the images respectively. As MSE com-

putation is based on the error signal, e = y − ŷ, between the reference image, y, and its

distorted version, ŷ, therefore it can regarded as a measure of image quality. In image and

video processing literature, MSE is often converted to PSNR using the expression:

PSNR(y, ŷ) = 10 log10

R2

MSE(y, ŷ)
, (2.2)
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(a) MSE = 0, SSIM = 1 (b) MSE = 200, SSIM = 0.99 (c) MSE = 200, SSIM = 0.99

(d) MSE = 200, SSIM =0.68 (e) MSE = 198, SSIM = 0.65 (f) MSE = 200, SSIM = 0.72

Figure 2.4: Comparison between distorted images with the same MSE. (a) Original image;

(b) Global brightness shift; (c) Global contrast stretch; (d) Gaussian noise; (e) Gaussian

blur; (f) JPEG compression.

where R is the dynamic range of image pixel intensities e.g. for an 8-bit/pixel gray-scale

image, R = 28− 1 = 255. The only advantage of PSNR over MSE, as a perceptual quality

measure, is its capability to handle images with different dynamic ranges.

MSE has been ubiquitously used in the literature as a signal fidelity measure and its use

as an image/video quality assessment metric has become a convention. The poor perfor-

mance of MSE as an image/video quality assessment method is ignored on the expense of

its attractive features such as simplicity, low computational cost, and memorylessness [166].

MSE serves very well in solving design an optimization problems for the following reasons:

it is a valid distance metric in RN ; it preserves energy after any orthogonal (or unitary)

linear transformation (Parseval’s theorem); it is convex, and differentiable; it often pro-

vides closed form or iterative numerical solutions to optimization problems; it is additive
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for independent sources of distortions. In spite of having sound mathematical proper-

ties, MSE should not be used unquestioned as a perceptual quality measure in image and

video processing applications. Figure 2.4 provides an illustrative example and rationale

for not trusting MSE’s judgment of perceptual quality. The reference image is shown in

Figure 2.4(a). The rest of images are created from the reference image by introducing same

level of various distortions in terms of MSE. We can readily observe that the perceptual

quality of the distorted images differs significantly, although MSE wrongly predicts a sim-

ilar quality. According to the MSE, the image in Figure 2.4(e) has the best quality among

the five distorted images. However, according to the HVS, the images in Figures 2.4(b)

and 2.4(c) have the least perceptual distortion.

The MSE does not account for a number of important psychological and physiological

features of the HVS [163]. The reason behind failure of MSE in providing accurate per-

ceived quality prediction lies in various questionable assumptions made when used as an

image/video quality measure: 1) the spatial relationship between pixels is irrelevant as far

the perceptual quality is concerned, therefore, the distortion in each pixel can be calculated

individually; 2) the error signal, e, introduces the same level of distortion when introduced

in any reference image; 3) the perceptual quality evaluation is insensitive to the sign of

e; 4) all the pixels of an image are equally important for perceptual image quality. All of

these assumptions have been proven wrong [166].

2.2.2 Structural Similarity

SSIM is based on measuring the similarities of luminance, contrast and structure between

local image patches x and y extracted from a reference and a distorted image:

l(x,y) =
2µxµy + C1

µ2
x + µ2

y + C1

, (2.3)

c(x,y) =
2σxσy + C2

σ2
x + σ2

y + C2

, (2.4)

s(x,y) =
σxy + C3

σxσy + C3

, (2.5)
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Figure 2.5: Comparison of level sets; (a) MSE measure; (b) SSIM measure.

where µ, σ and σxy represent the mean, standard derivation and covariance of the image

patches, respectively, and C1, C2 and C3 are positive constants used to avoid instability

when the denominators are close to zero. Subsequently, the local SSIM index is defined as

the product of the three components, which gives

SSIM(x,y) =
[
l(x,y)

]α[
c(x,y)

]β[
s(x,y)

]γ
(2.6)

The SSIM index is usually simplified by taking α = β = 1, and C3 = C2/2. Equation 2.6

then reduces to

SSIM(x,y) =

(
2µxµy + C1

µ2
x + µ2

y + C1

)(
2σxy + C2

σ2
x + σ2

y + C2

)
, (2.7)

= S1(x,y)S2(x,y). (2.8)

The SSIM index of the whole image is obtained by averaging (or weighted averaging)

the local SSIM indices obtained using a sliding window that runs across the image.

Figure 2.5 gives a graphical explanation in the vector space of image components,

which can be pixels, wavelet coefficients, or features extracted from the reference image.
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For the purpose of illustration, two-dimensional diagrams are shown here. However, the

actual dimensions may be equal to the number of pixels or features being compared. The

three vectors represent three reference images and the contours around them represent the

images with the same distortion level using (a) MSE and (b) SSIM as the distortion/quality

measures, respectively. The critical difference is in the shapes of the contours. Unlike MSE

(where all three contours have the same size and shape), SSIM is adaptive according to

the reference image. In particular, if the “direction” of distortion is consistent with the

underlying reference (aligned with the direction of the reference vector), the distortion is

non-structural and is much less objectionable than structural distortions (the distortions

perpendicular to the reference vector direction). The formulation of SSIM in (2.6) provides

a flexible framework for adjusting the relative importance between structural (the last term)

and non-structural (first two terms) distortions. As explained in [165], the luminance term

of the SSIM index is related to Weber’s Law. According to the this law, the perception

of the change of a stimulus is proportional to the intensity of the stimulus. Weber’s

Law not only applies to the luminance but also to the image contrast i.e., the ratio of

contrasts is constant for a constant SSIM index value. Figure 2.4 provides an example of

SSIM’s capability to differentiate between structural and non-structural distortion. Global

brightness shift (Figure 2.4(b)) and global contrast shift (Figure 2.4(b)) introduce non-

structural distortion in the reference image (Figure 2.4(a)) and as a result are penalized

less by SSIM index as compared to the structural distortions namely Gaussian noise (Figure

2.4(d)), Gaussian blur (Figure 2.4(e)), and JPEG compression (Figure 2.4(f)).

Equation (2.6) does not take into account the viewing distance of the observer. There-

fore, the performance of the SSIM index depends on the scale it is applied to. A multi-scale

approach that incorporates SSIM index at various scales, Multi-Scale Structural Similarity

(MS-SSIM), has been proposed in [177]. The relative importance/weight of each scale was

decided based on psychovisual experiments. Interestingly, the weights determined based

on the experiments were found to be consistent with the philosophy of contrast sensitivity

function [177]. In the general form, the MS-SSIM can be written as

MS− SSIM(x,y) =
R∏
r=1

[
l(xr,yr)

]αr[
c(xr,yr)

]βr[
s(xr,yr)

]γr
, (2.9)
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where xr and yr are the image x and y, respectively, at resolution r.

Initially, a simple average over the local SSIM scores was adapted as the pooling strategy

[165]. Information content based weighting can yield more accurate quality prediction as

compared to minkowski, local quality/distortion-based, saliency-based, and object-based

pooling. Information content Weighted SSIM (IW-SSIM) has been shown to outperform

the basic spatial domain SSIM index [168].

The major drawback of the spatial domain SSIM index is its high-sensitivity to trans-

lation, scaling, and rotation of images, which are also non-structural distortions. The CW-

SSIM measure was proposed in [121,175], which was built upon local phase measurements

in complex wavelet transform domain. The underlying assumptions behind CW-SSIM

are that local phase pattern contains more structural information than local magnitude,

and non-structural image distortions such as small translations lead to consistent phase

shift within a group of neighboring wavelet coefficients. Therefore, CW-SSIM is designed

to separate phase from magnitude distortion measurement and impose more penalty to

inconsistent phase distortions.

Consider a mother wavelet w(u) = g(u)ejwcu, where wc is the center frequency of the

modulated band-pass filter and g(u) is a slowly varying symmetric function. The family

of wavelets are dilated and translated versions of w(u) given by

ws,p(u) =
1√
s
w

(
u− p
s

)
=

1√
s
g

(
u− p
s

)
ejwc(u−p)/s (2.10)

where scale factor s ∈ R+ and translation factor p ∈ R. The continuous wavelet transform

of a real signal x(u) is

X(s, p) =
1

2π

∫ ∞
−∞

X(w)
√
sG(sw − wc)ejwpdw (2.11)

where X(w) and G(w) are the Fourier transforms of x(u) and g(u), respectively. The dis-

crete wavelet coefficients are sampled versions of the continuous wavelet transform. Please

note that this is a specific way of defining wavelets that best suits the target application.

Interested reader should refer to [89] for a comprehensive description of wavelet transforms.

Given two sets of complex wavelet coefficients cx = {cx,i|i = 1, ...,M} and cy = {cy,i|i =

1, ...,M} extracted at the same spatial location in the same wavelet subbands of the two
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images being compared, the local CW-SSIM index is defined as

S̃(cx, cy) =
2|
∑M

i=1 cx,ic
∗
y,i|+K∑M

i=1 |cx,i|2 +
∑M

i=1 |cy,i|2 +K
. (2.12)

where c∗ denotes the complex conjugate of c, and K is a small positive stabilizing constant.

The value of the index ranges from 0 to 1, where 1 implies no structural distortion (but

could still have a small spatial shift). The global CW-SSIM index S̃(Ix, Iy) between two

images Ix and Iy is calculated as the average of local CW-SSIM values computed with

a sliding window running across the whole wavelet subband and then averaged over all

subbands. It was demonstrated that CW-SSIM is simultaneously insensitive to luminance

change, contrast change, and small geometric distortions such as translation, scaling and

rotation [121, 175]. This makes CW-SSIM a preferred choice for image classification tasks

because it is versatile and largely reduces the burden of preprocessing steps such as contrast

and mean adjustment, pixel shifting, deskewing, zooming and scaling.

The SSIM index and its extensions have found a wide variety of applications, ranging

from image/video coding, i.e., H.264 video coding standard implementation [67], image

classification [53, 113], restoration and fusion [103], to watermarking, de-noising and bio-

metrics (See [166] for a list of references). In most existing works, however, SSIM has been

used for quality evaluation and algorithm comparison purposes only. SSIM possesses a

number of desirable mathematical properties, making it easier to employ in optimization

tasks than other state-of-the-art perceptual IQA measures [11]. However, much less work

has been done on using SSIM as an optimization criterion in the design and optimization

of image processing algorithms and systems [26,84,98,114,116,119,157,169,187].

2.2.3 Comparison between MSE and SSIM

One the main differences between SSIM and MSE is the divisive normalization [10, 158].

This normalization is conceptually consistent with the light adaptation (also called lumi-

nance masking) and contrast masking effect of HVS and has been recognized as an efficient

perceptual and statistical non-linear image representation model [81,154]. Moreover, it pro-

vides a useful framework that accounts for the masking effect in the HVS, which refers to
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the reduction of the visibility of an image component in the presence of large neighboring

components [51, 179]. Divisive normalization is also powerful in modeling the neuronal

responses in the visual cortex [59, 135], and has been successfully applied in image qual-

ity assessment [76, 115], image coding [90], video compression [118, 158, 160], and image

de-noising [109].

Correlation with subjective scores

The ultimate goal of an IQA algorithm is to predict subjective quality scores of images.

Therefore, an important comparison between MSE and SSIM is based on how well they can

predict subjective scores. For this purpose, we use six publicly available databases and four

evaluation metrics to compare the performance of MSE and SSIM. The evaluation metrics

are Pearson Linear Correlation Coefficient (PLCC), Root Mean Squared Error (RMSE),

Spearman’s rank correlation coefficient (SRCC), and Kendall’s rank correlation coefficient

(KRCC). The detail of these metrics can be found in Chapter 3. The performance of

improved versions of SSIM, MS-SSIM and IW-SSIM, is also provided in Table 2.1. We

can observe from the results that SSIM and its variants perform significantly better than

PSNR, simply a remapping of MSE, in predicting subjective scores of all the databases.

As a result, we can conclude that SSIM is a better perceptual quality measure as compared

to MSE.

Local quality prediction

Optimization of image and video processing applications require accurate local perceptual

quality prediction for the following reasons:

• Image distortions may not be uniform across the whole image or uniform image

distortions may introduce space-variant degradation;

• Statistical features for a typical image are significantly non-stationary across space;

• A human observer can only perceive a small high-resolution region in an image at

one time due to the nonuniform retinal sampling feature of HVS.
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Table 2.1: Performance comparison between PSNR and SSIM using publicly available

databases
LIVE Database [130] Cornell A57 Database [23]

IQA PLCC MAE SRCC KRCC PLCC MAE SRCC KRCC

PSNR 0.8723 10.51 0.8756 0.6865 0.6347 0.1607 0.6189 0.4309

SSIM [165] 0.9449 6.933 0.9479 0.7963 0.8017 0.1209 0.8066 0.6058

MS-SSIM [177] 0.9489 6.698 0.9513 0.8044 0.8603 0.1007 0.8414 0.6478

IW-SSIM [168] 0.9522 6.470 0.9567 0.8175 0.9034 0.0892 0.8709 0.6842

IVC Database [74] Toyama-MICT Database [60]

IQA PLCC MAE SRCC KRCC PLCC MAE SRCC KRCC

PSNR 0.6719 0.7191 0.6884 0.5218 0.6329 0.7817 0.6132 0.4443

SSIM [165] 0.9119 0.3777 0.9018 0.7223 0.8887 0.4386 0.8794 0.6939

MS-SSIM [177] 0.9108 0.3813 0.8980 0.7203 0.8927 0.4328 0.8874 0.7029

IW-SSIM [168] 0.9231 0.3694 0.9125 0.7339 0.9248 0.3677 0.9202 0.7537

TID 2008 Database [106] CSIQ Database [72]

IQA PLCC MAE SRCC KRCC PLCC MAE SRCC KRCC

PSNR 0.5223 0.8683 0.5531 0.4027 0.7512 0.1366 0.8058 0.6084

SSIM [165] 0.7732 0.6546 0.7749 0.5768 0.8612 0.0992 0.8756 0.6907

MS-SSIM [177] 0.8451 0.5578 0.8542 0.6568 0.8991 0.0870 0.9133 0.7393

IW-SSIM [168] 0.8579 0.5276 0.8559 0.6636 0.9144 0.0801 0.9213 0.7529

Figure 2.7 compares absolute error (the bases for Lp , MSE, PSNR, etc.) and SSIM

maps in terms of their accuracy in predicting local quality of an image. The reference

image, shown in Figure 2.4(a), is degraded with different types of distortion. The distorted

images are shown in the left column of Figure 2.7. The absolute error map is adjusted so

that brighter indicates better predicted quality.

Global brightness shift introduces a non-structural distortion in the reference image

and affects the quality minutely as shown by the SSIM map in Figure 2.7(c). However,

the absolute error map in Figure 2.7(b) predicts severe uniform local distortion which

contradicts the perceived local quality of the distorted image.
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In Figure 2.7(d), the distortion is not obvious as global contrast shift is a non-structural

distortion. Therefore, the SSIM map predicts good quality throughout the image. On the

other hand, according to the absolute error map quality prediction, the bright areas in

the image are severely distorted which does not conform with the perceived quality of the

distorted image.

In Figure 2.7(g), introducing noise severely degrades the quality of low variance regions

such as the face and the box, which is accurately predicted by the SSIM map. However,

the absolute error map is completely independent of the underlying image structures.

In Figure 2.7(j), details of the face are preserved relatively better compared to the

wall/bricks. This is clearly indicated by the SSIM index map, but again, not well predicted

by the absolute error map.

Maximum Differentiation

Figure 2.4 provides a convincing example and rationale for not trusting MSE’s judgment

of perceptual quality. According to MSE, the quality of all the distorted images is similar,

but visually they do not have the same perceptual quality. For a fair comparison, we

should devise another example with all the distorted images with the same SSIM index

value. The methodology for comparing computational models of perceptual quantities

through Maximum differentiation (MAD) competition was proposed in [176]. We use this

methodology to create an example by keeping the quality level of the input image fixed

according to one of the IQA methods (MSE/SSIM) and synthesizing output images with

maximum/minimum quality according to the other IQA method, and vice versa. The

perceptual quality assessment method whose maximum/minimum quality pairs are easier

for subjects to discriminate is the better method. The reference and input images used

in the experiment are shown in Figures 2.8(a) and 2.8(b), respectively. Images 2.8(c) and

2.8(d) have the maximum and minimum quality, respectively, according to MSE but the

same SSIM index value as the input image. Images 2.8(e) and 2.8(f) have the maximum

and minimum quality, respectively, in the SSIM sense but the same MSE value as the input

image. We can observe from the images that it is easier to differentiate between the images

2.8(e) and 2.8(f) as compared to images 2.8(c) and 2.8(d). Therefore, we can conclude that
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SSIM is a better perceptual quality assessment method as compared to MSE. Also, we can

observe that the image 2.8(e) has almost perfect perceptual quality but has a very high

MSE value. On the other hand, the perceptual quality of the image 2.8(d) is not as bad as

the MSE value suggests. According to these observations MSE failed to accurately predict

the perceptual quality of the images.

Mathematical Properties

One often faces major difficulties when solving optimization problems based on visual qual-

ity assessment measures in image and video processing applications. This is largely due to

the lack of desirable mathematical properties in perceptual quality assessment measures.

Although the MSE exhibits poor correlation with subjective scores, it is an ideal target for

optimization as it is based on a valid distance measure (L2) that satisfies positive definite-

ness, triangular inequality, and symmetry. Additionally, the MSE is differentiable, convex,

memoryless, energy preserving under orthogonal transforms, and additive for independent

sources [162,166].
√

1− SSIM has been shown to be a valid distance metric (that satisfies the identity and

symmetry axioms as well as the triangle inequality) and has a number of useful local and

quasi-convexity, and distance preserving properties [11]. Quasi-convexity, a weaker form

of convexity, can be useful for the numerical or analytical optimization of the SSIM index

and its derivatives. Local convexity implies that there exists a sphere around the location

of minimum for which
√

1− SSIM is convex.

Computational Complexity

Table 2.2 compares popular perceptual quality assessment algorithms in terms of normal-

ized complexity. We can observe that the MSE is computationally very simple. On the

other hand, VQM [104] and MOVIE [124] are computationally extremely expensive, while

SSIM and MS-SSIM achieve a much better balance between quality prediction accuracy

and computational complexity.
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Table 2.2: Computational complexity comparison of popular perceptual quality assessment

measures

Model
Computational Complexity

(normalized)

MSE 1

SSIM [165] 5.874

MS-SSIM [177] 11.36

VQM [104] 1083

MOVIE [124] 7229

2.3 Perceptual Image and Video Processing

Figure 2.6: General framework for perceptual image and video processing

Objective visual quality assessment algorithms are primarily developed to monitor sig-

nal fidelity as part of QoS efforts, and also to benchmark signal processing systems and

algorithms in comparative studies [162]. The use of image and video quality assessment

measures in the design and optimization of image/video processing algorithms and systems

is more desirable, challenging and fruitful but has not been well explored.
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Figure 2.6 shows the general framework for perceptual image and video processing.

Since the ultimate receiver of visual content is the HVS, the correct optimization goal of

image and video processing algorithms should be perceptual quality. A scientific design of

a visual processing algorithm always involve certain quality criterion, either explicitly or

implicitly. An image/video can only be as good as it is optimized for. If a good perceptual

quality measure is available, one may use it for performance assessment of these algorithms

and systems and also for their optimization with the objective of producing the optimal

image/video under this criterion. There are two capacities in which objective perceptual

quality measures can be applied in the optimal design of visual processing algorithms and

systems.

• The core visual processing algorithms are used as a black box and the perceptual

quality measure is used to provide feedback control signals to update the visual

processing algorithm in an iterative manner.

• The perceptual quality measure is used in the core visual processing algorithm which

would be practical if the quality measure had good mathematical properties to help

solve optimization problems.

An effective objective quality assessment suitable for optimizing image and video pro-

cessing applications should provide accurate local quality prediction apart from exhibiting

high correlation with subjective scores at a low computational cost. Figure 2.9 demon-

strates how a perceptual quality assessment could be useful in the context of image coding.

The original image (a) is compressed using JPEG compression method. Due to limited

resources, the decompressed image (b) has strong blocking and blurring artifacts. Specifi-

cally, the blocking artifact in the sky is clearly visible and the boundaries of the building

have lost details including the text. Given additional bit budget to improve the image

quality, we would allocate the additional rate to the regions that would most improve the

perceptual quality of the image. An accurate local quality map can prove to be an excel-

lent guide in such a situation. Figure 2.9(c) shows the absolute error map which serves

as the bases for Lp , MSE, and PSNR computation. We can observe that the map pro-

vides us with the wrong guidance in suggesting the worst quality areas. The SSIM map,

25



shown in Figure 2.9(d) provides local quality prediction that is consistent with our visual

observations. Since most image and video compression methods are designed based on

MSE/PSNR, the dramatic difference between the MSE and SSIM quality maps reveals the

great potential of perceptual image and video compression.

Central to the image and video processing algorithms is a constrained optimization

problem. The solution to this problem aims to generate an output that is as close as

possible to the optimal, by maximizing its similarity with the desired signal in the presence

of constraint(s). Depending on the type of application, the constraint term is defined based

on factors such as available resources, prior knowledge about the underlying unknown

signal, among others. Central to such an optimization problem is the way the similarity

is measured. We will briefly discuss the main optimization problem involved in video

compression to show the importance of a good perceptual quality assessment algorithm.

Video codecs are primarily characterized in terms of the throughput of the channel and

perceived distortion of the reconstructed video. The main task of a video codec is to convey

the sequence of images with minimum possible perceived distortion within the available bit

rate. Alternatively, it can be posed as a communication problem to convey the sequence

with the minimum possible rate while maintaining a specific perceived distortion level. In

both versions of the problem, the fundamental issue is to obtain the best trade-off between

rate and perceived distortion. The process used to achieve this objective is commonly

known as Rate Distortion Optimization (RDO), which can be expressed by minimizing the

perceived distortion D with the number of used bits R subjected to a constraint Rc [140]

min{D} subject to R ≤ Rc (2.13)

This is a typical constrained optimization problem. Lagrangian optimization technique

converts this constrained optimization problem to an unconstrained optimization problem

[140], which can be expressed as

min{J} where J = D + λ ·R, (2.14)

where J is called the Rate Distortion (RD) cost and the rate R is measured in number of

bits per pixel. λ is known as the Lagrange multiplier and controls the trade-off between
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R and D. In practice, distortion models such as Sum of Absolute Difference (SAD) and

Mean Squared Error (MSE) are used in most actual comparisons [54]. The use of an

accurate perceptual quality measure, such as SSIM, instead of MSE can deliver superior

performance by offering significant rate reduction, while maintaining the same level of

perceptual quality [162].

2.4 Reduced-Reference Image Quality Assessment

2.4.1 Literature Review

A lot of work has been done in the recent past to develop objective quality assessment

measures that can automatically measure the perceived distortion in the visual content.

The most prominent ones include the structure similarity index (SSIM) [165] and its

derivatives [168, 177], visual information fidelity (VIF) [127], visual signal-to-noise Ra-

tio (VSNR) [23], and most apparent distortion (MAD) [73]. Among these methods, SSIM

has often been preferred due to its good trade-off between accuracy, simplicity and effi-

ciency [166]. The success of SSIM motivated us to use it for visual communication applica-

tions. The difficulty is that SSIM is a Full-Reference IQA (FR-IQA) scheme that requires

full availability of the reference image to estimate the quality of the distorted image. This

makes it impractical in visual communication applications, where we have no access to the

reference image at the receiver side. No-Reference IQA (NR-IQA) is highly desirable as it

does not require access to the reference image. In the literature, most NR-IQA algorithms

were designed for specific and limited types of distortions [77, 92, 126, 164, 172, 185, 196].

They may not be good choices in modern communication networks, because distortions

could be a combination of lossy compression, scaling in the bit-rate and spatial/temporal

resolution, network delay and packet loss, and various types of pre- and post-processing

filtering (e.g., error concealment, deblocking filtering, sharpening). On the other hand,

general purpose NR-IQA is still at an immature stage.

An RR-IQA method requires only a limited number of RR features extracted from the

reference for the IQA task [173]. It provides an interesting compromise between FR and
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NR approaches in terms of both quality prediction accuracy and the amount of information

required to describe the reference. Based on the underlying design philosophy, existing RR-

IQA algorithms may be loosely classified into three categories. The first type of methods are

primarily built upon models of the image source. Since the reference image is not available

in a deterministic sense, these models are often statistical in that they capture a prior

of the low level statistical properties of natural images. The model parameters provide a

highly efficient way to summarize the image information, and thus these methods often lead

to RR-IQA algorithms with a low RR data rate. In [174, 178], the marginal distribution

of wavelet subband coefficients is modeled using a Generalized Gaussian Density (GGD)

function, and GGD model parameters are used as RR features and employed to quantify

the variations of marginal distributions in the distorted image. The model was further

improved in [76] by employing a nonlinear divisive normalization transform (DNT) after

the linear wavelet decomposition, resulting in enhanced quality prediction performance,

especially when images with different distortion types are mixed together. The second-

category RR-IQA methods are oriented to capture image distortions. These methods

provide useful and straightforward solutions when we have sufficient knowledge about the

distortion process that the images have undergone, for example, standard image or video

compression [33, 56, 69, 184]. The limitation of such approaches is in their generalization

capability. Generally, it is inappropriate to apply these methods beyond the distortions

they are designed to capture. The third category of RR-IQA algorithms is based on models

of the image receiver (i.e., the HVS) [19,20], where computational models from physiological

and/or psychophysical vision studies may be employed. These methods have demonstrated

good performance for JPEG and JPEG2000 compression [19,20]. Among the three classes

of RR-IQA approaches, the first and third ones, i.e., methods based on modeling image

source and receiver, have more potentials to be extended for general-purpose applications

because the statistical and perceptual features being used are not restricted to any specific

distortion process. There are also interesting conceptual connections between these two

types of approaches, because it is a general belief in biological vision science that the HVS

is highly tuned for efficient statistical encoding of the natural visual environment [5, 136].

In [145], an interesting RR video quality measure based on SSIM estimation was pro-

posed for quantifying visual degradations caused by channel transmission errors. The
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problem with this scheme is that it decomposes the problem of SSIM estimation into many

local problems. This requires each component in the SSIM expression to be estimated

separately instead of using global statistics to estimate a global SSIM value. As a result in

a description of the image content that significantly increases the number of RR features.

Also, it assumes that a specific kind of distortion can be applied to assess images with a

wide variety of distortion types.

2.4.2 Test Image Databases

The following six publicly available subject-rated image databases are usually used to test

the IQA algorithms.

• The LIVE database [130] contains seven data sets of 982 subject-rated images, includ-

ing 779 distorted images with five types of distortions at different distortion levels.

The distortion types are a) JPEG2000 compression (2 sets); b) JPEG compression

(2 sets); c) White noise contamination (1 set); d) Gaussian blur (1 set); and e) fast

fading channel distortion of JPEG2000 compressed bitstream (1 set). The subjec-

tive test was carried out with each data set individually. A cross-comparison set

that mixes images from all distortion types was then used to align the subject scores

across data sets. The alignment process is rather crude, but the aligned subjective

scores (all data) are still useful references for testing general-purpose IQA algorithms,

for which cross-distortion comparisons are highly desirable.

• The Cornell-A57 database [23] contains 54 distorted images with 6 types of distor-

tions: a) quantization of the LH subbands of a 5-level discrete wavelet transform,

where the subbands were quantized via uniform scalar quantization with step sizes

chosen such that the RMS contrast of the distortions was equal; b) additive Gaus-

sian white noise; c) baseline JPEG compression; d) JPEG2000 compression without

visual frequency weighting; e) JPEG2000 compression with the dynamic contrast-

based quantization algorithm, which applies greater quantization to the fine spatial

scales relative to the coarse scales in an attempt to preserve global precedence; and

f) blurring by using a Gaussian filter.
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• The IVC database [74,97] includes 185 distorted images with four types of distortions:

a) JPEG compression; b) JPEG2000 compression; c) Local adaptive resolution (LAR)

coding; and d) blurring.

• The Toyama-MICT database [60] contains 196 images, including 168 distorted images

generated by JPEG and JPEG2000 compression.

• The Tampere Image Database 2008 (TID2008) [106, 107] includes 1700 distorted

images with 17 distortion types at 4 distortion levels. The types of distortions are:

a) Additive Gaussian noise; b) Additive noise in color components, which is more

intensive than additive noise in the luminance component; c) Spatially correlated

noise; d) Masked noise; e) High frequency noise; f) Impulse noise; g) Quantization

noise; h) Gaussian blur; i) Image de-noising; j) JPEG compression; k) JPEG2000

compression; l) JPEG transmission errors; m) JPEG2000 transmission errors; n)

Non eccentricity pattern noise; o) Local block-wise distortions of different intensity;

p) Mean shift (intensity shift); and q) Contrast change.

• The Categorical Image Quality (CSIQ) Database [72] contains 866 distorted images of

six types of distortions at four to five distortion levels. The distortion types include

JPEG compression, JPEG2000 compression, global contrast decrements, additive

pink Gaussian noise, and Gaussian blurring.

2.5 Perceptual Video Coding

Over the past decade, there has been an exponential increase in the demand for digital

video services such as high-definition television, web-based television, video conferencing

and video-on-demand. To facilitate these services, it demands to significantly reduce the

storage space and bandwidth of visual content production, storage and delivery. Therefore,

there has been a strong desire of more effective video coding techniques beyond H.264/AVC.

The main objective of video coding is to minimize the perceptual distortion D of the

reconstructed video with the number of used bits R subjected to a constraint Rc. This can
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be expressed as

min{D} subject to R ≤ Rc

This is a typical constrained optimization problem, and is generally solved using two meth-

ods: Lagrangian optimization and dynamic programming. In practice, the computation

complexity of dynamic programming is often too high, and so this method is used only

when direct Lagrangian optimization is difficult.

Lagrangian optimization technique converts the constrained optimization problem (2.5)

to an unconstrained optimization problem [140], which can be expressed as

min{J} where J = D + λ ·R, (2.15)

where J is called the Rate Distortion (RD) cost and the rate R is measured in number of

bits per pixel. λ is known as the Lagrange multiplier and controls the trade-off between R

and D.

The distortion introduced by quantization in lossy video coding is content-dependent

due to visual masking effects. By exploiting these effects, the design video coding algo-

rithms which are able to reduce the coding bitrate for a given target perceptual quality

is desirable. Many perceptual rate allocation techniques are developed based on human

visual sensitivity models. The basic idea of these techniques is to allocate fewer bits to the

areas or image components that can tolerate more distortions. The perceived distortion,

D, is difficult to measure because our knowledge of the Human Visual System (HVS) and

statistics of natural images remains limited. In practice, distortion models such as Sum

of Absolute Difference (SAD) and Mean Squared Error (MSE) are used in most actual

comparisons [54]. Many RDO algorithms have been proposed along this line. The repre-

sentative work includes rate distortion optimized transform [204], rate distortion optimized

quantization [68] and the dependent joint RDO using soft decision quantization [189,190].

However, the distortion measures such as SAD and MSE are widely criticized for not

correlating well with perceived quality [166].

Since the distortion in video coding mainly originates from quantization, many recent

methods attempt to incorporate the properties of the HVS into the quantization process

[28, 31, 91, 143, 144, 150]. Because HVS has different sensitivities to different frequencies,
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the concept of frequency weighting has been incorporated in the quantization process in

many picture coding standards from JPEG to H.264/AVC high profile [28,143,144,150]. In

[31,170], foveated vision models were employed for optimizing the quantization parameter

and Lagrange multiplier. However, these methods are based on near threshold perceptual

models, but practical video coding typically works in a suprathreshold range [22,100,198],

where the perceptual quality behavior is poorly predicted from the threshold level.

In the literature, significant progress has been made to adapt λ on a frame level when

MSE is used as the distortion measure. In [29], Chen et al. developed an adaptive λ

estimation algorithm by modeling the R and D in the ρ domain, where ρ is defined as the

percentage of zero coefficients among quantized transform residuals [58]. In [79], Laplace

distribution based rate and distortion models were established to derive λ for each frame

dynamically.

Many rate control algorithms such as those in [66,155] showed that better performance

and rate control can be achieved by modifying λ on an MB level rather than having the

same Lagrange multiplier for all MBs in a frame. In [201] and [200], the authors claimed

that fixing the same Lagrange multiplier for the whole frame may not be accurate enough

to capture the nature of motion, and therefore a context-adaptive Lagrange multiplier

(CALM) selection scheme was introduced. However, all these methods ignore the per-

ceptual aspect in the RDO scheme by adopting SAD/MSE as the measures of perceived

distortion.

Recently, a number of video coding methods aiming to incorporate the properties of the

HVS have been proposed. Yang et al. proposed a Just Noticeable Distortion (JND) model

for motion estimation and a residue filtering process in [193, 194]. A foveated JND model

was employed in [31] for optimizing the quantization parameter and Lagrange multiplier.

In [147,148], the authors exploited non-uniform spatial-temporal sensitivity characteristics

and developed visual sensitivity models which are based on the visual cues such as motion

and textural structures. In [141], motion attention, position, and texture structure mod-

els were used in the rate distortion optimization (RDO) process to adapt the Lagrange

multiplier based on the content of each MB. To incorporate perceptual information into

the MB-based adaptive RDO scheme, three distortion sensitivity models were built into

the RDO framework in [141]. Pan et al. proposed a content complexity based Lagrange
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multiplier selection scheme for scalable video coding [99].

In the literature, significant progress has also been made to incorporate the RDO scheme

into the quantization process. In order to achieve an optimal frequency domain bit alloca-

tion, the quantization matrix is parameterized and optimized from a RDO point of view

for MPEG-2 video coding [75]. In [189, 190], the authors proposed novel soft decision

quantization techniques and developed joint RDO algorithms for the hybrid video coding

framework. The rate distortion optimized quantization (RDOQ) algorithm for H.264 video

coding is also widely accepted because of its simplicity and efficiency [68].

Since SSIM has been proven to be more effective in quantifying the suprathreshold

compression artifacts, such as artifacts that distort the structure of an image [9], it was

incorporated into motion estimation, mode selection and rate control in hybrid video coding

[3,27,62,63,84–86,98,138,187,188]. For intra frame coding, new SSIM-based RDO schemes

were proposed in [3,85,86]. SSIM-based RDO schemes for inter frame prediction and mode

selection were developed in [84,187,188]. However, following the method proposed in [181],

the Lagrange multiplier was determined only by QP values in these schemes. Recently,

content-adaptive Lagrange multiplier selection schemes were proposed in [27, 62, 63, 138].

These algorithms employed a rate-SSIM curve to describe the relationship between SSIM

and rate, which is given by:

D = ζRε (2.16)

where ζ and ε are two fitting parameters that account for the R-D characteristics. Sub-

sequently, the key frames are identified and encoded twice with MSE-based RDO in the

sequences to obtain the best parameters ζ and ε. However, two-pass encoding of the key

frames brings additional complexities to the encoder. More importantly, this scheme is

based on the assumption of constant R-D characteristics in a short time period and uses

a periodic refreshment technique to refresh the parameters, which may not be accurate in

general.
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2.6 Image Restoration using Sparse Representations

and Non-Local Means

Image restoration problems are of particular interest to image processing researchers, not

only for their practical value, but also because they provide an excellent test bed for image

modeling, representation and estimation theories. When addressing general image restora-

tion problems with the help of a Bayesian approach, an image prior model is required.

Traditionally, the problem of determining suitable image priors has been based on a close

observation of natural images. This tradition leads to simplifying assumptions such as spa-

tial smoothness, low/max-entropy or sparsity in some basis sets. Recently, a new approach

has been developed for learning the prior based on sparse representations. Using redundant

representations and sparsity as driving forces for de-noising of signals has drawn a lot of

research attention in the past decade or so. At first, sparsity of the unitary wavelet coef-

ficients was considered, leading to the celebrated shrinkage algorithm [21, 45, 47, 95, 132].

With the growing realization that regular separable 1-D wavelets are inappropriate for han-

dling images, several new tailored multiscale and directional redundant transforms were

introduced, including the curvelet [17], contourlet [41], wedgelet [44] and the steerable

wavelet [133]. In parallel, the introduction of the matching pursuit [101] and the basis

pursuit de-noising [30] gave rise to the ability to address the image de-noising problem as

a direct sparse decomposition technique over redundant dictionaries. All these advances

led to what are considered some of the best available image de-noising methods [38,49,87].

Recently an example based learning approach has been adapted whereby a dictionary is

learned either from the corrupted image or a high-quality set of images with the assumption

that it can sparsely represent any natural image. Thus, this learned dictionary encapsulates

the prior information about the set of natural images. Such methods have proven to be

quite successful in performing image restoration tasks such as image de-noising [49] and

image super-resolution [192, 199]. More specifically, an image is divided into overlapping

blocks with the help of a sliding window and subsequently each block is sparsely coded with

the help of the dictionary. The dictionary, ideally, models the prior of natural images and is

therefore free from all kinds of distortions. As a result, the reconstructed blocks, obtained

by the linear combination of the atoms of the dictionary, are distortion free. Finally, the
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blocks are put back into their places and combined in light of a global constraint for which

a minimum MSE solution is reached. The accumulation of many blocks at each pixel

location might affect the sharpness of the image. Therefore, the distorted image must also

be considered in order to reach the best compromise between sharpness and admissible

distortions.

Image self-similarity is an important concept in the image processing literature as pixel-

blocks of a natural image can be approximated by other blocks. A de-noising method which

makes use of self-similarity of images known as Non-Local Means (NLM) was recently

proposed in [13,14]. The NLM de-noising filter estimates a sample of the underlying noise-

free “source” by weighted averaging other “target” samples in the noisy image. NLM image

de-noising method does not put any restriction on magnitude of the weights assigned to

target samples in the close proximity of the source sample as opposed to kernel smoothing

schemes. Instead, the de-noising algorithm calculates the weight of each target sample

based on its similarity with the source sample. The NLM de-noising algorithm has the

ability to outperform classical de-noising methods, including Gaussian smoothing, Wiener

filtering, Total Variation filtering [120], wavelet thresholding [24], and anisotropic diffusion

[7]. Furthermore, an extension of the algorithm has been developed to address the problem

of de-noising image sequences [15].

2.7 Time-Varying Subjective Video Quality

Video quality assessment has been an active subject of study in the past decades [163], but

how human visual quality-of-experience (QoE) changes with time-varying video quality (in

the scale of seconds or longer, rather than frames) is still an unresolved issue. Although

quite many video quality databases have been built and subjective experiments conducted

to study spatial and temporal video quality, they are not directly applicable in developing

and validating computational models of time-varying video quality, because most video

sequences in these databases consist of one scene or occasionally a few scenes of similar

content and distorted in similar fashion, and thus in the scale of seconds or longer, they

have fairly stable quality. Much less has been done in the area of predicting perceptual
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experience of time-varying video quality. Viewer response to time-varying video quality

using a single stimulus continuous quality evaluation (SSCQE) in light of forgiveness,

recency, and negative-peak and duration-neglect effects were studied in [102]. The findings

of this study were applied in the form of an infinite impulse response (IIR) filter model for

pooling in [4]. Asymmetric and smooth tracking of time-varying video quality by human

subjects was observed and modeled in [146]. Temporal summation based on recursive

formulations was used to model the low pass nature of the perceived continuous video

quality [93] and hysteresis effect [125]. The historical experiences of the users’ satisfaction

while consuming a certain video streaming stimulus is modeled and quantified for web QoE

in [61] and for VoIP in [112]. These models employ support vector machines and iterative

exponential regeression to account for the memory effect. The difference in successive

MOS values is exponentially weighted in a symmetric fashion as long as the difference is

below a certain threshold. [205] investigates the human perception of variations in layer

encoded video resulting in time-varying quality characteristics. Recently, the problem of

video quality assessment with dynamically varying distortion on mobile devices was studied

in [94].
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(a) Global brightness shift (b) Absolute Error map (c) SSIM map

(d) Global constrast strech (e) Absolute Error map (f) SSIM map

(g) Gaussian Noise (h) Absolute Error map (i) SSIM map

(j) JPEG2000 compression (k) Absolute Error map (l) SSIM map

Figure 2.7: Comparison between MSE and SSIM local quality maps. In both maps, brighter

indicates better local quality (or lower distortion)
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(a) MSE = 0, SSIM = 1 (b) MSE = 128, SSIM = 0.8416

(c) MSE = 72.81, SSIM = 0.8416 (d) MSE = 6517, SSIM = 0.8416

(e) MSE = 128, SSIM = 0.9959 (f) MSE = 128, SSIM = 0.7316

Figure 2.8: MAD competition between MSE and SSIM as image quality assessment meth-

ods
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(a) (b)

(c) (d)

Figure 2.9: An original image (a) is compressed by JPEG (b). The absolute error map

and the SSIM quality map are shown in (c) and (d), respectively. In both maps, brighter

indicates better local quality (or lower distortion).
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Chapter 3

Reduced-Reference SSIM Estimation

This chapter presents a Reduced Reference Image Quality Assessment (RR-IQA) algorithm

that approximates Full Reference (FR) SSIM by making use of Divisive Normalization

Transform (DNT) domain image statistical properties and the design principle of the SSIM

approach. We demonstrate the novel concept of image repairing by iteratively matching

the DNT-domain statistical properties (available as RR features) of the reference image.

The method presented has a fairly low RR data rate (36 scalar features per image in the

current implementation) and has good potentials to be employed in visual communications

applications for quality monitoring, streaming, and image repairing tasks.

3.1 Introduction

RR-IQA method only requires a limited number of RR features extracted from the refer-

ence for the IQA task [173] and provides an interesting compromise between FR and NR

approaches in terms of both quality prediction accuracy and the amount of information

required to describe the reference. A general framework for the use of RR-IQA in visual

communications along with image-repairing capability is shown in Fig. 3.1. An image x is

transmitted to the receiver via a transmission channel, which introduces distortions in the

received image y. Meanwhile, RR features X extracted at the transmitter side are sent
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Figure 3.1: General framework for the deployment of RR-IQA systems with image repairing

capability.

to the receiver through an ancillary channel. The feature extraction unit at the receiver

side calculates the features Y from the received image y in a similar fashion as in the

transmitter side. The receiver can use Y as the side information to decode X, which would

further reduce the data rate required to transmit X. This option is depicted by a dotted

line connecting received RR features with feature extraction algorithm at the receiver side.

X and Y are compared at the quality assessment unit, which creates a quality score S of

the distorted image y. A good RR-IQA approach should achieve a good trade-off between

rate and accuracy. In general, the larger the rate of the RR features, the more accurate the

RR-IQA measure can achieve. In the extreme, when the rate is enough to fully reconstruct

the reference, RR-IQA converges to FR-IQA. The performance gap between RR- and FR-

IQA may be reduced by selecting RR features that are efficient, perceptually relevant, and

sensitive to various kinds of distortions. In addition, since the RR features provide infor-

mation about what the “correct” image is supposed to look like, they may also be used as

side information to repair the received distorted image, as illustrated in Fig. 3.1.

Our work here focuses on general-purpose RR-IQA based on natural image statistics

modeling [136]. In addition, motivated by the success of the FR SSIM index, we develop

our method as an attempt to estimate SSIM rather than directly predicting subjective

quality. The benefits of this approach are twofold. First, the successful design principle in

the construction of SSIM can be naturally incorporated into the development of the RR

algorithm. Second, when the algorithm design involves a supervised learning stage, it is
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much easier to obtain training data, because SSIM can be readily computed, as opposed to

the expensive and time-consuming subjective evaluations. The advantages of our methods

are threefold. First, our method is based on natural image statistical modeling and makes

use of the perceptually and statistically motivated DNT transform. Second, instead of

decomposing the problem of SSIM estimation into many local problems and estimating

each component in SSIM expression separately [145], our method uses global statistics to

estimate global SSIM value. This allows for a much more efficient description of the image

content, and thus significantly lowers the number of RR features. Third, our approach

aims for general-purpose RR-IQA that can be applied to assess images with a wide variety

of distortion types.

The value of RR-IQA measures is beyond quality evaluations. As illustrated in Fig. 3.1,

they may also be employed to partially “repair” the distorted image. Here, we attempt

to repair an image by matching the subband statistical properties of the distorted image

with those of the reference and use deblurring as an example to demonstrate the idea.

The interesting feature of this method is that it requires no knowledge about the blur

kernel. Instead, the same repairing procedure is successful to correct images of not only

homogeneous blur (e.g., out-of-focus blur), but also directional blur (e.g., motion blur).

3.2 RR-SSIM Estimation

The proposed RR-SSIM estimation algorithm starts from a feature extraction process of the

reference image based on a multi-scale multi-orientation divisive normalization transform

(DNT). Divisive normalization was found to be an effective mechanism to account for many

neuronal behaviors in biological perceptual systems [59,135,153]. It also provides a useful

model to describe the psychophysical visual masking effect [51, 179]. DNT is typically

applied after a multi-scale linear transform (loosely referred to as wavelet transform) that

decomposes the image into transform coefficients representing localized structures in space,

frequency (scale) and orientation. The DNT-domain representation of the image is then

calculated by dividing each coefficient by a local energy measure based on its neighboring

coefficients. It was found that the histogram of DNT coefficients within a wavelet subband
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can often be well fitted with a zero-mean Gaussian density function [76, 154], which is

a one-parameter function that allows for efficient summarization of the statistics of the

reference image. In [76], the effect of image distortions on the statistics of DNT coefficients

was studied. It was found that different types of distortions modify the statistics of the

reference image in different ways, and the levels of statistical differences may be used to

quantify image distortions. In order to estimate FR SSIM, we desire the variations of the

statistics of the DNT coefficients with respect to different types and levels of distortions

to be coherent with the corresponding effects on FR SSIM.

The Gaussian scale mixture (GSM) model provides a convenient framework to define

a DNT [154]. A vector Y of length N is regarded as a GSM if it can be represented as

the product of two independent components: Y =̇zU , where z is a scalar random variable

called mixing multiplier, and U is a zero-mean Gaussian-distributed random vector with

covariance CU . In image processing applications, GSM may be used to model a cluster of

wavelet coefficients that are neighbors in space, scale and orientation. If we assume that

z takes a fixed value for each cluster but varies across the image, then putting all z values

together constitutes a variance field. The DNT can then be accomplished by ν = Y/z,

which produces a random vector that is Gaussian. This had been observed in empirical

studies in [154], where z is replaced by a local estimation ẑ using a maximum-likelihood

estimator [154]:

ẑ = arg max
z
{log p(Y |z)} =

√
Y TC−1

U Y/N (3.1)

The Gaussianization produced by the DNT process largely reduces the complication in

describing the distribution of the subband coefficient x:

pm(x) =
1√
2πσ

exp(− x2

2σ2
) (3.2)

where only a single parameter σ needs to be recorded for each subband.

In addition to σ, the Kullback-Leibler divergence (KLD) [36] between model Gaussian

distribution, pm(x), and the true probability distribution of the DNT-domain coefficients,
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p(x), denoted by d(pm||p) is extracted as the second feature for each subband:

d(pm||p) =

∫
pm(x) log

pm(x)

p(x)
dx (3.3)

This improves model accuracy when the probability distribution is not exactly Gaussian.

The subband distortion of the distorted image can be evaluated by the KLD between

the probability distribution of the original image, p(x), and that of the distorted image,

q(x):

d(p||q) =

∫
p(x) log

p(x)

q(x)
dx . (3.4)

Direct computation of this quantity requires full access to p(x), which would require a

large number of RR features to describe. Fortunately, the Gaussian model of the DNT

coefficients (3.2) provides a good approximation. Therefore, we can estimate p(x) by

d̂(p||q) =

∫
pm(x) log

p(x)

q(x)
dx (3.5)

= d(pm||q)− d(pm||p) , (3.6)

where d(pm||q) is the KLD between the model Gaussian distribution and the distribution

computed from the distorted image. Although different types of distortions affect the

statistics of the reference image in different manners, they are all summarized in (3.6) to

a single distortion measure. An added nice feature of this measure is that it equals zero

when the two distributions p(x) and q(x) are identical.

At the receiver side, the KLD between the subband coefficient probability distributions

of the original and distorted images is calculated as in (3.6). By assuming independence be-

tween subbands, the subband-level distortion measure of (3.6) can be combined to provide

an overall distortion assessment of the whole image by

D = log

(
1 +

1

D0

K∑
k=1

∣∣∣d̂k(pk||qk)∣∣∣) , (3.7)

where K is the total number of subbands, pk and qk are the probability distributions of the

k-th subband of the reference and distorted images, respectively, d̂k represents the KLD

between pk and qk, and D0 is a constant to control the scale of the distortion measure.
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The limitation of the measure in (3.7) is that it does not take into account the rela-

tionship (or structures) between the distortions across different subbands. Such distortion

structure is a critical issue behind the philosophy of the SSIM approach [165], which at-

tempts to distinguish structural and non-structural distortions. To understand this better,

we need to look at the FR SSIM algorithm [165] given by (2.6).

Here we borrow the design philosophy of FR SSIM, but apply it to a completely dif-

ferent domain of image representation. In particular, we attempt to distinguish structural

and non-structural changes of the cluster of statistical features extracted from the DNT

coefficients from different subbands. This is intuitively sensible because the distortion that

is consistent with the underlying signal in the feature vector space needs to be treated

differently as compared to non-structural distortions. For example, in the case that the

distorted image is a globally contrast scaled (contrast reduction or enhancement) version

of the reference image, then the standard deviations of all subbands should scale by the

same factor, which is considered consistent non-structural distortion and is less objectional

than the case that the subband standard deviations change in different ways.

Let σr and σd represent the vectors containing the standard deviation σ values of the

DNT coefficients from each subband in the reference and distorted images, respectively.

We define a new RR distortion measure as

Dn = g(σr,σd) log

(
1 +

1

D0

K∑
k=1

∣∣∣d̂k(pk||qk)∣∣∣) . (3.8)

Compared with (3.7), the key difference here is the added function g(σr,σd) in the front.

This function should serve the purpose of differentiating non-structural from structural

distortion directions in the feature vector space of subband σ values, so as to scale the

distortion measure D in a way that penalizes more on structural than non-structural dis-

tortions. Motivated by the successful normalized correlation formulation in SSIM [165], we

define

g(σr,σd) =
‖σr‖2 + ‖σd‖2 + C

2(σr · σd) + C
, (3.9)

where a positive constant C is included to avoid instability when the dot product σr · σd
is close to 0. This function is lower-bounded by 1, when σr and σd are fully correlated,
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or in other words, when their directions in the feature vector space are completely aligned

(corresponding to non-structural distortions). With the decrease of correlation, g(σr,σd)

increases, and thus gives more penalty to structural distortions.
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Figure 3.2: Relationship between Dn and SSIM for blur, JPEG compression, JPEG2000

compression, and noise contamination distortions for Lena image.

Figure 3.2 plots the Dn values computed using distorted images from the LIVE database

[130] for four common distortion types at different distortion levels, and compares them

with the corresponding FR SSIM values. Interestingly, for each fixed distortion type, Dn

exhibits a nearly perfect linear relationship with SSIM. We regard this as a consequence

of the similarity between their design principle, even though the principle is applied to
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completely different domains of signal representation. The clean linear relationship helps

reduce the SSIM estimation problem to the estimation of the slope factor. Once the slope

is determined, we can then use the following straight-line relationship to estimate SSIM:

Ŝ = 1− αDn . (3.10)

The slope factor α in (3.10) varies across distortion types and needs to be learned

from examples. Specifically, we adopt a regression-by-discretization approach [180], which

is a regression scheme that employs a classifier on a copy of the data that has the class

attribute discretized, and the predicted value is the expected value of the mean class value

for each discretized interval. The training images were obtained from six image databases

described in Section 3.3. The classification is performed using random forests [8] which

are built using |σr − σd| and |kr − kd| values in each subband as the attributes, where kr

and kd are the kurtosis values of the DNT coefficients computed from the reference and

distorted images, respectively. It has been observed with the help of the ground truth data

that the values of α tend to lie in various closely packed clusters. Each cluster may contain

images belonging to one distortion type. It provides a natural order to the distortion types

and therefore does not require an undesirable distortion classification stage which limits

the generalization capability of the proposed method. Therefore, the proposed method has

the potential to extrapolate to extended distortion types that may not be included in the

training samples.

The specification of our implementation is as follows: To extract RR features, the

reference image is first decomposed into 12 subbands using a three-scale four-orientation

steerable pyramid decomposition [134], a type of redundant wavelet transform that avoids

aliasing in subbands. DNT is then performed using 13 neighboring coefficients, including

9 spatial neighbors from the same subband, 1 from parent subband, and 3 from the same

spatial location in the other orientation bands at the same scale. The value of the constant

C in (3.9) is set to 0.1, which is found to be an insensitive parameter in terms of the per-

formance of the proposed IQA measure. Three features, σr, kr and d(pm||p), are extracted

for each subband, resulting in a total of 36 scalar RR features for a reference image.
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3.3 Validation of RR-IQA Algorithm

To validate the proposed RR-SSIM algorithm, we first test how well it predicts FR SSIM.

Figure 3.3 shows the scatter plots obtained using all six databases, where each point in

the plots represent one test image, and the vertical and horizontal axes are FR-SSIM

and RR-SSIM, respectively. If the prediction is perfect, then the point should lie on the

diagonal line. To provide a quantitative measure, Table 3.1 computes the mean absolute

error (MAE) and Pearson linear correlation coefficient between FR SSIM and our RR-

SSIM estimate. It can be observed that for all databases, the points are scattered close to

the diagonal lines in Fig. 3.3 and the correlation coefficients are above 0.9, indicating good

prediction accuracy of the proposed method. The breakdown prediction performance for

individual distortion types in different databases are provided in Tables 3.2.

Table 3.1: MAE and PLCC comparisons between SSIM and RR SSIM estimation for six

databases
Database MAE PLCC

LIVE [130] 0.0317 0.9432

Cornell A57 [23] 0.0266 0.9299

IVC [74], [97] 0.0244 0.9211

Toyama-MICT [60] 0.0119 0.9405

TID2008 [107], [106] 0.0303 0.9004

CSIQ [72] 0.0339 0.9243

The ultimate goal of RR-IQA algorithms is to predict subjective quality evaluation of

images. Therefore, the more important test is to evaluate how well they predict subjective

scores. For this purpose, we use five evaluation metrics to assess the performance of IQA

measures:

• Pearson linear correlation coefficient (PLCC) after a nonlinear mapping between the

subjective and objective scores. For the i-th image in an image database of size

N , given its subjective score oi (mean opinion score (MOS) or difference of MOS

(DMOS) between reference and distorted images) and its raw objective score ri, we
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Figure 3.3: Scatter plots of SSIM versus RR-SSIM estimation Ŝ for six test databases.
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Table 3.2: Distortion type breakdown for MAE and PLCC comparisons between SSIM and

RR-SSIM estimation
Distortion Type Database MAE PLCC

Additive Gaussian noise

LIVE 0.0340 0.9903

TID2008 0.0185 0.9522

CSIQ 0.0274 0.9771

Noise in color comp. TID2008 0.0080 0.8978

Spatially corr. noise TID2008 0.0331 0.9580

Masked noise TID2008 0.0057 0.5982

High frequency noise TID2008 0.0227 0.9621

Additive pink noise CSIQ 0.0212 0.9712

Impulse noise TID2008 0.0222 0.9667

Quantization noise TID2008 0.0316 0.7584

Gaussian blur

LIVE 0.0412 0.8973

IVC 0.0342 0.9288

TID2008 0.0416 0.8892

CSIQ 0.0260 0.9783

Image de-noising TID2008 0.0444 0.8721

JPEG compression

LIVE (Set 1) 0.0214 0.9867

LIVE (Set 2) 0.0235 0.9840

IVC 0.0141 0.9476

Toyama-MICT 0.0144 0.9007

TID2008 0.0253 0.9325

CSIQ 0.0490 0.8895

JPEG2000 compression

LIVE (Set 1) 0.0197 0.9820

LIVE (Set 2) 0.0229 0.9792

IVC 0.0296 0.9321

Toyama-MICT 0.0093 0.9472

TID2008 0.0482 0.9009

CSIQ 0.0452 0.9223

LAR compression IVC 0.0227 0.9426

JPEG trans. error TID2008 0.0420 0.8990

Non ecc. patt. noise TID2008 0.0149 0.8863

Local block-wise dist. TID2008 0.0117 0.8837

Mean shift TID2008 0.0367 0.8205

Contrast change
TID2008 0.0485 0.7085

CSIQ 0.0372 0.9486
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first apply a nonlinear function to ri [129]

q(r) = a1

{
1

2
− 1

1 + exp [a2(r − a3)]

}
+ a4r + a5 (3.11)

where a1 to a5 are model parameters found numerically using a nonlinear regres-

sion process in MATLAB optimization toolbox to maximize the correlations between

subjective and objective scores. The PLCC value can then be computed as

PLCC =

∑
i(qi − q̄) ∗ (oi − ō)√∑

i(qi − q̄)2 ∗
∑

i(oi − ō)2
. (3.12)

• Mean absolute error (MAE) is calculated using the converted objective scores after

the nonlinear mapping described above:

MAE =
1

N

∑
|qi − oi|. (3.13)

• Root mean-squared (RMS) error is computed similarly as

RMS =

√
1

N

∑
(qi − oi)2. (3.14)

• Spearman’s rank correlation coefficient (SRCC) is defined as:

SRCC = 1− 6
∑N

i=1 d
2
i

N(N2 − 1)
, (3.15)

where di is the difference between the i-th image’s ranks in subjective and objective

evaluations. SRCC is a nonparametric rank-based correlation metric, independent of

any monotonic nonlinear mapping between subjective and objective scores.

• Kendall’s rank correlation coefficient (KRCC) is another non-parametric rank corre-

lation metric given by

KRCC =
Nc −Nd

1
2
N(N − 1)

, (3.16)

where Nc and Nd are the numbers of concordant and discordant pairs in the data

set, respectively.
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Among the above metrics, PLCC, MAE and RMS are adopted to evaluate prediction

accuracy [152], and SRCC and KRCC are employed to assess prediction monotonicity

[152]. A better objective IQA measure should have higher PLCC, SRCC and KRCC while

lower MAE and RMS values. All of these evaluation metrics are adopted from previous

IQA studies [105, 129, 152]. Only the distorted images in the six databases described in

Section 2.4.2 were employed in our tests (i.e., reference images are excluded). This avoids

several difficulties in computing the evaluation metrics. Specifically, the reference images

have infinite PSNR value, making it difficult to perform nonlinear regression and compute

PLCC, MAE and MSE values. In addition, since all reference images are assumed to have

perfect quality, there are no natural relative ranks between them, resulting in ambiguities

when computing SRCC and KRCC metrics.

The test results are given in Tables 3.3, 3.4 and 3.5. To provide background compar-

isons, we have also included in the tables four other objective IQA algorithms, among which

two are FR-IQA measures namely peak signal-to-noise-ratio (PSNR) and SSIM, and three

are RR-IQA measures, which are wavelet marginal-based method [174] and DNT marginal-

based method [76]. Other RR-IQA methods are not included in the comparison because

they are not designed and tested for general-purpose applications. Although it is unfair

to compare RR- with FR-IQA measures, the PSNR and SSIM results supply useful refer-

ences on the current status of RR approaches. To provide an overall evaluation of the IQA

algorithms, we also calculate the direct and weighted average of PLCC, SRCC and KRCC

values across all six databases (where the weight assigned to a database is determined by

the number of test images in a database). The average results are given in Table 3.5. It

can be seen that in general the proposed RR-SSIM method performs moderately inferior

to SSIM (which is as expected) but significantly outperforms PSNR and the other RR-IQA

methods under comparison.

Statistical significant analysis has been carried out based on variance-based hypothesis

testing, which follows the approach introduced in [128] and subsequently adopted by many

later papers in the literature. Specifically, the residual difference, between the DMOS and

the predicted quality given by each objective IQA algorithm, is assumed to be Gaussian

distributed and F-statistic is employed to compare the variances of two sets of sample

points. With such a test, we can make a statistically sound judgement of superiority
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Table 3.3: Performance comparisons of IQA measures using LIVE, IVC and TID 2008

databases
LIVE Database (779 Images) [130]

IQA measure Type PLCC MAE RMS SRCC KRCC

PSNR FR 0.8721 10.5248 13.3683 0.8755 0.6863

SSIM [165] FR 0.9448 6.9324 8.9455 0.9479 0.7962

Wavelet Marginal [178] RR 0.8226 10.5248 13.3683 0.8755 0.6863

DNT Marginal [76] RR 0.9173 9.7321 11.7862 0.8973 0.7126

RR-SSIM RR 0.9194 9.1889 11.3026 0.9129 0.7349

IVC Database (185 Images) [74], [97]

IQA measure Type PLCC MAE RMS SRCC KRCC

PSNR FR 0.6719 0.7190 0.9023 0.6884 0.5217

SSIM [165] FR 0.9119 0.3776 0.4999 0.9018 0.7223

Wavelet Marginal [178] RR 0.5311 0.8550 1.0322 0.4114 0.2907

DNT Marginal [76] RR 0.6294 0.7876 0.9466 0.5928 0.4210

RR-SSIM RR 0.8177 0.5619 0.7014 0.8154 0.6164

TID 2008 Database (1700 Images) [106,107]

IQA measure Type PLCC MAE RMS SRCC KRCC

PSNR FR 0.5232 0.8683 1.1435 0.5530 0.4027

SSIM [165] FR 0.7731 0.6546 0.8510 0.7749 0.5767

Wavelet Marginal [178] RR 0.5891 0.8666 1.0843 0.5119 0.3589

DNT Marginal [76] RR 0.5746 0.8473 1.0982 0.5597 0.4093

RR-SSIM RR 0.7231 0.7190 0.9270 0.7210 0.5236
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Table 3.4: Performance comparisons of IQA measures using Cornell A57, Toyama-MICT

and CSIQ databases

Cornell A57 Database (54 Images) [23]

IQA measure Type PLCC MAE RMS SRCC KRCC

PSNR FR 0.6346 0.1606 0.1899 0.6188 0.4309

SSIM [165] FR 0.8017 0.1209 0.14688 0.8066 0.6058

Wavelet Marginal [178] RR 0.5125 0.1971 0.2317 0.31398 0.2210

DNT Marginal [76] RR 0.6635 0.1655 0.2094 0.5079 0.3623

RR-SSIM RR 0.7044 0.1433 0.1744 0.7301 0.5345

Toyama-MICT Database (168 Images) [60]

IQA measure Type PLCC MAE RMS SRCC KRCC

PSNR FR 0.6329 0.7817 0.9688 0.6131 0.4442

SSIM [165] FR 0.8886 0.4385 0.5738 0.8793 0.6939

Wavelet Marginal [178] RR 0.6542 0.7742 0.9464 0.6322 0.4570

DNT Marginal [76] RR 0.6671 0.7548 0.9322 0.6518 0.4723

RR-SSIM RR 0.8051 0.5648 0.7423 0.8003 0.6090

CSIQ Database (866 Images) [72]

IQA measure Type PLCC MAE RMS SRCC KRCC

PSNR FR 0.7512 0.1366 0.1732 0.8058 0.6083

SSIM [165] FR 0.8612 0.0991 0.1334 0.8756 0.6906

Wavelet Marginal [178] RR 0.7124 0.1492 0.1842 0.7431 0.5457

DNT Marginal [76] RR 0.6571 0.1642 0.1978 0.6744 0.4961

RR-SSIM RR 0.8426 0.1092 0.1413 0.8527 0.6540
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Table 3.5: Average performance of IQA measures over six databases

Direct Average Database-size Weighted

IQA measure Type PLCC SRCC KRCC PLCC SRCC KRCC

PSNR FR 0.6811 0.6924 0.5157 0.6622 0.6887 0.5172

SSIM [165] FR 0.8636 0.8643 0.6809 0.8416 0.8455 0.6615

Wavelet Marginal [178] RR 0.6371 0.5813 0.4266 0.6651 0.6383 0.4691

DNT Marginal [76] RR 0.6848 0.6473 0.4789 0.6729 0.6613 0.4952

RR-SSIM RR 0.8021 0.8054 0.6121 0.7995 0.7996 0.6061

Table 3.6: Gaussianity of IQA − DMOS residuals

LIVE A57 CSIQ IVC Toyama TID 2008

PSNR 1 1 1 1 1 1

SSIM [165] 1 1 0 0 1 1

Wavelet Marginal [174] 1 1 1 1 1 1

DNT Marginal [76] 1 1 1 1 1 1

RR-SSIM 1 1 1 0 1 1
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Table 3.7: Statistical Significance matrix based on IQA − DMOS residuals
Model PSNR SSIM Wavelet Marginal [174] DNT Marginal [76] RR-SSIM

PSNR - - - - - - 0 - 0 0 0 0 1 - - - - 0 0 - 1 - - 0 0 - 0 0 0 0

SSIM 1 - 1 1 1 1 - - - - - - 1 1 1 1 1 1 1 1 1 1 1 1 1 - - 1 - -

Wavelet Marginal [174] 0 - - - - 1 0 0 0 0 0 0 - - - - - - 0 - - - - - 0 0 0 0 0 0

DNT Marginal [76] 1 - 0 - - 1 0 0 0 0 0 0 1 - - - - - - - - - - - 0 - 0 0 0 0

RR-SSIM 1 - 1 1 1 1 0 - - 0 - - 1 1 1 1 1 1 1 - 1 1 1 1 - - - - - -

or inferiority of one IQA algorithm against another. A statistical significance matrix is

calculated and given by Table 3.7. Each entry in the table consists of six characters which

correspond to the six publicly available databases in the order of {LIVE, A57, CSIQ, IVC,

Toyama, TID2008}. The symbol ‘-’ denotes that the two IQA methods are statistically

indistinguishable, ‘1’ denotes the IQA method of the row is statistically better than that

of the column, and ‘0’ denotes that the IQA method of the column is better than that of

the row. It can be observed that full-reference SSIM performs the best among the IQA

algorithms under comparison and the performance of the proposed RR-SSIM algorithm is

quite close to that of SSIM and is superior to all other IQA methods being compared.

The assumption of Gaussianity is verified with the help of kurtosis values obtained from

the prediction residuals. As in [128], the residual values are considered to be Gaussian dis-

tributed if the kurtosis value lies between 2 and 4. The results of Gaussianity tests are given

in Table 3.6, where ‘1’ means the distribution is considered Gaussian and ‘0’ otherwise. It

can be observed that the assumption is met in most cases with a few exceptions.

To examine how the proposed RR-SSIM method performs for different distortion types,

we compare it with five other recently proposed RR-IQA algorithms using individual dis-

tortion types as well as the “all data” case of the LIVE database. The results are given

in Table 3.8 where the best results for each distortion type are highlighted in bold. It can

be observed that the proposed method exhibits highly competitive performance in most

cases.

Finally, we compare the computational complexity of the proposed RR-SSIM method

with five other RR-IQA algorithms. The results are reported in Table 3.9, where we

present the average time taken per image, over all the images in the LIVE database,

using a computer with Intel i7 processor at 2.67 GHz (the only exception is the method
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Table 3.8: Performance comparison of RR-IQA algorithms using LIVE database
Distortion JP2(1) JP2(2) JPG(1) JPG(2) Noise Blur FF All Data

PLCC

Wavelet Marginal [174] 0.9339 0.9488 0.8278 0.9566 0.8769 0.8395 0.9230 0.8284

DNT Marginal [76] 0.9470 0.9625 0.8228 0.9627 0.9598 0.9523 0.9438 0.8949

βW-SCM [186] 0.9514 0.9569 0.8673 0.9568 0.9755 0.9454 0.9243 0.8353

Zhang et al. [202] 0.9087 0.9511 0.9094 0.9777 0.8623 0.9234 0.9392 0.8744

Ma et al. [83] 0.8065 0.8819 0.8180 0.9663 0.8769 0.9092 0.9178 0.8841

RR-SSIM 0.9597 0.9632 0.9448 0.9761 0.9772 0.9154 0.9315 0.9194

SRCC

Wavelet Marginal [174] 0.9370 0.9419 0.8109 0.8936 0.8600 0.8757 0.9212 0.8270

DNT Marginal [76] 0.9439 0.9556 0.8246 0.8853 0.9508 0.9599 0.9431 0.8882

βW-SCM [186] 0.9495 0.9517 0.8535 0.8705 0.9715 0.9371 0.9258 0.8391

Zhang et al. [202] 0.9134 0.9495 0.9105 0.9294 0.8417 0.9265 0.9365 0.8832

Ma et al. [83] 0.7945 0.8717 0.8042 0.9100 0.8619 0.9214 0.8866 0.8807

RR-SSIM 0.9555 0.9539 0.9493 0.8978 0.9642 0.8692 0.9137 0.9129

by Ma et. al. [83], which was tested on a slightly faster computer). This measurement

provides a rough estimate of the relative computational complexity between different RR-

IQA algorithms, as no code optimization has been done. It can be seen that the proposed

method takes moderately more time than most of the other methods under comparison,

mainly due to the computation of the divisive normalization transform. The additional

computational cost is compensated by the improved quality prediction performance, as

shown in Table 3.8.

Table 3.9: Comparison of computation time using LIVE database (seconds/image)
Model Wavelet Marginal [174] DNT Marginal [76] βW-SCM [186] Zhang et. al. [202] Ma et. al. [83] RR-SSIM

Time 6.3719 10.3843 6.6258 3.4937 18 11.2309

3.4 Image Repairing Using RR Features

Since the RR features reflect certain properties about the reference image and these prop-

erties may be altered in the distorted image, they may be employed to partially repair

the distorted image. The proposed method is different from the traditional image restora-

tion methods we have partial knowledge of the reference image in the form RR features.

Therefore, we use the term “repair” in order to differentiate the proposed method from
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traditional image restoration methods. Here we provide an example that uses DNT-domain

RR features to correct blurred images without any knowledge about the blur kernel.

Since blur reduces energy at mid- and high-frequencies, the subband standard deviation

σd of DNT coefficients in the distorted image is smaller than that of the reference image σr.

A straightforward way to enforce a “corrected” image to have the same statistical properties

as the reference image is to scale up all DNT coefficients in the subband of the distorted

image by a fixed scale factor, followed by an inverse DNT to create a reconstructed image.

In practice, however, inverting a DNT transform is a non-trivial issue that requires specific

conditions of the coefficients and may involve computationally expensive algorithms [90].

Here we propose a different approach that attempts to match DNT-domain statistics

but avoids direct inversion of DNT. The idea is to use the DNT-domain statistics to esti-

mate the scale factors and then apply them in the wavelet- rather than DNT-domain. As

a result, only inverse wavelet transform is necessary, and the remaining question becomes

whether the desired scale ratio in the DNT domain can be well matched by scaling in the

wavelet domain. To ensure this, we apply our approach in an iterative manner, and the

resulting algorithm is given by Algorithm 1. In our experiment, we find that this iterative

algorithm converges quickly and typically three iterations are enough to reconstruct a sta-

ble repaired image (and thus J = 3 in Algorithm 1) that matches DNT domain statistics

quite well. This is demonstrated in Fig. 3.4, which compares the subband histograms of the

reference, distorted, and repaired DNT coefficients. It can be observed that the histogram

of the scaled DNT coefficients very well approximate that of the reference image. Simi-

lar design philosophy of iteratively synthesizing images by matching desirable statistical

features have been used before in the literature of texture synthesis, e.g., [108].

An interesting feature of the above image deblurring process is that it does not require

any information about the blur kernel. Depending on the nature of the blur process,

the energy reductions at different subbands are different. For example, out-of-focus blur

may lead to uniform energy reduction in all orientation subbands while motion blur could

result in more significant energy reduction along one orientation against another. Since the

scale factor s in our algorithm is computed for individual subband independently, it could

automatically adapt the energy correction factors based on the energy reduction occurred

in individual subbands. Figure 6 provides an example, where the homogeneously Gaussian
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Algorithm 1: Iterative image repairing algorithm

1. Initialization: Let j = 0, x̂(0) = y, where y is the distorted image

2. Repeat J times

• Wavelet transform: Compute wavelet transform of x̂(j), resulting in wavelet

coefficients ω

• DNT stage: Compute DNT from ω, resulting in DNT coefficients ν; For all i,

in the i-th subband, calculate std of DNT coefficients σiν

• Scaling factor calculation: For all i, in the i-th subband, compute the scale

factor si = σir/σ
i
ν , where σir is the std of DNT coefficients of the reference image

(obtained as RR features)

• Wavelet coefficient scaling: For all i, in the i-th subband, let ωnew = siω

• Image reconstruction: Compute inverse wavelet transform of ωnew, resulting in

x̂(j+1)

• Increase j by 1

3. Report reconstructed image: x̂ = x̂(J)
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Figure 3.4: DNT coefficient histograms of original, distorted and repaired images.

blurred and directionally motion blurred images at different angles are deblurred using

exactly the same image repairing algorithm described above. All repaired images appear

to be much sharper and have higher contrast than their blurred versions. The visual effect

is also reflected by both FR SSIM and the proposed RR-SSIM evaluations.

RR features only provide limited amount of additional information about the reference

image and such information is global in the current implementation (due to the nature

of the extracted RR features), thus the same repairing process may or may not work as

effectively as we observe in Fig. 3.5 for the types of image distortions other than linear

blur.
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(a)

(b)

(c)
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(e)
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Figure 3.5: Repairing homogeneously and directionally blurred images using RR features.

(a) Original “building” image (cropped for visibility); (b) Homogeneously blurred image,

SSIM = 0.7389, Ŝ = 0.7118; (c) Repaired image SSIM = 0.9142, Ŝ = 0.9327; (d) Direc-

tionally blurred image (0 degree), SSIM = 0.6734, Ŝ = 0.6821; (e) Repaired image SSIM

= 0.7991, Ŝ = 0.8063; (f) Directionally blurred image (45 degree), SSIM = 0.6612, Ŝ =

0.6324; (g) Repaired image SSIM = 0.7896, Ŝ = 0.8135.
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Chapter 4

SSIM-Inspired Image Restoration

Using Sparse Representation

The purpose of image restoration is to “compensate for” or “undo” distortions which

affect the perceptual quality of an image. This chapter presents an image restoration

algorithm that combines perceptual image fidelity measurement with optimal sparse signal

representation. The objective is to use sparsity prior of the underlying signal in terms

of some dictionary and achieve optimal performance in terms of SSIM. The solution for

the optimal coefficients for sparse and redundant dictionary in maximal SSIM sense is

presented along with a gradient descent approach to achieve the best compromise between

the distorted image and the image reconstructed using sparse representation.

4.1 Introduction

MSE is usually employed as the optimization criterion for image restoration, the resulting

output image might not have the best perceptual quality. This motivated us to replace the

role of MSE with SSIM in the framework. The solution of this novel optimization problem

is not trivial because SSIM is non-convex in nature. There are two key problems that have
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to be resolved before effective SSIM-based optimization can be performed. First, how to

optimally decompose an image as a linear combination of basis functions in maximal SSIM,

as opposed to minimal MSE sense. Second, how to estimate the best compromise between

the distorted and sparse dictionary reconstructed images for maximal SSIM. In this thesis,

we provide solutions to these problems and use image de-noising and image super-resolution

as applications to demonstrate the proposed framework for image restoration problems.

4.2 The Proposed Method

In this section we will incorporate SSIM as our quality measure, particularly for sparse

representation. In contrast to what we may expect, it is shown that sparse representation

in minimal L2 norm sense can be easily converted to maximal SSIM sense. We will also

use a gradient descend approach to solve a global optimization problem in maximal SSIM

sense. Our framework can be applied to a wide class of problems dealing with sparse

representation to improve visual quality.

4.2.1 Image Restoration from Sparsity

The classic formulation of image restoration problem is as following:

y = Φx + n (4.1)

where x ∈ Rn, y ∈ Rm, n ∈ Rm, and Φ ∈ Rm×n. Here we assume x and y are vectorized

versions, by column stacking, of original 2-D original and distorted images, respectively.

n is the noise term, which is mostly assumed to be zero mean, additive, and independent

Gaussian. Generally m ≤ n and thus the problem is ill-posed. To solve the problem

assertion of a prior on the original image is necessary. The early approaches used least

square (LS) [122] and Tikhonov regularization [149] as priors. Later minimal total variation

(TV) solution [120] and sparse priors [49] were used successfully on this problem. Our focus

in the current work is to improve algorithms, in terms of visual quality, that assert sparsity

prior on the solution in term of a dictionary domain.
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Sparsity prior has been used successfully to solve different inverse problems in image

processing [49,88,110,192]. If our desired signal, x, is sparse enough then it has been shown

that the solution to (4.1) is the one with maximum sparsity which is unique (within some

ε−ball around x) [18,46]. It can be easily found by solving a linear programming problem

or by orthogonal matching pursuit (OMP). Not all natural signals are sparse but a wide

range of natural signals can be represented sparsely in terms of a dictionary and this makes

it possible to use sparsity prior on a wide range of inverse problems. One major problem is

that the image signals are considered to be high dimensional data and thus, solving (4.1)

directly is computationally expensive. To tackle this problem we assume local sparsity on

image patches. Here, it is assumed that all the image patches have sparse representation

in terms of a dictionary. This dictionary can be trained over some patches [1].

Central to the process of image restoration, using local sparse and redundant represen-

tations, is the solution to the following optimization problem [49,192],

{α̂ij, X̂} = argmin
αij ,X

λ||X−Y||22 +
∑
ij

µij||αij||0 +
∑
ij

||Ψαij −RijX||22 (4.2)

where Y is the observed distorted image, X is the unknown output restored image, Rij

is a matrix that extracts the (ij) block from the image, Ψ ∈ Rn×k is the dictionary with

k > n, αij is the sparse vector of coefficients corresponding to the (ij) block of the image,

X̂ is the estimated image, λ is the regularization parameter. In Equation 4.2, the first

term is the log-likelihood global force that demands the proximity between the measured

image, Y,and its de-noised version X. The second and the third terms are the image prior

that makes sure that in the constructed image, X, every patch in the image X has a sparse

representation with bounded error. Since dictionary learning is limited in handling small

image patches, we divide the above optimization problem into a local sparsity based model

and a global constraint:

α̂ij = argmin
α

µij||α||0 + ||Ψα−RijX||22, (4.3)

X̂ = argmin
X

||X−W||22 + λ||DHX−Y||22, (4.4)
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where W is the image obtained by averaging the blocks obtained using the sparse coeffi-

cients vectors α̂ij. Equation (4.3) is a local sparsity based method that divides the whole

image into blocks and represents each block sparsely using some trained dictionary. Among

other advantages, one major advantage of such a method is the ease to train a small dic-

tionary as compared to one large global dictionary. This is achieved with the help of (4.3)

which is equivalent to (4.5). As to the coefficients µij, those must be location dependent,

so as to comply with a set of constraints of the form ||Ψα − RijX||22 ≤ T . Solving this

using the orthonormal matching pursuit [101] is easy, gathering one atom at a time, and

stopping when the error ||Ψα−RijX||22 goes below T . This way, the choice of µij has been

handled implicitly. Equation (4.4) applies a global constraint on the reconstructed image

and uses the local patches and the noisy image as input in order to construct the output

that complies with local-sparsity and also lies within the proximity of the distorted image

which is defined by amount and type of distortion.

α̂ij = argmin
α

||α||0 subject to ||Ψα−RijX||22 ≤ T. (4.5)

In (4.4), we have assumed that the distortion operator Φ in (4.1) may be represented

by the product DH, where H is a blurring filter and D the downsampling operator. Here

we have assumed each non-overlapping patch of the images can be represented sparsely in

the domain of Ψ. Assuming this prior on each patch (4.3) refers to the sparse coding of

local image patches with bounded prior, hence building a local model from sparse repre-

sentations. This enables us to de-noise individual patches by solving (4.3) for each patch.

By doing so, we face the problem of blockiness at the patch boundaries when de-noised

non-overlapping patches are placed back in the image. To remove these artifacts from

the de-noised images overlapping patches are extracted from the noisy image which are

combined together with the help of (4.4). The solution of (4.4) demands the proximity

between the noisy image, Y, and the output image X, thus enforcing the global reconstruc-

tion constraint. The L2 optimal solution suggests to take the average of the overlapping

patches [49], thus eliminating the problem of blockiness in the de-noised image.

As stated earlier, we propose a modified restoration method which incorporates SSIM
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into the procedure defined by (4.3) and (4.4). It is defined as follows,

α̂ij = argmin
α

µij||α||0 + (1− S(Ψα,RijX)), (4.6)

X̂ = argmax
X

S(W,X) + λS(DHX,Y), (4.7)

where S(·, ·) defines the SSIM measure. The expression for SSIM index is

S(a,y) =
2µaµy + C1

µ2
a + µ2

y + C1

2σa,y + C2

σ2
a + σ2

y + C2

, (4.8)

with µa and µy the means of a and y respectively, σ2
a and σ2

y the sample variances of a

and y respectively, and σay the covariance between a and y. The constants C1 and C2 are

stabilizing constants and account for the saturation effect of the HVS.

Equation (4.6) aims to provide the best approximation of a local patch in SSIM-sense

with the help of minimum possible number of atoms. The process is performed locally

for each block in the image which are then combined together by simple averaging to

construct W. Equation (4.7) applies a global constraint and outputs the image that is the

best compromise between the noisy image, Y, and W in SSIM-sense. This step is very

vital because it has been observed that the image W lacks the sharpness in the structures

present in the image. Due to masking effect of the HVS, same level of noise does not distort

different visual content equally. Therefore, the noisy image is used to borrow the content

from its regions which are not convoluted severely by noise. Use of SSIM is very well-suited

for such a task, as compared to MSE, because it accounts for the masking effect of HVS

and allows us to capture improve structural details with the help of the noisy image. Note

the use of 1 − S(·, ·) in (4.6). This is motivated by the fact that 1 − S(·, ·) is a squared

variance-normalized L2 distance [10]. Solutions to the optimization problems in (4.6) and

(4.7) are given in Sections 4.2.2 and 4.2.3, respectively.

4.2.2 SSIM-optimal Local Model from Sparse Representation

This section discusses the solution to the optimization problem in (4.6). Equation (4.3) can

be solved approximately using Orthogonal Matching Pursuit (OMP) [101] by including one
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atom at a time and stopping when the error ||Ψαij−RijX||22 goes below Tmse = (Cσ)2. C

is the noise gain and σ is the standard deviation of the noise. We solve the optimization

problem in (4.6) based on the same philosophy. We gather one atom at a time and stop

when S(Ψα,xij) goes above Tssim, threshold defined in terms of SSIM. In order to obtain

Tssim, we need to consider the relationship between MSE and SSIM. For the mean reduced

a and y, the expression of SSIM reduces to the following equation

S(a,y) =
2σa,y + C2

σ2
a + σ2

y + C2

, (4.9)

Subtracting both sides of (4.9) from 1 yields

1− S(a,y) = 1− 2σa,y + C2

σ2
a + σ2

y + C2

=
σ2
a + σ2

y − 2σa,y

σ2
a + σ2

y + C2

=
||a− y||22

σ2
a + σ2

y + C2

, (4.10)

Equation (4.10) can be re-arranged to arrive at the following result

S(a,y) = 1− ||a− y||22
σ2
a + σ2

y + C2

(4.11)

With the help of the equation above, we can calculate the value of Tssim as follows

Tssim = 1− Tmse
σ2
a + σ2

y + C2

, (4.12)

where C2 is the constant originally used in SSIM index expression [165] and σ2
a is calculated

based on current approximation of the block given by a := Ψα.

The main difference between SSIM and MSE is the divisive normalization [10,158]. This

normalization is conceptually consistent with the light adaptation (also called luminance

masking) and contrast masking effect of HVS. It has been recognized as an efficient percep-

tually and statistically non-linear image representation model [81,153]. It is shown to be a
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useful framework that accounts for the masking effect in human visual system, which refers

to the reduction of the visibility of an image component in the presence of large neighboring

components [51, 179]. It has also been found to be powerful in modeling the neuronal re-

sponses in the visual cortex [59,135]. Divisive normalization has been successfully applied

in image quality assessment [76,115], image coding [90], video coding [118,158] and image

de-noising [109].

Equation (4.12) suggests that the threshold is chosen adaptively for each patch. The

set of coefficients α = (α1, α2, α3, . . . , αk) should be calculated such that we get the best

approximation a in terms of SSIM. We search for the stationary points of the partial

derivatives of S with respect to α. The solution to this problem for orthogonal set of basis

is discussed in [10]. Here we aim to solve a more general case of linearly independent atoms.

The L2-based optimal coefficients, {ci}ki=1, can be calculated by solving the following system

of equations
k∑
j=1

cj〈ψi, ψj〉 = 〈y, ψi〉, 1 ≤ i ≤ k, (4.13)

We denote the inner product of a signal with the constant signal (1/n, 1/n, . . . , 1/n) of

length n by < ψ >:=< ψ, 1/n >, where < ·, · > represents the inner product.

First, we write the mean, the variance and the covariance of a in terms of α with n the

size of the current block:

µa = 〈
k∑
i=1

αiψi〉 =
k∑
i=1

αi〈ψi〉, (4.14)

(n− 1)σ2
a = 〈a, a〉 − n〈a〉2

=
k∑
i=1

k∑
j=1

αiαj〈ψi, ψj〉 − nµ2
a, (4.15)

(n− 1)σay = 〈a,y〉 − n〈a〉〈y〉

=
k∑
i=1

αi〈y, ψi〉 − nµaµy, (4.16)
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where < · > represents the sample mean. The partial derivatives are given as follows

∂µa

∂αi
= 〈ψi〉, (4.17)

(n− 1)
∂σ2

a

∂αi
= 2

k∑
j=1

αj〈ψi, ψj〉 − 2nµa〈ψi〉, (4.18)

(n− 1)
∂σay
∂αi

= 〈y, ψi〉 − nµy〈ψi〉, (4.19)

From logarithmic differentiation of (5.2) combined with (4.17)-(4.19), we have

1

S

∂S

∂αi
=

2µy〈ψi〉
2µaµy + C1

− 2µa〈ψi〉
µ2
a + µ2

y + C1

+

2 [〈y, ψi〉 − nµy〈ψi〉]
(n− 1) [2σa,y + C2]

−
2
[∑k

j=1 αj〈ψi, ψj〉 − nµa〈ψi〉
]

(n− 1)
[
σ2
a + σ2

y + C2

] (4.20)

After subtracting the corresponding DC values from all the blocks in the image, we are

interested only in the particular case where the atoms are made of oscillatory functions,

i.e. when 〈ψi〉 = 0 for 1 ≤ i ≤ k, thus reducing (4.20) to

1

S

∂S

∂αi
=

2〈y, ψi〉
(n− 1)2σa,y + C2

−
2
(∑k

j=1 αj〈ψi, ψj〉
)

(n− 1)
(
σ2
a + σ2

y + C2

) . (4.21)

We equate (4.21) to zero in order to find the stationary points. The result is the

following linear system of equations

k∑
j=1

αj〈ψi, ψj〉 = β〈y, ψi〉, 1 ≤ i ≤ k, (4.22)

where

β =
σ2
a + σ2

y + C2

2σay + C2

. (4.23)
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where β is an unknown constant dependent on the statistics of the unknown image block

a. Comparing α with the optimal coefficients in L2 sense denoted by c and given by (4.13)

results in the following solution:

αi = βci, 1 ≤ i ≤ k, (4.24)

which implies that the optimal SSIM-based solution is just a scaling of the optimal L2-

based solution. The last step is to find β. It is important to note that the value of β varies

over the image and is therefore content dependent. Also, the scaling factor, β, may lead to

selection of a different set of atoms from the dictionary, as compared to L2 where β = 1,

which are better suited to providing a closer and sparser approximation of the patch in

SSIM-sense. After substituting (4.24) in the expression (4.23) for β via (4.14), (4.15) and

(4.16) and then isolating for β gives us the following quadratic equation

β2(B − A) + βC2 − σ2
y − C2 = 0. (4.25)

where

A =
1

n− 1

k∑
i=1

k∑
j=1

cicj〈ψi, ψj〉, (4.26)

B =
2

n− 1

k∑
j=1

cj〈y, ψj〉. (4.27)

Solving for β and picking a positive value for maximal SSIM gives us

β =
−C2 +

√
C2

2 + 4(B − A)(σ2
y + C2)

2(B − A)
. (4.28)

Now we have all the tools required for an OMP algorithm that perform the sparse

coding stage in optimal SSIM sense. The modified OMP pursuit algorithm is explained

in Algorithm 2. There are two main differences between the OMP algorithm [101] and

the one proposed in this work. First, the stopping criterion is based on SSIM. Unlike

MSE, SSIM is adaptive according to the reference image. In particular, if the distortion is

consistent with the underlying reference e.g. contract enhancement, the distortion is non-

structural and is much less objectional than structural distortions. Defining the stopping
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Algorithm 2: SSIM-inspired Orthogonal Matching Pursuit

Initialize: D = {} set of selected atoms, Sopt = 0, r = Y

while Sopt < Tssim

• Add the next best atom in L2 sense to D

• Find the optimal L2-based coefficient(s) using (4.13)

• Find the optimal SSIM-based coefficient(s) using

(4.24) and (4.28)

• Update the residual r

• Find SSIM-based approximation a

• Calculate Sopt = S(a,y)

end

criterion according to SSIM essentially means that we are modifying the set of accepted

points (image patches) around the noisy image patch which can be represented as the linear

combination of dictionary atoms. This way, in the space of image patches, we are omitting

image patches in the direction of structural distortion and including the ones which are

in the same direction as the original image patch in the set of acceptable image patches.

Therefore, we can expect to see more structures in the image constructed using sparsity as

a prior. Second, we calculate the SSIM-optimal coefficients from the optimal coefficients

in L2-sense using the derivation in Section 4.2.2, which are scalar multiple of the optimal

L2-based coefficients.

4.2.3 SSIM-based Global Reconstruction

The solution to this optimization problem defined in Equation (4.7) is the image that

is the best compromise between the distorted image and the one obtained using sparse

representation in the maximal SSIM sense. With the assumption of known dictionary, the
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only other thing the optimization problem in (4.7) requires is the coefficients αij which

can be obtained by solving optimization problem in (4.6). SSIM is a local quality measure

when it is applied using a sliding window, it provides us with a quality map that reflects the

variation of local quality over the whole image. The global SSIM is computed by pooling

(averaging) the local SSIM map. The global SSIM for an image, Y, with respect to the

reference image, X, is given by the following equation

S(X,Y) =
1

Nl

∑
ij

S(xij,yij), (4.29)

where xij = RijX and yij = RijY where Rij is an Nw ×N matrix that extracts the (ij)

block from the image. The expression for local SSIM, S(xij,yij), is given by (5.2). Nl is

the total number of local windows and can be calculated as

Nl =
1

Nw

tr

(∑
ij

RT
ijRij

)
. (4.30)

where tr(·) denotes the trace of a matrix.

We use a gradient-descent approach to solve the optimization problem given by (4.7).

The update equation is given by

X̂k+1 = X̂k + λ~∇YS(X,Y)

= X̂k + λ
1

Nl

~∇Y

∑
ij

S(xij,yij)

= X̂k + λ
1

Nl

∑
ij

RT
ij
~∇yS(xij,yij) (4.31)

where

~∇yS(x,y) =
2

NwB2
1B

2
2

[A1B1(B2x−A2y+B1B2(A2−A1)µx1+A1A2(B1−B2)µy1], (4.32)

A1 = 2µxµy + C1, A2 = 2σxy + C2,

B1 = µ2
x + µ2

y + C1, B2 = σ2
x + σ2

y + C2,
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where Nw is the number of pixels in the local image patch, µx, σ2
x and σxy represent

the sample mean of x, the sample variance of x, and the sample covariance of x and y,

respectively. Equation (4.31) suggests that averaging of the gradients of local patches is

to be calculated in order to obtain the global SSIM gradient, and thus the direction and

distance of the kth update in X̂. More details regarding the computation of SSIM gradient

can be found in [176]. In our experiment, we found this gradient based approach is well-

behaved and it takes only a few iterations for X̂ to converge to a stationary point. We

initialize x̂ as the best MSE solution. Having the gradient of SSIM we follow an iterative

procedure to solve (4.7), assuming the initial value derived from minimal MSE solution.

4.3 Applications

The framework we proposed provides a general approach that can be used for different

applications. To show the effectiveness of our method we will provide two applications:

image de-noising and super-resolution.

4.3.1 Image De-noising

We use the SSIM-based sparse representations framework developed in Sections 4.2.2 and

4.2.3 to perform the task of image de-noising. The noise-contaminated image is obtained

using the following equation

Y = X + N, (4.33)

where Y is the observed distorted image, X is the noise-free image and N is additive

Gaussian noise. Our goal is to remove the noise from distorted image. Here we train a

dictionary, Ψ, for which the original image can be represented sparsely in its domain. We

use K-SVD method [1] to train the dictionary. In this method the dictionary, which is

trained directly over the noisy image and de-noising is done in parallel. For a fixed number

of iterations, J , we initialize the dictionary by discrete cosine transform (DCT) dictionary.

In each step we update the image and then the dictionary. First, based on the current
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dictionary, sparse coding is done for each patch, and then K-SVD is used to update the

dictionary (interested reader can refer to [1] for details of dictionary updating). Finally,

after doing this procedure J times we execute a global construction stage, following the

gradient descend procedure. The proposed image de-noising algorithm is summarized in

Algorithm 2.

Algorithm 3: SSIM-inspired image de-noising

1. Initialize: X = Y, Ψ = overcomplete DCT dictionary

2. Repeat J times

• Sparse coding stage: use SSIM-optimal OMP to compute the representation

vectors αij for each patch

• Dictionary update stage: Use K-SVD [1] to calculate the updated dictionary and

coefficients. Calculate SSIM-optimal coefficients using (4.24) and (4.28)

3. Global Reconstruction: Use gradient descent algorithm to optimize (4.7), where the

SSIM gradient is given by (4.32).

The proposed image de-noising scheme is tested on various images with different amount

of noise. In all the experiments, the dictionary used was of size 64 × 256, designed to

handle patches of 8 × 8 pixels. The value of noise gain, C , is selected to be 1.15 and

λ = 30/σ [49]. Table 4.1 shows the results for images Barbara, Lena, Peppers, House. We

compare the proposed method mainly with the K-SVD method [49] as the implementation

is inspired by the K-SVD approach. The proposed scheme is a proof of concept for future

SSIM-Inspired image processing algorithms as we expect similar gains on top of other

state-of-the-art image de-noising algorithms. It can be observed that the proposed de-

noising method achieves better performance in terms of SSIM which is expected to imply

better perceptual quality of the de-noised image. Figure 4.1 and 4.2 shows that the de-

noised images using K-SVD [49] and the proposed methods along with corresponding SSIM

maps. It can be observed that SSIM based method outperforms specially in the texture

region which confirms that the proposed de-noising scheme preserves the structures better
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and therefore has better perceptual image quality.

Table 4.1: SSIM and PSNR comparisons of image de-noising results
Image Barbara Lena Peppers House

Noise std 20 25 50 100 20 25 50 100 20 25 50 100 20 25 50 100

PSNR comparison (in dB)

Noisy 22.11 20.17 14.15 8.13 22.11 20.17 14.15 8.13 22.11 20.17 14.15 8.13 22.11 20.17 14.15 8.13

K-SVD 30.85 29.55 25.44 21.65 32.38 31.32 27.79 24.46 30.80 29.72 26.10 21.84 33.16 32.12 28.08 23.54

Proposed 30.88 29.53 25.50 21.74 32.26 31.28 27.80 24.53 30.84 29.84 26.25 21.98 33.04 32.09 28.13 23.59

SSIM comparison

Noisy 0.593 0.503 0.241 0.084 0.531 0.443 0.204 0.074 0.529 0.442 0.212 0.076 0.452 0.368 0.166 0.057

K-SVD 0.894 0.859 0.708 0.519 0.903 0.877 0.733 0.550 0.905 0.883 0.782 0.601 0.909 0.890 0.779 0.549

Proposed 0.906 0.875 0.733 0.526 0.913 0.888 0.754 0.573 0.913 0.894 0.797 0.627 0.915 0.901 0.795 0.574

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 4.1: Visual comparison of de-noising results. (a) Original image. (b) Noisy image.

(c) SSIM-map of noisy image. (d) KSVD-MSE image. (e) SSIM-map of KSVD-MSE

image. (f) KSVD-SSIM image. (g) SSIM map of KSVD-SSIM image.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 4.2: Visual comparison of de-noising results. (a) Original image. (b) Noisy image.

(c) SSIM-map of noisy image. (d) KSVD-MSE image. (e) SSIM-map of KSVD-MSE

image. (f) KSVD-SSIM image. (g) SSIM map of KSVD-SSIM image.
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4.3.2 Image Super-resolution

In this section we demonstrate the performance of the SSIM-based sparse representations

when used for image super-resolution. In this problem, a low resolution image, Y, is given

and a high resolution version of the image, X, is required as output. We assume that

the low resolution image is produced from high resolution image based on the following

equation:

Y = DHX, (4.34)

where H represents a blurring matrix, and D is a downsampling matrix. We use local

sparsity model as prior to regularize this problem that has infinite many solutions which

satisfy (4.34). Our approach is motivated by recent results in sparse signal representation,

which suggests that the linear relationships among high-resolution signals can be accu-

rately recovered from their low-dimensional projections. Here, we work with two coupled

dictionaries, Ψh for high-resolution patches, and Ψl for low-resolution ones. The sparse

representation of a low-resolution patch in terms of Ψl will be directly used to recover

the corresponding high resolution patch from Ψh [199]. Given these two dictionaries, each

corresponding patch of low resolution image, y, and high resolution image, x, can be

represented sparsely with the same coefficient vector, α in Algorithm 2:

y = Ψlα (4.35)

x = Ψhα (4.36)

The patch from each location of the low-resolution image, that needs to be scaled up, is

extracted and sparsely coded with the help of SSIM-optimal Algorithm 2. Once the sparse

coefficients, α, are obtained, high resolution patches, y, are computed using (4.36) which

are finally merged by averaging in the overlap area to create the resulting image. The

proposed image super-resolution algorithm is summarized in Algorithm 3:

The proposed image super resolution scheme is tested on various images. To be consis-

tent with [199] patches of 5×5 pixels were used on the low resolution image. Each patch is

converted to a vector of length 25. The dictionaries are trained using K-SVD [49] with the

sizes of 25× 1024 and 100× 1024 for the low and the high resolution dictionaries, respec-

tively. 66 natural images are used for dictionary training, which are also used in [191] for
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Algorithm 4: SSIM-inspired image super resolution

1. Dictionary Training Phase: trained high and low resolution dictionaries Ψl, Ψh, [199]

2. Reconstruction Phase

• Sparse coding stage: use SSIM-optimal OMP to compute

the representation vectors αij for all the patches of low resolution image

• High resolution patches reconstruction: Reconstruct high resolution patches by

Ψhαij

3. Global Reconstruction: merge high-resolution patches by averaging over the overlapped

region to create the high resolution image.

similar purpose. To remove artifacts on the patch edges we set overlap of one pixel during

patch extraction from the image. Fixed number of atoms (3) has been used by [199] in the

sparse coding stage. However SSIM-OMP determines the number of atoms adaptively from

patch to patch based on its importance considering SSIM measure. In order to calculate

the threshold, Tssim, defined in (4.12), Tmse is calculated using MSE based sparse coding

stage in [199]. After calculating sparse representation for all the low resolution patches,

we use them to reconstruct the patches and then the difference with the original patch is

calculated. We set Tmse to the average of these differences. The performance comparison

with state-of-the-art image super-resolution methods is given in Table 4.2.

We can observe that the proposed algorithm outperforms the other methods consistently

in terms of SSIM evaluations. It is also interesting to observe PSNR improvements in

some cases, though PSNR is not the optimization goal of the proposed approach. The

improvements are not always consistent (for example, PSNR drops in some cases in Table

1, while SSIM always improves). There are complicated reasons behind these results. It

needs to be aware that the so-called “MSE-optimal” algorithms include many suboptimal

and heuristic steps and thus have potential to be improved even in the MSE sense. Our

methods are different from the “MSE-optimal” methods in multiple stages. Although the

differences are made to improve SSIM, they may have positive impact on improving MSE
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Table 4.2: SSIM and PSNR comparisons of image super resolution results
Image Barbara Lena Baboon House Raccoon Zebra Parthenon Desk Aeroplane Man Moon Bridge

PSNR comparison (in dB)

Yang et al. [191] 30.3 33.4 25.3 34.1 34.0 24.6 28.4 31.9 34.2 33.2 32.2 28.0

Wang et al. [161] 31.6 34.2 25.6 35.4 36.8 25.3 29.0 33.6 36.3 34.5 33.6 28.1

Dong et al. [43] 31.1 34.0 25.5 33.6 35.6 25.5 28.9 33.1 36.2 34.3 33.1 27.8

Zeyde et al. [199] 31.3 33.8 25.5 35.4 36.5 25.0 28.8 33.8 36.1 34.4 33.3 28.5

Proposed 31.4 33.9 25.6 35.5 37.0 25.1 28.9 33.9 36.4 34.6 33.4 28.6

SSIM comparison

Yang et al. [191] 0.843 0.888 0.680 0.876 0.880 0.760 0.773 0.871 0.829 0.857 0.746 0.754

Wang et al. [161] 0.871 0.911 0.722 0.901 0.938 0.791 0.819 0.918 0.862 0.894 0.805 0.790

Dong et al. [43] 0.821 0.897 0.688 0.893 0.887 0.802 0.792 0.911 0.859 0.893 0.806 0.793

Zeyde et al. [199] 0.874 0.909 0.710 0.904 0.934 0.789 0.811 0.918 0.860 0.896 0.803 0.783

Proposed 0.877 0.912 0.720 0.906 0.942 0.794 0.815 0.922 0.862 0.900 0.808 0.792

as well. For example, when using the learned dictionary to reconstruct an image patch,

if SSIM is used to replace MSE in selecting the atoms in the dictionary, then essentially

the set of accepted atoms in the dictionary have been changed. In particular, since SSIM

is variance normalized, the set of acceptable reconstructed patches near the noisy patch

may be structurally similar but are significantly different in variance. This may lead to

different selections of the atoms in the dictionary, which when appropriately scaled to

approximate the noisy patch, may result in better reconstruction result. Although the

visual and SSIM improvements are only moderate, these are promising results as an initial

attempt of incorporating a perceptually more meaningful measure into the optimization

problem of KSVD-based super-resolution method.

Figures 4.3 and 4.4 compare the reconstructed images obtained using [192] and the pro-

posed methods for the Raccoon and the Girl images, respectively. It can be seen that the

proposed scheme preserves many local structures better and therefore has better percep-

tual image quality. The visual quality improvement is also reflected in the corresponding

SSIM maps, which provide useful guidance on how local image quality is improved over

space. It can be observed from the SSIM maps that the areas which are relatively more

structured benefit more from the proposed algorithm as the quality measure used is better

at calculating the similarity of structures as compared to MSE.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.3: Visual comparison of super resolution results. (a) Original image. (b) Low-

resolution image. (c) Output of Yang’s method. (d) SSIM map of Yang’s method. (e)

Proposed method. (f) SSIM map of propose method.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.4: Visual comparison of super resolution results. (a) Original image. (b) Low-

resolution image. (c) Output of Yang’s method. (d) SSIM map of Yang’s method. (e)

Proposed method. (f) SSIM map of propose method.
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Chapter 5

SSIM-based Non-local Means Image

De-noising

In this chapter, we propose an SSIM-based NLM method for image de-noising. The key

contribution of our approach is to replace the role of MSE with SSIM in measuring patch

similarities and in calculating weights. We propose a robust method to estimate SSIM in

the presence of noise and adjust the mean and contrast of image patches before using them

for weighted averaging. Our simulation results demonstrate the promises of the proposed

approach and also indicate the potentials of replacing the ubiquitous PSNR/MSE with

SSIM as the optimization criterion in image processing applications.

5.1 Introduction

Recently there has been a great deal of attention paid to the problem of image de-noising,

which is not only a practically useful application, but also an ideal test bed for image

representation, modeling and estimation theories. One of the most successful image de-

noising algorithms is the non-local means (NLM) method [13], which has achieved state-

of-the-art performance. NLM de-noising is a nonlocal filtering (or weighted averaging)
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technique where the weights are decided based on similarity between the current image

patch being de-noised and the other patches in the image within a neighborhood. Since

MSE is employed for calculating the weights, the resulting de-noised image might not have

the best perceptual quality. This motivates us to replace the role of MSE with SSIM in

the framework. There are two issues that need to be resolved before effective SSIM-based

approach can be developed. First, we would need to reliably estimate the SSIM value

between two original image patches in the presence of noise. Directly using the SSIM value

between two noisy patches to define the weight would not lead to good results. This is

because SSIM attempts to match the structures of two patches, but when the signal-to-

noise ratio is low, the noise submerges the actual structure of the image, and thus SSIM

evaluation would favor those patches with the noise pattern best matched. Second, once

weights are calculated based on SSIM, it is important to adjust the contrast and mean

values of the patches before weighted averaging. This is because SSIM may pick those

patches that are structurally similar but with different contrast and mean values, and thus

direct averaging these patches (that have different contrast and mean variations) would

provoke further undesired distortions. These issues are tackled with the help of proposed

two stage de-noising algorithm on similar lines to BM3D [38], a state-of-the-art de-noising

method which also uses two stages to perform image de-noising.

5.2 Problem Formulation

NLM algorithm [14] replaces the intensity of each pixel in the noisy image by a weighted

average of all the pixel intensities in the image. More generally, the nonlocal filter (NLF)

in the continuous space can be represented as follows [78]

PNLF (f(x, y)) =

∫
Ω
w(x, y;x′, y′)f(x′, y′)dx′dy′∫

Ω
w(x, y;x′, y′)dx′dy′

, (5.1)

where w(x, y;x′y′) is the weighting function related to the similarity between two patches

at (x, y) and (x′, y′). The weight in NLM de-noising is specified by borrowing ideas from

the work of nonparametric sampling-based texture synthesis [48] and is calculated based

on L2 distance between two patches at (x, y) and (x′, y′).
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Table 5.1: Comparisons of NLM de-noising using L2 and SSIM of original image patches

for weight calculation

Test image Barbara

Noise std (σ) 15 25 30 50

PSNR comparison (in dB)

Noisy image 24.61 20.29 18.81 14.74

L∗2-NLM 31.42 27.33 25.97 22.49

SSIM∗-NLM 32.21 29.59 28.65 25.61

SSIM comparison

Noisy image 0.729 0.543 0.474 0.289

L∗2-NLM 0.925 0.818 0.759 0.543

SSIM∗-NLM 0.947 0.902 0.879 0.779

To better reflect the perceptual similarity between two patches and also to give favor

to the patches that are structurally similar, we opt to replace the role of L2 by SSIM in

computing the weight function. Let X1 and X2 be two image patches extracted from the

original noise-free image. The SSIM index between them is defined as

S(X1, X2) =
(2µX1µX2 + C1)(2σX1X2 + C2)

(µ2
X1

+ µ2
X2

+ C1)(σ2
X1

+ σ2
X2

+ C2)
, (5.2)

where µX , σX , and σX1X2 are the mean, standard deviation, and cross correlation between

the two patches, respectively, and C1 and C2 are positive stabilizing constants.

To understand the impact of replacing L2 with SSIM, we carried out an empirical

study where all weights were calculated using patches extracted from the original image

but computed using L2 and SSIM, respectively. With these weights, the NLM de-noising

results of “Babara” image at different noise levels are shown in Table 5.1, where we observe

large gains in both PSNR and SSIM values of the de-noised image when SSIM is employed

for weight computation.

The above empirical study, though very instructive, does not provide a working de-

noising algorithm, because the original image patches are not accessible. Therefore, the

critical problem here is how to predict the SSIM value between X1 and X2 from their noisy
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observations.

5.3 Proposed Scheme

Let Y1 and Y2 be two observed noisy patches that are created from two clean original

patches X1 and X2 by

Y1 = X1 +N1 , (5.3)

Y2 = X2 +N2 , (5.4)

where N1 and N2 are the corresponding i.i.d Gaussian noise patches with standard devia-

tion σn. The purpose here is to estimate S(X1, X2) using Y1, Y2. A simple approximation

would be

S(X1, X2) ≈ (2µY1µY2 + C1)(2σY1Y2 + C2)

(µ2
Y1

+ µ2
Y2

+ C1)(σ2
Y1

+ σ2
Y2
− 2σ2

n + C2)
(5.5)

Here we have made use of the assumptions that the noise N1 and N2 are zero-mean, the

signal X1 and X2 are uncorrelated with noise, and the noise N1 and N2 added at different

locations are also uncorrelated. Our studies suggest that the approximation in Eq. ((5.5))

does not achieve desired accuracy in estimating S(X1, X2) because the assumptions does

not hold for small patches. Also, when the variance of noise is significant as compared

to that of the image patch, SSIM is in favor of similar noise patterns rather than image

structures.

To overcome the problem above, we propose a two-stage method. In the first stage, we

compute a local estimate of the noise using the method proposed in [14]. As mentioned

in [13], NLM de-noising is based on the “method noise” and the residual image obtained

after subtracting the de-noised image from the noise-free image looks like random noise and

does not contain structures similar to those contained in the original image. We believe

that the noise estimated by NLM de-noising can be used to provide a better estimate of

S(X1, X2) because more accurate information about the noise pattern at the local patch

is available. Suppose the estimated noise is given by N̂1 and N̂2, respectively. It enables

us to estimate X1 and X2 by

X̂1 = Y1 − N̂1 , (5.6)
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X̂2 = Y2 − N̂2 . (5.7)

We can then use X̂1 and X̂2 in the second step to estimate S(X1, X2) and define our

SSIM-based weight as

wSSIM = S(X̂1, X̂2) . (5.8)

Before computing the weighted averaging for each patch, we perform further adjustment

on the mean and contrast of each patch Y by

Y ′ =
σX̂c + c

σY + c
(Y − µY ) + µX̂c (5.9)

where µY , σY and µX̂c , σX̂c are the mean and contrast values of the current patch and

the patch to be de-noised (estimated using Eq. (5.6)), respectively and c is the stabilizing

constant. This adjustment is motivated by the ideas behind SSIM, which separates the

measurement of mean, contrast and structure. Indeed, SSIM-based weight calculation may

help collect those image patches that are structurally similar to the patch being de-noised

but with different contrast and mean values. To avoid creating bias in mean or contrast,

it is useful to normalize the patch first, such that only the structural part of the patch

contributes to the de-noising task.

Finally, we create our final de-noised patch at location i by

X̃(i) =

∑
j∈Ni wSSIM(i, j)Y ′(j)∑

j∈Ni wSSIM(i, j)
, (5.10)

where Ni denotes the union of the neighbors around i and wSSIM(i, j) is the SSIM weight

computed between the patches located at i and j.

5.4 Simulation Results

We test image de-noising algorithms on various images with noise standard deviation σ

ranging from 15 to 50. The L2 and SSIM based NLM methods are denoted as L2-NLM [13]

and SSIM-NLM, respectively. All L2-NLM results are obtained using the code provided

by Buades et. al. at [12]. The search ranges for both algorithms are fixed at 7 × 7 in
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Table 5.2: SSIM and PSNR comparisons of image de-noising results
Test image Barbara Lena Boat

Noise std (σ) 15 25 30 50 15 25 30 50 15 25 30 50

PSNR comparison (in dB)

Noisy image 24.61 20.29 18.81 14.74 24.62 20.27 18.78 14.71 24.65 20.27 18.76 14.61

L2-NLM 31.44 28.69 27.55 23.85 32.71 29.94 28.57 25.52 30.87 28.09 27.05 23.91

SSIM-NLM 32.10 29.28 28.21 24.85 33.11 30.52 29.42 25.92 31.26 28.54 27.58 24.39

SSIM comparison

Noisy image 0.729 0.543 0.474 0.289 0.489 0.402 0.338 0.192 0.676 0.475 0.406 0.239

L2-NLM 0.934 0.871 0.832 0.651 0.869 0.832 0.781 0.619 0.889 0.796 0.748 0.565

SSIM-NLM 0.944 0.889 0.858 0.721 0.893 0.858 0.818 0.645 0.900 0.815 0.779 0.599

order to limit the complexity of the algorithm. The added computational complexity of

SSIM-NLM over L2-NLM mostly lies in estimating the SSIM values between patches. In

our experiment, we found it negligible compared with the overall computational cost of the

NLM algorithm.

Table 5.2 shows the results for images “Barbara”, “Lena” and “Boat”. It can be

observed that the proposed SSIM-NLM method achieves better performance than L2-

NLM in terms of not only SSIM, but also PSNR. This may be due to SSIM’s capability of

collecting those image patches that have similar structure but with different mean and/or

contrast. We also observe in our experiment that the performance gap between the two

methods increases further when the search range is increased.

Comparison of the de-noising results of “Babara” image in Table 5.2 with those in Table

5.1 is very interesting. It can be observed that when similarity values are calculated by

using the original noise-free image, SSIM-NLM performs significantly better than L2-NLM

in terms of both SSIM and PSNR. Another observation is that the de-noising performance

of L2-NLM degrades when the original image is used to compute the weights. This is

likely because of the weight mapping function and thresholds used in the implementation

in [12, 14]. When the original image is used, many more patches with lower L2 distances

also make significant impact on de-noising. This often results in blur of the de-noised

image. By contrast, the SSIM-NLM method does not suffer from such a problem, implying

that SSIM is probably a better measure to select similar patches.

To provide visual comparisons of the de-noising algorithms, Figures 5.1 and 5.2 shows

two image areas cropped from the “Babara” image de-noised by L2-NLM [13] and SSIM-
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NLM, respectively. It can be seen that the proposed SSIM-NLM scheme preserves many

local structures better and therefore has better perceptual image quality. The visual qual-

ity improvement is also reflected in the corresponding SSIM maps, which provide useful

guidance on how local image quality is improved over space. It can be observed from

the SSIM maps that the areas which are relatively more structured benefit more from

the proposed de-noising algorithm as the quality measure used is better at calculating the

similarity of structures as compared to MSE.
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(a) Original image (b) Noisy image (σ = 30)

(c) L2-NLM de-noised (d) SSIM-NLM de-noised

(e) SSIM map of (c) (f) SSIM map of (d)

Figure 5.1: Visual and SSIM quality map comparisons of de-noising results. Brighter

indicates better SSIM value.
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(a) Original image (b) Noisy image (σ = 30)

(c) L2-NLM de-noised (d) SSIM-NLM de-noised

(e) SSIM map of (c) (f) SSIM map of (d)

Figure 5.2: Visual and SSIM quality map comparisons of de-noising results. Brighter

indicates better SSIM value.
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Chapter 6

Rate-SSIM Optimization for Video

Coding

This chapter presents a Rate Distortion Optimization (RDO) scheme based on the SSIM

index1, which was found to be a better indicator of perceived visual quality than mean-

squared-error, but has not been fully exploited in the context of image and video coding.

This is achieved by adaptive selection of Lagrange multiplier at the frame level and its

further adjustment on macroblock (MB) level which is discussed in detail. At the end, the

experimental results are presented and evaluated which show that the proposed scheme

can achieve significantly better rate-SSIM performance and provide better visual quality

than conventional RDO coding schemes.

6.1 Introduction

In this work, we focus on solving (2.15), where SSIM is used to define the measure of

perceived distortion and λ is adapted at both frame and MB levels by taking the properties

1proposed in collaboration with S. Wang, a visiting Ph.D. student from Peking University, Beijing.
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of the input sequences (statistical properties of residuals, structural information, motion

information, etc.) into consideration.

In order to achieve optimal RD performance, it is very important to carefully choose

λ and the best coding mode. In the current video coding standards such as H.264/AVC,

the coding modes can vary in the mode sets {Intra16x16, Intra8x8, Intra4x4, Inter16x16,

Inter16x8, Inter8x16, Inter8x8, Inter8x4, Inter4x8, Inter4x4, SKIP, DIRECT} [57]. During

the mode decision process, all available candidate modes are evaluated by the RD cost

expression given in (2.15), and the one with the minimum RD cost is selected as the best

mode. To achieve a good balance between R and D, in the H.264/AVC coding environment,

the Lagrange multiplier is suggested to be [182]

λ = 0.85 · 2
QH.264−12

3 , (6.1)

where QH.264 is the quantization parameter (QP). This suggestion was proposed based on

empirical results and typical rate-distortion models [140, 181]. It also suggests that λ is a

function of QP only and therefore is independent of the frame properties, which simplifies

the problem but may not result in optimal λ as some MBs could be more important com-

pared to the others [167]. This motivated us to adapt λ according to the video sequences

at both frame and MB levels.

Here, we use SSIM as the distortion measure and propose an adaptive RDO scheme for

mode selection. The three main contributions of our work are as follows. First, We employ

SSIM as the distortion measure in the proposed mode selection scheme, where both the

current MB to be coded and neighboring pixels are taken into account to fully exploit the

properties of SSIM. Second, At the frame level, we present an adaptive Lagrange multiplier

selection scheme based on a novel statistical reduced-reference SSIM model and a source-

side information combined rate model. Third, At the MB level, we present a Lagrange

multiplier adjustment scheme, where the scale factor for each MB is determined by an

information theoretical approach based on the motion information content and perceptual

uncertainty of visual speed perception.
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6.2 SSIM Based Rate Distortion Optimization

(a) (b)

Figure 6.1: Illustration of using surrounding pixels to calculate the SSIM index. Solid

pixels: To be encoded. Hollow pixels: Surrounding pixels from the input frame. (a) Y

Component. (b) Cb, Cr Components.

Analogous to (2.15), the SSIM motivated RDO problem can be defined as

min{J} where J = (1− SSIM) + λ ·R. (6.2)

In the conventional mode selection process, the final coding mode is determined by the

number of entropy coding bits and the distortion of the residuals, while the properties of

the reference image are ignored. Unlike MSE, the SSIM index is totally adaptive according

to the reference signal [165]. Therefore, the properties of video sequences can also be

exploited when using SSIM to define the distortion model.

In H.264/AVC, the encoder processes a frame of video in units of non-overlapping

MBs. However, SSIM index is meant to be calculated with the help of overlapping sliding
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windows, which are separated by one pixel. To bridge this gap, we calculate the SSIM index

between the reconstructed MB and the original MB using an extended MB, which includes

the current MB to be coded and the surrounding pixels, as illustrated in Fig. 6.1. Within

this extended MB we use a small sliding window which moves pixel by pixel to calculate the

SSIM index. Since the smallest size of modes in H.264/AVC is 4×4 (e.g., I4MB), in order

to be consistent with the current video coding standards, the size of the sliding window

used to calculate SSIM is set to be 4×4 for luminance components. To compute the SSIM

index of the chrominance components at the same scale, the sliding window size for Cb

and Cr is also set to be 4×4. Therefore, we extend the MB boundaries for three pixels in

each direction. For Y component, the SSIM index of the current 16×16 MB to be encoded

is calculated within a 22×22 extended MB by using the sliding window. In case of 4:2:0

format, for Cb and Cr components the SSIM index is calculated within a 14×14 extended

block. Additional benefit of this approach is that it helps us to alleviate the problem of

discontinuities at the MB boundaries. When the MB is on the frame boundaries, we ignore

the surrounding pixels in the distortion calculation and only use the MB to be coded for

comparison.

Finally, SSIM indices of Y, Cb and Cr components are weighted averaged to obtain a

single measure of structural similarity.

SSIM = WY · SSIMY +WCb · SSIMCb +WCr · SSIMCr, (6.3)

where WY , WCb and WCr are the weights of Y, Cb and Cr components, respectively and

are defined as WY = 0.8 and WCb = WCr = 0.1, respectively [171].

6.3 Frame Level Lagrange Multiplier Selection

From (6.2), the Lagrange parameter is obtained by calculating the derivative of J with

respect to R, then setting it to zero, and finally solving for λ,

dJ

dR
= −dSSIM

dR
+ λ = 0, (6.4)
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which yields:

λ =
dSSIM

dR
=

dSSIM
dQ

dR
dQ

, (6.5)

where Q is the quantization step. This implies that, in order to estimate λ before actually

encoding the current frame, we need to establish accurate SSIM and rate models.

In video coding the most common models for the distribution of transformed residuals

are Laplace distribution [79], generalized Gaussian distribution (GGD) [142] and Cauchy

distribution [2]. Although GGD is a good statistical model to describe the DCT coefficients,

it has more control parameters and closed-form expression of the distortion model can not

be obtained [142]. For Cauchy distribution, the mean and variance are not defined, which

makes it inappropriate for this framework [79]. The Laplace distribution, which is a special

case of GGD, does not suffer from these problems and achieves a good trade-off between

model fidelity and the complexity. Therefore, we model the transformed residuals x with

the Laplace distribution given by

fLap(x) =
Λ

2
· e−Λ·|x|, (6.6)

where Λ is called the Laplace parameter.

6.3.1 Reduced Reference SSIM Model

SSIM is a full-reference (FR) measure that requires both the reference and distorted frames

to compute. It can not be directly applied in this framework because the distorted frame

is not available. Therefore, we develop a reduced-reference (RR) quality assessment al-

gorithm which requires a set of RR features extracted from the reference frame for SSIM

estimation. The RR-SSIM estimation method based on a multi-scale multi-orientation Di-

visive Normalization Transform (DNT) is proposed in Chapter 3, [117] and achieves high

SSIM estimation accuracy. However, it can not be directly employed due to the high com-

putational complexity of DNT. We use a similar approach here, but extract features from

DCT coefficients instead.
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Figure 6.2: Relationship between SSIM and MRR for different sequences.
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FR DCT domain SSIM index was first presented by Channappayya et al. [25].

SSIM(x,y) = {1− (X(0)− Y (0))2

X(0)2 + Y (0)2 +N · C1

} × {1−
∑K−1

k=1 (X(k)− Y (k))2∑K−1
k=1 (X(k)2 + Y (k)2) +N · C2

},

(6.7)

where X(k) and Y (k) represent the DCT coefficients for the input signals x and y, respec-

tively. This equation implies that the SSIM index is represented by the product of two

terms, characterizing the distortions of the DC and AC coefficients, respectively. Moreover,

the squared errors of DC and AC coefficients are normalized by their respective energy.

To develop the RR-SSIM model, we divide each frame into non-overlapping blocks and

the size of each block is set to be 4x4. Then DCT transform is performed on each block. In

this way, we can obtain the statistical properties of the reference signal, which is consistent

with the design philosophy of the SSIM index. Furthermore, we group the DCT coefficients

having the same frequency from each 4x4 DCT window into one subband, which results in

16 subbands. Motivated by the DCT domain SSIM index, the new RR distortion measure

is defined as

MRR = (1− D0

2σ2
0 + C1

)(1− 1

N − 1

N−1∑
i=1

Di

2σ2
i + C2

), (6.8)

where σi is the standard deviation of the ith subband and N is the block size. Di represents

the MSE between the original and distorted frames in the ith subband, and is calculated

as follows

Di =

∫ (Q−γQ)

−(Q−γQ)

x2
i fLap(xi)dxi + 2

∞∑
n=1

∫ (n+1)Q−γQ

nQ−γQ
(xi − nQ)2fLap(xi)dxi, (6.9)

where γ is the rounding offset in the quantization. Fig. 6.2 presents the relationship

between the reduced reference distortion measure MRR and the corresponding SSIM index

for different sequences. The QP values in Fig. 6.2 cover a wide range from 0 to 50 with an

interval of 2. The SSIM index and MRR are calculated by averaging the respective values

of individual frames. Interestingly, MRR exhibits a nearly perfect linear relationship with

SSIM. We regard this as an outcome of the similarity between their design principles. The
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clean linear relationship also helps us to design an SSIM predictor based on MRR because

the remaining job is just to estimate the slope and intercept of the straight line. More

specifically, an RR-SSIM estimator can be written as

Ŝ = α + β ·MRR. (6.10)

The proposed RR-SSIM model is totally based on the features extracted from the

original frames in the DCT domain and the residuals. It can be observed from Fig. 6.2

that the slopes for different video sequences are different. Thus, before coding the current

frame we should first estimate the parameters α and β. This requires the knowledge of

two points on the straight line relating Ŝ and MRR. We use (1, 1) as one of the points as it

is always located on the line and also because it does not require any computation. This

solves half of the problem as we still need Ŝ and MRR of the second point. The SSIM index

Ŝ and Laplace parameter for each subband Λi is not available since we have not encoded

the frame yet. Therefore, we estimate them from the previous frames of the same type.

The estimation details are provided in Section 6.5. The distortion measure MRR can be

calculated by incorporating (6.9) into (6.8), and the standard deviation of the ith subband

σi is calculated by DCT transform of the original frame. This procedure provides us with

the second point required to find out α and β.

6.3.2 Proposed Rate Model

Our rate model is derived based on an entropy model that excludes the bit rate of the

skipped blocks [79]:

H = (1− Ps) · [−
P0 − Ps
1− Ps

· log2

P0 − Ps
1− Ps

− 2
∞∑
n=1

Pn
1− Ps

· log2

Pn
1− Ps

], (6.11)

where Ps is the probability of the skipped blocks, P0 and Pn are the probabilities of trans-

formed residuals quantized to the zero-th and n-th quantization levels, respectively, which

can be modeled by the Laplace distribution as follows

P0 =

∫ (Q−γQ)

−(Q−γQ)

fLap(x)dx, (6.12)
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Pn =

∫ (n+1)Q−γQ

nQ−γQ
fLap(x)dx. (6.13)
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Figure 6.3: Average percentages of header bits and source bits at various QPs.

Subsequently, supposing the rate model in [79] to be R∗, a linear relationship between

ln(R∗/H) and Λ · Q is observed, where R∗ is based on the assumption of negligible side

information. However, in H.264/AVC the side information (or header bits) may take a

large portion of the total bit rate, especially in low bit rate video coding scenario [70],

as illustrated in Fig. 6.3. Therefore, in our rate model, the side information is also taken

into consideration. Notice that for the same quantization step, a larger Λ indicates small
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residuals, leading to a larger proportion of the side information. For total bit rate R, there

is also an approximately linear relationship between ln(R/H) and Λ ·Q, as can be seen in

Figs. 6.4 and 6.5. Also, the relationship is totally consistent with the effect of dependent

entropy coding and side information. In high bit rate video coding scenario, the effect

of dependent entropy coding compensates the side information and ln(R/H) approaches

zero; while for low bit rate ln(R/H) becomes larger because of the dominating effect of

side information, as illustrated in Figs. 6.4 and 6.5.

Fig. 6.6 shows that the header bits change monotonically with the source bits. Conse-

quently, the final rate model R can be approximated by

R = H · eξΛQ+ψ, (6.14)

where ξ and ψ are two parameters to control the relationship between ln(R/H) and Λ ·Q.

We can be observe from Figs. 6.4 and 6.5 that the parameters ξ and ψ are not very sensitive

to the video content. Also, for B frames the slope is smaller than that of the I and P frames.

It is mainly due to the fact that in case of B frames the residuals are relatively smaller,

resulting in a larger value of Λ. Therefore, for both CAVLC and CABAC entropy coding

methods, ξ and ψ are set empirically to be

ξ =

0.03 B frame

0.07 Otherwise
ψ =

−0.07 B frame

−0.1 Otherwise
(6.15)

To validate the parameters setting, we use the R2 [40] metric to examine the accuracy

of the fitting. R2 value lies between 0.0 and 1.0 and a higher value indicates a better

fitting. We test the IBP and IPP GOP structures using the parameters in (6.15) with both

CAVLC and CABAC entropy coding algorithms. In this test, QP value varies from 15 to

45 with an interval of 5. As shown in Table 6.1, most of the R2 values are more than 0.9

and some are higher than 0.95. These results suggest that our parameter setting is effective

to capture the properties of the R-Q model for video sequences of different video content.

There is one limitation of the proposed rate model. At low bit rate, the skip mode is

selected more often and hence the source rate of sequences coded at low bit rate is close

to zero. The proposed rate model does not work well in such a situation because the side
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Table 6.1: R2 Fitting Test for the Proposed Rate-Q Model

Sequences R2

Mobile(CIF)

IPP
CABAC 0.9623

CAVLC 0.9703

IBP
CABAC 0.9422

CAVLC 0.9501

Coastguard(CIF)

IPP
CABAC 0.9577

CAVLC 0.9602

IBP
CABAC 0.9601

CAVLC 0.9645

Highway(QCIF)

IPP
CABAC 0.9438

CAVLC 0.9421

IBP
CABAC 0.9651

CAVLC 0.9710

News(QCIF)

IPP
CABAC 0.9682

CAVLC 0.9527

IBP
CABAC 0.9095

CAVLC 0.8826
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Figure 6.4: The relationship between ln(R/H) and Λ · Q for different sequences (GOP

Structure: IPP). (a) CAVLC entropy coding. (b) CABAC entropy coding.
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Figure 6.5: The relationship between ln(R/H) and Λ ·Q for B frame of different sequences.

(a) CAVLC entropy coding. (b) CABAC entropy coding.

102



information modeling is based on the source rate. Efficient model of the side information

is still an open problem.

Based on the statistical model of the transformed residuals, we obtain the final closed-

form solutions of the R and D models. It is observed that the R and D models are functions

of two sets of variables: Q and the other variables that describe the inherent properties

of the video sequences such as Λi and σi. When Q varies within a small range, it can

be regarded as independent of the other variables [79]. Consequently, before coding the

current frame, the frame level Lagrange multiplier can be determined by incorporating the

closed-form expressions of R and D into (6.5).

6.4 Macroblock Level Lagrange Multiplier Adjustment

Natural video sequence is not just a stack of independent still images, it also contains

critical motion information that relates these images. Therefore, the frames in a natural

video can not be considered independently as far as HVS is concerned. Perception of motion

information between frames plays an important role towards video quality assessment by

HVS. In the conventional video coding framework, motion estimation is performed solely

for motion compensation purposes in order to reduce the amount of data to be transmitted.

Once the residual frame is calculated, all the MBs are considered equally for bit allocation.

This does not conform with HVS, as perceptual information content is different in each

MB that depends on the motion information content and perceptual uncertainty in video

signals [167]. In [66], the relationship among the Lagrange multiplier λ, the corresponding

rate R, and the distortion D was analyzed. A larger λ results in a higher D and a lower

R and vice versa, which implies that we can influence the rate and perceptual distortion

of each MB by adjusting its Lagrange multiplier. This motivated us to assign more bits to

the MBs which are more important as far as perceptual information content is concerned.

Lagrange multiplier is adjusted with the help of a spatiotemporal weighting factor, η, which

increases with the information content and decreases with the perceptual uncertainty.

We employ the scheme proposed in [167] which uses an information communication

framework to model the visual perception. We define the relative motion vector, vr, as the
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Figure 6.6: The source bits and header bits for each frame at QP=30.
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difference between the absolute motion vector, va, and global background motion vector

vg:

vr = va − vg. (6.16)

In [137], the visual judgment of the speed of motion is modeled by combining some prior

knowledge of the visual world and the current noisy measurements. Based on this approach,

the motion information content is estimated by the self-information of the relative motion

I = ϕ log vr + ν, (6.17)

where ϕ, ν are the parameters of power-law function for the distribution of relative motion

and are determined based on psychophysical study conducted in [137].

The perceptual uncertainty is estimated by the entropy of the likelihood function of

the noisy measurement, which is given by

U = log vg − τ log c+ δ, (6.18)

where τ and δ are the parameters of the log-normal distribution, used to determine per-

ceptual uncertainty, determined based on psychophysical study [136]. The spatio-temporal

importance weight function is given by

ω = I − U = ϕ log vr + ν − {log vg − τ log c+ δ}. (6.19)

The contrast measure c can be derived by

c = 1− e−(c′/φ)κ , (6.20)

c′ =
σp

µp + µ0

, (6.21)

where σp and µp are computed within the MB, representing the standard deviation and

the mean, respectively. κ and φ are constants that control the slope and the position of

the functions, respectively [167] and are used to take into account the contrast response
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saturation effect at small and large contrast values. It is important to note that the

weighting factor is not sensitive to these constants. µ0 is a constant to avoid instability

near 0.

The global motion does not influence the perceptual weight of each MB, thus the weight

for each MB is defined as follows

ω = log(1 +
vr
v0

) + log(1 +
c

c0

), (6.22)

where v0 and c0 are constants used to avoid unstable evaluation of the weight function when

the relative motion vr and the local contrast c may be close to zero. Note that this weight

function increases monotonically with the relative motion and the local contrast, which is

in line with the philosophy of visual attention. Consequently, the MBs with higher weights

should be allocated more bits and vice versa. This motivated us to adjust the Lagrange

multiplier by

1
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Macroblock Num
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Figure 6.7: The relationship between η and different settings of v0 for each MB for the

Flower sequence.

λ′ = η · λ. (6.23)
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Ddc = E[X(0)− Y (0)]2 Edc = E[
1

2X(0)2 +N · C1

]

Dac = E[
N−1∑
k=1

(X(k)− Y (k))2] Eac = E[
1

2
∑N−1

k=1 X(k)2 +N · C2

]

(6.25)

To determine the adjustment factor η for every MB, we calculate the weight based on the

local information, then η is determined in a similar manner as in [155].

η = (
ωavg
ω

)ε. (6.24)

The parameter ωavg represents the average weight of the current frame and ε is set to be

0.25 as in [155]. Furthermore, as indicated in Fig. 6.7 and 6.8, the final adjustment factor

for the Lagrange multiplier is not sensitive to the parameter setting of v0 and c0. Therefore,

following [167], we set v0=0.32 and c0=0.70.

107



6.5 Implementation Issues

The Lagrange parameter should be determined before coding the current frame in order

to perform RDO. However, the parameters Λi,Ŝ, Λ, ωavg and vg can only be calculated

after coding the current frame. As shown in Figs. 6.9 and 6.10, the parameters of the

frames with the same coding type varies smoothly even for sequences of high motion. This

is due to the fact that the inherent properties of the input sequences can be considered

unchanged during a short period of time. Therefore, we estimate them by averaging their

three previous values from the frames coded in the same manner, i.e.,

Λ̂j
i =

1

3

3∑
n=1

Λj−n
i (6.26)

where the j indicates the frame number. The global motion vector, vg, is derived using

maximum likelihood estimation which finds the peak of the motion vector histogram [151].

0.14

0.16

0.18

0.2

Bus (IPP)

Mobile (IBP)

0.1

0.12

0 20 40 60 80 100
Frame Num

Figure 6.9: Laplace distribution parameter Λ for each frame in Bus (IPP) and Mobile

(IBP) with CIF format.

To encode the first few frames, the adaptive Lagrange multiplier selection method is

not used since it is difficult to estimate Λi, Ŝ, Λ, ωavg and vg. Motivated by the high rate
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Figure 6.10: Average weight ωavg for each frame in Bus (IPP) and Mobile (IBP) with CIF

format.

λ selection method [140, 181], we derive a Lagrange multiplier based on the high bit rate

assumption for such a situation.

With the high rate assumption, the SSIM index in the DCT domain can be approxi-

mated by the following equation [156]

E[SSIM(x,y)] ≈ {1− E[X(0)− Y (0)]2 × E[
1

2X(0)2 +N · C1

]}

× {1− E[
N−1∑
k=1

(X(k)− Y (k))2]× E[
1

2
∑N−1

k=1 X(k)2 +N · C2

]}
(6.27)

where E denotes the mathematical expectation operator. Furthermore, we use Ddc, Dac,

Edc, Eac to simplify this equation (6.25) and the expectation of SSIM index can be rewritten

as:

E[SSIM(x, y)] = (1− Edc ×Ddc)× (1− Eac ×Dac). (6.35)

If the high rate assumption is valid, the source probability distribution can be approx-

imated as uniform distribution and the MSE can be modeled by [55]

D = s ·Q2. (6.36)
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The Lagrange multiplier based on the high rate assumption rate and MSE models is then

given by [181]

λ̂HR = −dD
dR

= c ·Q2, (6.37)

where c is a constant. Therefore, the general form of λHR can be derived by calculating

the derivative of SSIM with respect to R, which leads to

λHR = −d(Eac · Edc ·Dac ·Ddc)

dR
+
d(Edc ·Ddc)

dR
+
d(Eac ·Dac)

dR
. (6.38)

Although Eac and Edc are based on the properties of the frames, to provide a constant

solution for SSIM based RDO in the first few frames, we derive a general solution for

them. Considering (6.36),(6.37),(6.38), the constant Lagrange multiplier for SSIM based

RDO can be expressed by:

λHR = a ·Q2 − b ·Q4. (6.39)

The values for a and b are determined empirically by experimenting with SSIM and the

rate models:

a =

2.1× 10−4 B frame

7× 10−5 otherwise
(6.40)

b =

1.5× 10−9 B frame

5× 10−10 Otherwise
(6.41)

In our rate model (6.14), the modeling of side information is totally based on the source

rate. In the extreme case, e.g., when the source rate is zero, this rate model will fail because

the header bit can not be zero in the real video coding scenario. Therefore, we propose an

escape method to keep a reasonable performance, where the Lagrange multiplier is given

by

λ =

λHR H = 0
dSSIM
dQ
dR
dQ

otherwise
(6.42)

We summarize the whole process of proposed RDO scheme for IPP coding structure in

Algorithm 1. Similar process applies to IBP as well. We can be observe that the complex-

ities introduced by the proposed method are only moderate. The additional computations
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Algorithm 5: Summary of the proposed RDO. (GOP structure: IPP)

begin

Calculate λi for the ith frame

switch the value of i do

case 0,1,2,3

λi ← λHR

end

otherwise

1. DCT transform of the input frame.

2. λi ←

λHR H = 0
dSSIM

dQ
dR
dQ

otherwise

end

endsw

end

begin
For each MB in the frame

1. Calculate the scale factor at MB level η.

2. Adjust the Lagrange multiplier:

λ′i ← η · λi

3. Calculate the RD cost for each Mode k:

Jk ← 1− SSIMk + λ′i ·Rk

4. Select the Mode j with minimal RD cost.

5. Encode the MB with Mode j.

end

begin

Update Λi, Ŝ, Λ, ωavg and vg.

end
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are the DCT transform of the original frame, the calculation of the parameters (Λi, Ŝ, Λ,

ωavg and vg) and the calculation of SSIM for each mode.

6.6 Validations

To validate the accuracy and efficiency of the proposed perceptual RDO scheme, we inte-

grate our mode selection scheme into the H.264/AVC reference software JM15.1 [67]. All

test video sequences are in YCbCr 4:2:0 format. In this section, we present the results

of three experiments which are used to validate various aspects of the proposed percep-

tual RDO algorithm. In the first experiment, we verify the proposed RR-SSIM model by

comparing estimated SSIM values with actual SSIM values. In the second experiment, the

performance of the proposed perceptual RDO algorithm is evaluated and compared with

that of the conventional RDO scheme. In the third experiment, we compare the proposed

method with state-of-the-art SSIM and MSE-based RDO schemes.

6.6.1 Comparison between Estimated and Actual SSIM

In this subsection, we compare the estimated (RR) and actual (FR) values of the SSIM

index for different sequences with a set of various QP values. The first frame is I-frame

while all the rest are inter-coded frames. Equation (6.10) suggests that we first need to

calculate the parameters α and β which vary across different video content. Thus, for each

frame, we calculate the slope with the help of two points. (Ŝ,MRR) and (1,1), where the

point (Ŝ,MRR) is obtained by setting QP=40, the middle point among the quantization

steps used for testing the proposed scheme. Once α and β are determined, we can use (6.10)

to estimate SSIM for other QP values. Fig. 6.11 plots the estimated and actual values of the

SSIM index for various values of QP. It is observed that the proposed SSIM model is robust

and accurate for different video contents with different resolutions. Moreover, we have also

calculated the Pearson Linear Correlation Coefficient (PLCC) and Mean Absolute Error

(MAE) between FR-SSIM and RR-SSIM which are given in Table 6.2 for ten different

sequences. The values suggest that the proposed RR-SSIM model achieves high accuracy

for different sequences.
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Figure 6.11: Comparison between the actual FR-SSIM and estimated RR-SSIM values.
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Figure 6.12: Performance comparisons of different RDO algorithms for sequences with

CABAC entropy coding method.

114



0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96

SS
IM

Silent@CIF(IPP)

Anchor

0.78
0.8

0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96

0 50 100 150 200 250 300

SS
IM

BitRate[kbps]

Silent@CIF(IPP)

Anchor
Proposed

0.89
0.9

0.91
0.92
0.93
0.94
0.95

SS
IM

Container@QCIF(IPP)

Anchor

0.87
0.88
0.89
0.9

0.91
0.92
0.93
0.94
0.95

0 10 20 30 40

SS
IM

BitRate[kbps]

Container@QCIF(IPP)

Anchor
Proposed

0 88
0.9

0.92
0.94
0.96
0.98

SS
IM

Paris@CIF(IBP)

Anchor

0.86
0.88
0.9

0.92
0.94
0.96
0.98

0 100 200 300 400 500 600 700

SS
IM

BitRate[kbps]

Paris@CIF(IBP)

Anchor
Proposed

0 86

0.88

0.9

0.92

0.94

SS
IM

Highway@QCIF(IBP)

Anchor

0.84

0.86

0.88

0.9

0.92

0.94

0 20 40 60 80

SS
IM

BitRate[kbps]

Highway@QCIF(IBP)

Anchor
Proposed

Figure 6.13: Performance comparisons of different RDO algorithms for sequences with

CAVLC entropy coding method.
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Table 6.2: MAE and PLCC between FR-SSIM and RR-SSIM Estimation for Different

Sequences

Sequences GOP Structure PLCC MAE

Foreman(CIF) IPP 0.999 0.002

News(CIF) IPP 0.999 0.002

Mobile(CIF) IBP 0.999 0.004

Paris(CIF) IBP 0.999 0.003

Highway(QCIF) IPP 0.998 0.003

Suize(QCIF) IPP 0.998 0.004

Carphone(QCIF) IBP 0.997 0.006

Akiyo(QCIF) IBP 0.998 0.005

City(720P) IPP 0.994 0.015

Crew(720P) IBP 0.997 0.009

All 0.996 0.005

6.6.2 Performance Evaluation of the Proposed Algorithms

We compare the RD performance of our proposed perceptual RDO algorithm and the

conventional RDO with distortion measured in terms of SSIM, weighted SSIM and PSNR.

The three quantities for the whole video sequence are obtained by simply averaging the

respective values of individual frames. The size of sliding window to calculate the SSIM

index is set to be 8×8. In this experiment, we employ the method proposed in [6] to

calculate the differences between two RD curves1. Furthermore, the weighted SSIM index

is defined as [167]

SSIMω =

∑
x

∑
y ω(x, y)SSIM(x, y)∑
x

∑
y ω(x, y)

(6.43)

where ω(x, y) indicates the weight value for (x, y) as defined in (6.22). The SSIM indices

of Y, Cb and Cr components are combined according to (6.3). Since the SSIMω takes the

motion information into account, it is more accurate for perceptual video quality assessment

1Since R-SSIM curve exhibits a similar shape as R-PSNR curve, we use the same tool proposed in [6]

to calculate the average of SSIM differences.
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Table 6.3: Performance of the Proposed Algorithms (Compared with Original Rate-

Distortion Optimization Technique) for QCIF Sequences at 30 Frames/s

Sequence
CABAC CAVLC

∆SSIM ∆R* ∆SSIMω ∆R** ∆PSNR ∆SSIM ∆R* ∆SSIMω ∆R** ∆PSNR

Akiyo
IPP.. 0.0116 -17.85% 0.0142 -19.83% 0.13 dB 0.0123 -19.33% 0.0151 -21.09% 0.21 dB

IBP.. 0.0075 -5.77% 0.0100 -8.93% -0.06 dB 0.0091 -9.64% 0.0116 -11.17% 0.06 dB

Bridge-close
IPP.. 0.0171 -30.65% 0.0192 -34.20% -0.02 dB 0.0194 -35.64% 0.0228 -41.12% 0.01 dB

IBP.. 0.0148 -29.11% 0.0168 -32.77% -0.15 dB 0.0150 -30.90% 0.0177 -35.98% -0.17 dB

Highway
IPP.. 0.0108 -21.00% 0.0127 -20.70% -0.26 dB 0.0109 -21.78% 0.0144 -23.09% -0.42 dB

IBP.. 0.0043 -7.80% 0.0057 -9.40% -0.49 dB 0.0046 -10.91% 0.0064 -12.82% -0.46 dB

Grandma
IPP.. 0.0188 -23.03% 0.0219 -25.38% 0.25 dB 0.0192 -22.70% 0.0220 -24.47% 0.28 dB

IBP.. 0.0158 -19.44% 0.0192 -21.74% 0.13 dB 0.0164 -19.68% 0.0198 -21.59% 0.14 dB

Container
IPP.. 0.0088 -18.06% 0.0088 -17.12% -0.10 dB 0.0091 -17.63% 0.0096 -17.01% -0.10 dB

IBP.. 0.0048 -12.30% 0.0054 -13.11% -0.47 dB 0.0055 -11.04% 0.0058 -10.72% -0.47 dB

Salesman
IPP.. 0.0189 -17.72% 0.0199 -18.11% 0.11 dB 0.0200 -18.14% 0.0210 -18.28% 0.12 dB

IBP.. 0.0103 -9.44% 0.0125 -11.24% -0.21 dB 0.0101 -9.25% 0.0118 -10.39% -0.26 dB

News
IPP.. 0.0082 -12.76% 0.0098 -11.82% -0.15 dB 0.0078 -12.71% 0.0096 -12.96% -0.19 dB

IBP.. 0.0052 -7.36% 0.0071 -8.56% -0.35 dB 0.0046 -6.50% 0.0061 -8.21% -0.38 dB

Carphone
IPP.. 0.0035 -6.29% 0.0042 -7.21% -0.52 dB 0.0034 -5.59% 0.0042 -6.62% -0.45 dB

IBP.. 0.0010 -2.45% 0.0015 -3.55% -0.56 dB 0.0010 -2.36% 0.0019 -4.42% -0.56 dB

Average
IPP.. 0.0122 -18.42% 0.0138 -19.30% -0.07 dB 0.0128 -19.19% 0.0148 -20.58% -0.07 dB

IBP.. 0.0080 -11.71% 0.0098 -13.66% -0.27 dB 0.0082 -12.54% 0.0101 -14.41% -0.26 dB

* Rate reduction while maintaining SSIM.
** Rate reduction while maintaining weighted SSIM.
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Table 6.4: Performance of the Proposed Algorithms (Compared with Original Rate-

Distortion Optimization Technique) for CIF Sequences at 30 Frames/s

Sequence
CABAC CAVLC

∆SSIM ∆R* ∆SSIMω ∆R** ∆PSNR ∆SSIM ∆R* ∆SSIMω ∆R** ∆PSNR

Silent
IPP.. 0.0109 -13.98% 0.0118 -14.69% -0.18 dB 0.0114 -14.13% 0.0123 -14.85% -0.21 dB

IBP.. 0.006 -7.79% 0.0077 -9.96% -0.34 dB 0.0063 -7.84% 0.0074 -9.10% -0.37 dB

Bus
IPP.. 0.0134 -14.85% 0.0122 -13.88% -0.57 dB 0.0148 -15.61% 0.0136 -14.89% -0.62 dB

IBP.. 0.0083 -9.39% 0.0087 -9.51% -0.66 dB 0.0080 -8.63% 0.0081 -8.49% -0.73 dB

Mobile
IPP.. 0.0047 -8.52% 0.0053 -10.50% -0.58 dB 0.0051 -9.52% 0.0059 -11.76% -0.63 dB

IBP.. 0.0017 -3.23% 0.0026 -5.52% -0.64 dB 0.0009 -1.77% 0.0019 -4.35% -0.68 dB

Paris
IPP.. 0.0080 -12.07% 0.0096 -14.35% -0.38 dB 0.0076 -11.30% 0.0090 -13.69% -0.43 dB

IBP.. 0.0036 -5.17% 0.0050 -7.36% -0.62 dB 0.0029 -4.02% 0.0043 -6.55% -0.36 dB

Flower
IPP.. 0.0076 -14.19% 0.0068 -11.69% -0.57 dB 0.0070 -13.31% 0.0063 -10.86% -0.71 dB

IBP.. 0.0035 -6.92% 0.0029 -4.65% -0.47 dB 0.0021 -4.01% 0.0014 -1.78% -0.71 dB

Foreman
IPP.. 0.0023 -4.80% 0.0020 -4.26% -0.55 dB 0.0028 -5.72% 0.0027 -5.11% -0.58 dB

IBP.. 0.0008 -1.89% 0.0008 -1.97% -0.55 dB 0.0009 -1.66% 0.0008 -1.65% -0.70 dB

Tempete
IPP.. 0.0072 -10.28% 0.0083 -11.70% -0.35 dB 0.0078 -11.27% 0.0088 -12.48% -0.36 dB

IBP.. 0.0031 -4.13% 0.0040 -5.51% -0.41 dB 0.0029 -4.26% 0.0038 -5.56% -0.58 dB

Waterfall
IPP.. 0.0207 -15.51% 0.0193 -14.22% -0.27 dB 0.0237 -17.20% 0.0226 -16.39% -0.22 dB

IBP.. 0.0097 -9.37% 0.0099 -9.98% -0.47 dB 0.0092 -8.80% 0.0093 -9.35% -0.46 dB

Average
IPP.. 0.0094 -11.78 % 0.0094 -11.91% -0.43 dB 0.0100 -12.26% 0.0102 -12.50% -0.47 dB

IBP.. 0.0046 -5.99% 0.0052 -6.81% -0.52 dB 0.0042 -5.12% 0.0046 -5.85% -0.57 dB

* Rate reduction while maintaining SSIM.
** Rate reduction while maintaining weighted SSIM.
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[167].

For coding complexity overhead evaluation, we calculate ∆T as follows

∆T =
Tpro RDO − Torg RDO

Torg RDO
× 100% (6.44)

where Torg RDO and Tpro RDO indicate the total coding time with the conventional and the

proposed SSIM-based RDO schemes, respectively.

To verify the efficiency of the proposed perceptual RDO method, extensive experiments

are conducted on standard sequences in QCIF and CIF formats. In these experiments, RD

performance of the conventional RDO coding strategy and the proposed SSIM motivated

perceptual RDO coding strategy is compared. The common coding configurations are

set as follows: all available inter and intra modes are enabled; five reference frames; one

I frames followed by 99 inter frames; high complexity RDO and the fixed quantization

parameters are set from 28 to 40. The results of the experiments are shown in Tables 6.3

and 6.4, and the RD performances are compared in Figs. 6.12, 6.13 and 6.14.

For IPP GOP structure, on average 15% rate reduction for fixed SSIM and 16% rate

reduction while fixing weighted SSIM are achieved for both QCIF and CIF sequences.

When the GOP structure is IBP, the rate reductions are 9% on average for fixed SSIM

and 10% on average for fixed weighted SSIM. In general, there are three main reasons

behind the improved performance. First, we use SSIM for RDO purposes, which is a

better predictor of perceived quality by HVS as compared to ubiquitous MSE. Second,

the proposed RR-SSIM model and Rate model are more accurate compared to the ones

already existing in the literature. Third, we consider the motion between the frames, which

is a crucial information for perception of quality by HVS, to further improve the rate

distribution among the MBs considering the HVS. The lower gain of IBP coding scheme

may be explained by two reasons. First, the B frame is usually coded at relatively low bit

rate while our proposed scheme achieves superior performance at high bit rate compared to

low bit rate, as can be observed from Fig. 6.12. Second, the parameters estimation scheme

proposed in Section 6.5 is not as accurate for this GOP structure because the frames of

the same coding types are not adjacent to each other.

Rate reduction peaks for sequences with slow motion such as Bridge, in which case

35% of the bits can be saved for the same SSIM value of the received video. It is observed
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that for these sequences with larger Λ, the superior performance is mainly due to the

selection of the MB mode with less bits. A similar phenomenon has also been observed

in [79] and [66]. Another interesting observation is that the performance gain of the

proposed method decreases at very low bit rate, such as the Bridge and Salesman in

Fig. 6.12. This is due to the fact that at low bit rate a large percentage of MBs have

already been coded with the best mode in the conventional RDO scheme, such as SKIP

mode. Also, the limitation of the proposed rate model as stated in Section 6.3 also brings

the limited performance gain at low bit rate. We have also compared the performance in

terms of PSNR of the luminance component, which is shown in Tables 6.3, 6.4 and Fig. 6.15.

Because our scheme is totally adaptive to the video sequences, for some sequences such as

Akiyo and Container, PSNR increases. However, on average PSNR decreases because our

optimization objective is SSIM rather than PSNR.

To show the advantage of our frame-MB joint RDO scheme, the performance compar-

isons of the frame level perceptual RDO (FP-RDO) and the Frame-MB level percpetual

RDO (FMP-RDO) are also listed in Table 6.5. As can be observed from Table 6.5,

the weighted SSIM increases for sequences with high motion, such as Flower and Bus.

However, the weighted SSIM decreases for constant sequences, such as Silent. This perfor-

mance degradation mainly comes from the inter prediction technique used in video coding.

For instance, the MB with higher weight in the current frame may get the prediction pixels

from an unimportant MB in the pervious frame, which can cause more quantization errors.

Our current work focuses on RDO frame by frame. The interrelationship between frames

and the rate control at the GOP level will be studied in the future.

Fig. 6.16 shows the original frame, H.264/AVC coded frame with the conventional

RDO and H.264/AVC coded frame with the proposed RDO method. Note that the bit

rates for the two coding methods are almost the same. However, since our proposed

RDO scheme is based on SSIM index optimization, higher SSIM and lower PSNR are

achieved. Furthermore, the quality of the reconstructed frame has been obviously improved

by the proposed scheme. We can be observe that more information and details have been

preserved, such as the branches on the roof. The visual quality improvement is due to the

fact that we can select the best mode from perceptual point of view, resulting in more bits

allocated to the areas which are more sensitive to our visual systems.

120



Table 6.5: Performance comparison of the Proposed FPRDO and FMPRDO

Coding (Anchor: Conventional Rate-Distortion Optimization Technique)

Sequence

CABAC CAVLC

IPPPP IBPBP IPPPP IBPBP

∆R* ∆R** ∆R* ∆R** ∆R* ∆R** ∆R* ∆R**

Flower(CIF)
FMP-RDO -14.19% -11.69% -6.92% -4.65% -13.31% -10.86% -4.01% -1.78%

FP-RDO -14.34% -11.43% -6.73% -4.05% -12.73% -9.75% -2.04% 0.38%

Waterfall(CIF)
FMP-RDO -15.51% -14.22% -9.37% -9.98% -17.20% -16.39% -8.80% -9.35%

FP-RDO -15.45% -14.43% -8.79% -9.47% -16.13% -15.48% -7.98% -8.62%

Bus(CIF)
FMP-RDO -14.85% -13.88% -9.39% -9.51% -15.61% -14.89% -8.63% -8.49%

FP-RDO -14.71% -13.72% -8.95% -8.84% -16.05% -14.96% -8.72% -8.63%

Silent(CIF)
FMP-RDO -13.98% -14.69% -7.79% -9.96% -14.13% -14.85% -7.84% -9.10%

FP-RDO -14.62% -15.28% -8.07% -9.79% -15.23% -15.59% -8.53% -9.85%

Salesman(QCIF)
FMP-RDO -17.72% -18.11% -9.44% -11.24% -18.14% -18.28% -9.25% -10.39%

FP-RDO -17.09% -17.48% -8.44% -10.43% -18.17% -19.06% -8.28% -9.75%

Carphone(QCIF)
FMP-RDO -6.29% -7.21% -2.45% -3.55% -5.59% -6.62% -2.36% -4.42%

FP-RDO -6.89% -7.31% -2.11% -3.43% -4.40% -5.86% -2.61% -4.85%

Container(QCIF)
FMP-RDO -18.06% -17.12% -12.30% -13.11% -17.63% -17.01% -11.04% -10.72%

FP-RDO -17.23% -16.21% -12.41% -13.16% -18.20% -17.90% -11.89% -11.71%

Bridge(QCIF)
FMP-RDO -30.65% -34.20% -29.11% -32.77% -35.64% -41.12% -30.90% -35.98%

FP-RDO -30.93% -34.24% -30.16% -33.88% -33.78% -39.32% -30.40% -35.48%

* Rate reduction while maintaining of SSIM.
** Rate reduction while maintaining weighted SSIM.
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Figure 6.14: Performance comparisons in terms of the weighted SSIM index for sequences

with CABAC entropy coding method.
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Figure 6.15: Performance comparisons in terms of PSNR for sequences with CAVLC en-

tropy coding method.

123



(a)

(b) (c)

Figure 6.16: Visual quality comparison between the conventional RDO and proposed RDO

scheme, where the fortieth frame (cropped for visualization) of the Flower sequence is

shown. (a) Original. (b) H.264/AVC coded with conventional RDO; Bit rate: 203.5

kbit/s, SSIM: 0.8710, PSNR: 25.14dB. (c) H.264/AVC coded with proposed RDO; Bit

rate: 199.82 kbit/s, SSIM: 0.8805, PSNR: 24.57dB.
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(a)

(b) (c)

Figure 6.17: Visual quality comparison between the FP-RDO and FMP-RDO scheme,

where the thirty fifth frame (cropped for visualization) of the Paris sequence is shown.

(a) Original. (b) H.264/AVC coded with FP-RDO; Bit rate: 101.5 kbit/s, SSIM: 0.8667,

PSNR: 26.69dB. (c) H.264/AVC coded with FMP-RDO; Bit rate: 102.5 kbit/s, SSIM:

0.8690, PSNR: 26.91dB.
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Fig. 6.17 exhibits the visual performance of the FP-RDO and the FMP-RDO in the low

bit rate video coding environment. The bit rate of FMP-RDO is 102.5 kbit/s while that of

FP-RDO is 101.5 kbit/s. For FMP-RDO, the moving objects are allocated more bits, such

as the face of the man; while the background MBs are allocated less bits. Therefore, the

quality of the moving regions which attract more attention in the whole frame is improved.

Table 6.6: SSIM Indices and Bit Rates of Testing Sequences Used in the Subjective Test

Sequences
Conventional RDO Proposed RDO

SSIM Bit rate SSIM Bit rate

1 Bus 0.996 6032.68 kbit/s 0.9955 5807.44 kbit/s

2 Hall 0.9899 4976.36 kbit/s 0.99 4745.04 kbit/s

3 Container 0.9745 994.04 kbit/s 0.9754 883.72 kbit/s

4 Tempete 0.9726 1248.4 kbit/s 0.9707 1044.72 kbit/s

5 Akiyo 0.9711 97.81 kbit/s 0.9722 75.68 kbit/s

6 Silent 0.9655 457.68 kbit/s 0.9669 423.02 kbit/s

7 Mobile 0.9577 728.87 kbit/s 0.9572 703.34 kbit/s

8 Stefan 0.8956 179.42 kbit/s 0.8973 174.33 kbit/s

To further validate our scheme, we carried out a subjective quality evaluation test based

on a two-alternative-forced-choice (2AFC) process that is widely used in psychophysical

studies, where in each trial, a subject is shown a pair of video sequences and is asked

(forced) to choose the one he/she thinks to have better quality. In our experiment, we

selected eight pairs of sequences of CIF format that were coded by the conventional and

the proposed RDO schemes to achieve the same SSIM levels (where the proposed scheme

uses much lower bit rates). Table V lists all the test sequences as well as their SSIM values

and bit rates. In the 2AFC test, each pair is repeated six times with random order. As

a result, we obtained 48 2AFC results for each subject. Ten subjects participated in this

experiment.

The subjective test results are reported in Figs. 6.18 and 6.19, which show the percent-

age $ by which the subjects are in favor of the conventional RDO against the proposed

RDO schemes. As can be observed in the figures, the overall percentage (the rightmost bar
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in the figures) is very close to 50% (52.5%), meaning that there is no significant perceptual

difference of visual quality between the video sequences coded by the two schemes (though

the proposed scheme uses much lower bit rates). In the figures, we also plot the variations

of the percentage over the ten subjects and over the eight sequences, together with the

error bars (± one standard deviation between the measurements). Error bars of right most

data points are calculated based on standard deviation of average values. It turns out that

for almost all cases the value of $ is close to 50% and all error bars cross the 50% line,

showing the robustness of the measurement. These results provide useful evidence that

the proposed method achieves the same level of quality with lower bit rates.
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Figure 6.18: Error-bar plot with in units of $ and standard deviation for each test sequence

(1∼8: sequence number, 9: average).

Table 6.7 reports the computation overhead of the proposed scheme with both CABAC

and CAVLC entropy coding methods, where ∆T is calculated according to (7.40). The

coding time is obtained by encoding 100 frames of IPPP GOP structure with Intel 2.83 GHz

Core processor and 4GB random access memory. On average the computation overhead

is 6.3% for our scheme. As already indicated in [63] that the computation of SSIM index

in the mode selection process causes about 5% overhead. Therefore, in our method the

computation overhead is mainly due to the calculation of the SSIM index for each mode.

We also observe that the overhead is stable for different video sequences.
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Figure 6.19: Error-bar plot with in units of $ and standard deviation for each subject

(1∼10: subject number, 11: average).

Table 6.7: Encoding Complexity Overhead of the Proposed Scheme

Sequences ∆T with CABAC ∆T with CAVLC

Akiyo(QCIF) 5.21% 5.72%

News(QCIF) 5.18% 5.60%

Mobile(QCIF) 5.82% 6.14%

Silent(CIF) 7.04% 7.46%

Foreman(CIF) 6.79% 7.03%

Tempete(CIF) 7.04% 7.13%

Average 6.18% 6.51%
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Table 6.8: Performance comparison of Using Different Previous Frames for Parameter

Estimation

Sequences
three previous frames five previous frames seven previous frames

∆SSIM ∆R ∆SSIM ∆R ∆SSIM ∆R

Akiyo(QCIF)

IPP
CABAC 0.0116 -17.85% 0.0115 -16.91% 0.0116 -18.57%

CAVLC 0.0123 -19.33% 0.0120 -17.64% 0.0118 -16.80%

IBP
CABAC 0.0075 -5.77% 0.0078 -6.83% 0.0069 -5.10%

CAVLC 0.0091 -9.64% 0.0085 -8.41% 0.0090 -9.26%

Highway(QCIF)

IPP
CABAC 0.0108 -21.00% 0.0103 -20.51% 0.0102 20.33%

CAVLC 0.0109 -21.78% 0.0107 -20.41% 0.0105 -19.70%

IBP
CABAC 0.0043 -7.80% 0.0045 -8.13% 0.0045 -8.24%

CAVLC 0.0046 -10.91% 0.0048 -11.72% 0.0045 -10.10%

Mobile(CIF)

IPP
CABAC 0.0047 -8.52% 0.0051 -9.22% 0.0045 -8.01%

CAVLC 0.0051 -9.52% 0.0047 -8.41% 0.0053 -10.09%

IBP
CABAC 0.0017 -3.23% 0.0015 -2.81% 0.0015 -3.03%

CAVLC 0.0009 -1.77% 0.0010 -1.89% 0.0010 -2.01%

Flower(CIF)

IPP
CABAC 0.0076 -14.19% 0.0074 -13.87% 0.0075 -13.90%

CAVLC 0.0070 -13.31% 0.0068 -12.88% 0.0072 -14.60%

IBP
CABAC 0.0035 -6.92% 0.0032 -5.74% 0.0033 -6.04%

CAVLC 0.0021 -4.01% 0.0022 -4.58% 0.0023 -4.60%

Table 6.8 lists the experimental results of using three, five and seven previous frames to

estimate the parameters in Section 6.5, respectively. Both IPP and IBP GOP structures

are tested and both CAVLC and CABAC entropy coding algorithms are employed. As

indicated in Table 6.8, the final performance is not sensitive to the number of pervious

frames used in the estimation. This can be explained by the stable properties of video

sequences during a short period of time, as shown in Figs. 6.9 and 6.10. This suggests us

to use three previous frames, as they are enough to capture the properties of the video

sequences and to obtain an accurate estimation of the required parameters.

6.6.3 Comparisons With State-of-the-Art RDO Algorithms

In this experiment, the proposed scheme is compared with state-of-the-art RDO algorithms,

including Huang et al.’s SSIM-based RDO algorithm [63], Yang et al.’s SSIM-based RDO

129



Table 6.9: Performance comparison with the State of the Art RDO Coding Algorithms for

IPP GOP Structure (Anchor: Conventional RDO Technique)

Sequences
Proposed Huang et al.’s Yang et al.’s CALM RDOQ

∆SSIM ∆R ∆SSIM ∆R ∆SSIM ∆R ∆SSIM ∆R ∆SSIM ∆R

Akiyo(CIF)
QP1 0.0026 -26.11% 0.0020 -19.40% 0.0004 -4.28% 0 0.46% 0.0001 -1.08%

QP2 0.0078 -28.06% 0.0056 -15.78% 0.0024 -13.60% 0 0.25% 0 0.11%

Bus(CIF)
QP1 0.0016 -7.77% 0.0011 -5.95% 0.0015 -7.12% 0 -0.04% 0.0006 -2.20%

QP2 0.0099 -14.87% 0.0086 -13.25% 0.0038 -6.03% 0 -0.07% 0.0007 -1.36%

Coastguard(CIF)
QP1 0.0013 -4.77% 0.0004 -2.28% 0.0005 -2.16% 0 -0.06% 0.0006 -1.54%

QP2 0.0076 -8.91% 0.0038 -5.04% 0.0036 -3.97% -0.0002 0.3% 0.0005 -0.80%

Silent(CIF)
QP1 0.0026 -9.64% 0.0013 -5.28% -0.0002 0.04% 0 -0.14% 0.0012 -4.15%

QP2 0.0091 -12.43% 0.0046 -6.83% -0.0008 0.58% 0 -0.05% 0 -0.08%

Hall(CIF)
QP1 0.0034 -25.89% 0.0035 -26.41% 0.0013 -10.01% 0 0.27% 0.0005 -3.78%

QP2 0.0062 -25.46% 0.0059 -22.84% 0.0003 -1.51% 0 0.11% 0.0002 -2.80%

Mother Dau(CIF)
QP1 0.0008 -6.43% 0.0004 -2.76% 0 0.56% 0 0.03% 0.0003 -1.49%

QP2 0.0049 -8.94% 0.0022 -4.69% 0.0015 -2.84% 0 -0.3% 0 -0.19%

Spincalendar(720P)
QP1 0.0028 -11.89% 0.0030 -12.78% 0.0021 -8.29% 0 0.02% 0.0022 -9.13%

QP2 0.0042 -15.57% 0.0040 -12.81% 0.0006 -2.16% 0 -0.43% 0.0011 -2.50%

Night(720P)
QP1 0.0019 -6.65% 0.0011 -3.45% -0.0002 0.85% 0 0.14% 0.0009 -4.70%

QP2 0.0062 -16.02% 0.0029 -11.38% 0.0002 -0.96% 0 0.09% 0.0010 -2.05%

Average
QP1 0.0021 -12.39% 0.0016 -9.79% 0.0007 -3.8% 0 0.09% 0.0008 -3.51%

QP2 0.0070 -16.28% 0.0047 -11.58% 0.0015 -3.81% 0 -0.01% 0.0004 -1.21%

algorithm [188], the context adaptive Lagrange multiplier (CALM) selection scheme [200]

and the rate distortion optimized quantization (RDOQ) scheme [68]. For this experiment,

both IPP and IBP GOP structures are employed and CAVLC entropy coding method is

used. We use two different sets of QP values in the experiments: QP1= {16, 20, 24, 28}
and QP2={24, 28, 32, 36}, where QP1 indicates a high bit rate coding configuration. For

each scheme, the improvement of the SSIM index as well as the rate reduction compared

to the conventional RDO coding schemes are tabulated in Table 6.9 and 6.10.

From Tables 6.9 and 6.10, we can be observe that over a wide range of bit rates, for

most of the cases our scheme achieves better performance than state-of-the-art SSIM-based

RDO methods. Specifically, when compared to Huang et al.’s method, on average the pro-

posed scheme achieves better rate reduction of 12.39% vs 9.79% for QP1 and 16.28% vs

11.58% for QP2 while maintaining the same SSIM values for IPP GOP structure. For IBP

GOP structure, the performance gain is 6.66% vs 4.85% for QP1 and 7.74% vs 3.85% for

QP2. We believe that there are three main factors that are responsible for the performance

improvement. Firstly, the proposed scheme uses more accurate statistical SSIM and rate

models which are derived from the inherent properties of SSIM index and the video se-
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Table 6.10: Performance comparison with the State of the Art RDO Coding Algorithms

for IBP GOP Structure (Anchor: Conventional RDO Technique)

Sequences
Proposed Huang et al.’s Yang et al.’s CALM RDOQ

∆SSIM ∆R ∆SSIM ∆R ∆SSIM ∆R ∆SSIM ∆R ∆SSIM ∆R

Akiyo(CIF)
QP1 0.0014 -17.39% 0.0007 -9.72% 0.0003 -5.01% 0 -0.49% 0 -0.19%

QP2 0.0030 -8.56% 0.0022 -6.41% 0.0015 -4.60% 0 0.32% -0.0005 2.01%

Bus(CIF)
QP1 0.0004 -2.04% 0.0006 -3.95% 0.0003 -1.12% 0 0.15% 0.0002 -1.20%

QP2 0.0048 -7.58% 0.0036 -5.25% 0.0038 -6.05% 0 0.12% 0.0021 -3.36%

Coastguard(CIF)
QP1 0.0007 -3.41% 0.0003 -1.96% 0.0005 -2.59% 0 0.46% 0.0006 -2.86%

QP2 0.0027 -3.31% 0.0011 -2.04% 0.0009 -1.67% 0 0.25% 0.0014 -1.89%

Silent(CIF)
QP1 0.0014 -4.64% 0.0013 -4.28% 0 -0.03% 0 0.06% 0.0006 -2.75%

QP2 0.0050 -6.76% 0.0036 -4.60% 0.0018 -2.11% 0 0% 0.0012 -1.73%

Hall(CIF)
QP1 0.0009 -7.60% 0.0003 -2.41% 0.0003 -2.72% 0 0.21% 0.0003 -2.09%

QP2 0.0031 -19.42% 0.0007 -4.87% 0.0005 -3.27% 0 0.43% 0.0003 -2.51%

Mother Dau(CIF)
QP1 0.0009 -7.43% 0.0006 -5.80% 0.0001 -1.23% 0 -0.59% 0.0003 -2.28%

QP2 0.0041 -5.94% 0.0007 -1.69% 0.0015 -2.91% 0.0001 -0.16% 0.0003 -0.51%

Spincalendar(720P)
QP1 0.0006 -5.79% 0.0010 -7.18% 0.0004 -4.10% 0 0.15% 0.0005 -5.60%

QP2 0.0037 -4.59% 0.0021 -3.81% 0.0009 -1.16% 0 -0.53% 0.0013 -2.57%

Night(720P)
QP1 0.0013 -4.94% 0.0010 -3.51% 0.0002 -0.91% 0 -0.15% 0.0007 -3.61%

QP2 0.0019 -5.73% 0.0006 -2.11% 0.0004 -1.96% 0 -0.23% 0.0016 -3.33%

Average
QP1 0.0010 -6.66% 0.0007 -4.85% 0.0003 -2.21% 0 0.03% 0.0004 -2.57%

QP2 0.0035 -7.74% 0.0018 -3.85% 0.0014 -2.17% 0 0.03% 0.0010 -1.74%

quences. Secondly, in this scheme, the Lagrange multiplier is derived adaptively for each

frame. Finally, in the mode selection process, the surrounding pixels are employed to ac-

curately obtain the SSIM index for each mode. The performances of the MSE based RDO

coding schemes are also given in Table 6.9 and 6.10. Since their optimization objective is

MSE rather than SSIM, there is no significant change of SSIM values in these schemes.

Enlarged R-D curves that cover both low and high bit rates are shown in Fig. 6.20 and

6.21. We can observe that the proposed method achieves better performance than the

other methods under comparison.
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Figure 6.20: Enlarged R-D curves at both low and high bit rates for different RDO schemes

(IPP GOP structure).
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Figure 6.21: Enlarged R-D curves at both low and high bit rates for different RDO schemes

(IBP GOP structure).
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Chapter 7

Residual Divisive Normalization

Based Perceptual Video Coding

In this chapter, we propose a perceptual video coding framework based on the divisive

normalization scheme1, which was found to be an effective approach to model the per-

ceptual sensitivity of biological vision, but has not been fully exploited in the context of

video coding. At the macroblock (MB) level, we derive the normalization factors based on

the structural similarity (SSIM) index as an attempt to transform the DCT domain frame

residuals to a perceptually uniform space. We further develop an MB level perceptual mode

selection scheme and a frame level global quantization matrix optimization method. Ex-

tensive simulations and subjective tests verify that, compared with the H.264/AVC video

coding standard and HEVC test Model (HM), the proposed method can achieve significant

gain in terms of rate-SSIM performance and provides better visual quality.

A block-based Adaptive Quantization (AQ) algorithm is also proposed based on SSIM-

inspired divisive normalization. The AQ scheme is implemented at the encoder so that

decoding can be performed using a standard decoder. Simulation results show that the

AQ scheme shows similar performance to the SSIM-Inspired divisive normalization method.

1proposed in collaboration with S. Wang, a visiting Ph.D. student from Peking University, Beijing.
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7.1 Introduction

The main objective of video coding is to minimize the perceptual distortion D of the

reconstructed video with the number of used bits R subjected to a constraint Rc. This can

be expressed as

min{D} subject to R ≤ Rc. (7.1)

Central to such an optimization problem is the way in which the distortion D is defined

because the quality of video can only be as good as it is optimized for. Since the ultimate

receiver of video is the Human Visual System (HVS), the correct optimization goal should

be perceptual quality. However, existing video coding techniques typically use the sum of

absolute difference (SAD) or sum of square difference (SSD) as the model for distortion,

which have been widely criticized in the literature for the lack of correspondence with

perceptual quality [54, 163, 166]. For many years, there have been numerous efforts in

developing subjective-equivalent quality models in an attempt to generate quality scores

close to the opinions of human viewers. The more accurate the model is, the more distortion

can be allowed without generating perceivable artifact, and the better compression can be

achieved.

In this work, we aim to transform the optimization process in Equation (7.1) into

a perceptually uniform domain by incorporating the divisive normalization framework.

It has already been shown that the main difference between SSIM and MSE lies in the

locally adaptive divisive normalization process [10]. In general, divisive normalization

transform is recognized as a perceptually and statistically motivated non-linear image

representation [81,154]. It is shown to be a useful framework that accounts for the masking

effect in the HVS, which refers to the reduction of the visibility of an image component in

the presence of neighboring components [51,179]. It has also been found to be powerful in

modeling the neuronal responses in the human perceptual systems [59, 123, 135]. Divisive

normalization has been successfully applied in image quality assessment [76, 117], image

coding [90], video coding [118,158] and image de-noising [81,109].
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7.2 SSIM-Inspired Divisive Normalization

Block motion compensated inter-prediction technique plays an important role in existing

hybrid video codecs. In this work, we follow this framework, where previously coded frames

are used to predict the current frame and only residuals after prediction are coded.

7.2.1 Divisive Normalization Scheme

Assume C(k) to be the kth DCT transform coefficient of a residual block, then the normal-

ized coefficient is computed as C(k)′ = C(k)/f(k), where f(k) is a positive normalization

factor for the kth subband that will be discussed later.

The quantization process of the normalized residuals for a given predefined quantization

step Qs can be formulated as

Q(k) = sign{C(k)′}round{|C(k)′|
Qs

+ p}

= sign{C(k)}round{ |C(k)|
Qs · f(k)

+ p}
(7.2)

where p is the rounding offset in the quantization.

At the decoder, the de-quantization and reconstruction of C(k) is performed as

R(k) = R(k)′ · f(k) = Q(k) ·Qs · f(k)

= sign{C(k)}round{ |C(k)|
Qs · f(k)

+ p} ·Qs · f(k)
(7.3)

The purpose of the divisive normalization process is to convert the transform resid-

uals into a perceptually uniform space. Thus the factor f(k) determines the perceptual

importance of each of the corresponding transform coefficient. The proposed divisive nor-

malization scheme can be interpreted in two ways. An adaptive normalization factor is

applied, followed by quantization with a predefined fixed step Qs. Alternatively, an adap-

tive quantization matrix is defined for each MB and thus each coefficient is quantized with

a different quantization step.
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SSIM(x,y) ={1− ((C(0) + P (0))− (R(0) + P (0)))2

X(0)2 + Y (0)2 +N · C1

} × {1−

∑N−1
k=1 ((C(k)+P (k))−(R(k)+P (k)))2

N−1∑N−1
k=1 (X(k)2+Y (k)2)

N−1
+ C2

}

={1− (C(0)−R(0))2

X(0)2 + Y (0)2 +N · C1

} × {1−

∑N−1
k=1 (C(k)−R(k))2

N−1∑N−1
k=1 (X(k)2+Y (k)2)

N−1
+ C2

}

(7.4)

SSIM(x,y) = {1− (C(0)′ · fdc −R(0)′ · fdc)2

X(0)2 + Y (0)2 +N · C1

} × {1−

∑N−1
k=1 (C(k)′·fac−R(k)′·fac)2

N−1∑N−1
k=1 (X(k)2+Y (k)2)

N−1
+ C2

}

≈ {1− (C(0)′ −R(0)′)2

E(
√
X(0)2 + Y (0)2 +N · C1)2

} × {1−

∑N−1
k=1 (C(k)′−R(k)′)2

N−1

E(

√∑N−1
k=1 (X(k)2+Y (k)2)

N−1
+ C2)2

}

(7.5)

In the context of computational neuro-science as well as still image processing and

coding, several different approaches have been used to derive the normalization factor,

which may be defined as the sum of the squared neighboring coefficients plus a constant [90],

or derived from a local statistical image model [154]. In this work, our objective is to

optimize the SSIM index, therefore, we employ a model based on the DCT domain SSIM

index.

The DCT domain SSIM index was first presented in [25]:

SSIM(x,y) =

(
1− (X(0)− Y (0))2

X(0)2 + Y (0)2 +N · C1

)
×

1−

∑N−1
k=1 (X(k)−Y (k))2

N−1∑N−1
k=1 (X(k)2+Y (k)2)

N−1
+ C2

 , (7.6)

where X(k) and Y (k) represent the DCT coefficients of the input signals x and y, respec-

tively. C1 and C2 are used to avoid instability when the means and variances are close

to zero and N denotes the block size. The DCT domain SSIM index is composed of the
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product of two terms, which are the normalized squared errors of DC and AC coefficients,

respectively. Moreover, the normalization is conceptually consistent with the light adapta-

tion (also called luminance masking) and contrast masking effect of the HVS [52,135,179].

Equation (7.6) can be re-written as

SSIM(x,y) =

(
1−

(
X(0)
√
ηdc
− Y (0)
√
ηdc

)2
)
×

(
1− 1

N − 1

N−1∑
k=1

(
X(k)
√
ηac
− Y (k)
√
ηac

)2
)
, (7.7)

where

ηdc = X(0)2 + Y (0)2 +N · C1, (7.8)

ηac =

∑N−1
k=1 (X(k)2 + Y (k)2)

N − 1
+ C2. (7.9)

Equation (7.7) suggests that the DCT domain SSIM index can be computed from nor-

malized MSE of DC and AC coefficients. This inspires us to use SSIM-based divisive

normalization for perceptual video coding.

In the video coding scenario, let P (k) be the prediction signal of the kth subband in

DCT domain, then the SSIM index can be rewritten as in (7.4).

Since the local statistics do not change significantly within each MB, we divide each

MB into l sub-MBs for DCT transform and Xi(k) denotes the kth DCT coefficient in the

ith sub-MB. As the SSIM index differentiates between the DC and AC coefficients, we use

separate normalization factors for AC and DC coefficients, which are defined as

fdc =
1
l

∑l
i=1

√
Xi(0)2 + Yi(0)2 +N · C1

E(
√
X(0)2 + Y (0)2 +N · C1)

, (7.10)

fac =

1
l

∑l
i=1

√∑N−1
k=1 (Xi(k)2+Yi(k)2)

N−1
+ C2

E(

√∑N−1
k=1 (X(k)2+Y (k)2)

N−1
+ C2)

, (7.11)

where E(·) denotes the mathematical expectation operator. The expectations are over the

whole frame, and thus do not affect the relative normalization factors across space within

the same frame.
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As a result of the use of fdc and fac, the normalized DCT coefficients for residuals can

be expressed as

C(k)′ =


C(0)
fdc

k = 0

C(k)
fac

otherwise
(7.12)

R(k)′ =


R(0)
fdc

k = 0

R(k)
fac

otherwise
(7.13)

Therefore, the SSIM index in the divisive normalization framework can be expressed as in

(7.5), which implies that in the divisive normalization space, the SSIM index is dependent

on the difference of the normalized signals but not adaptive to the local normalized signals

themselves and therefore all the MBs can be treated as perceptually identical. Since the

clearly visible distortion regions will be perceptually more apparent [73], transforming

all the coefficients into the perceptually uniform domain is also a convenient approach to

improve the perceptual quality according to the philosophy behind distortion-based pooling

scheme [168].

The divisive normalization factor is spatially adaptive and dependent on the content of

the MB and determines the relative perceptual importance of each MB. The MBs which

are less important are quantized more coarsely as compared to the more important MBs.

The expected values of DC and AC energy are used as the reference point to determine the

importance of each MB. The MBs with higher energy than the mean value have effectively

larger quantization step and vice versa. By doing so, we are borrowing bits from the regions

which are perceptually less important and using them for the regions with more perceptual

relevance, as far as SSIM is concerned, so that all the regions in the frame conceptually

have uniform perceptual distortion. It is important to note that the reference point, mean

AC and DC energies, is highly dependent on the content of the video frame. The frames

with significant texture regions are likely to get more perceptual improvement because the

texture regions are the main beneficiaries of the spatially adaptive normalization process.

The calculation of divisive normalization factors for DC and AC coefficients are demon-

strated in Fig. 7.1, where darker MBs indicate smaller normalization factors. As the flower

textures can mask more distortions, we assign larger normalization factors to the AC coef-

ficients in these regions. However, since the luminance values in these regions are relatively
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(a)

(b) (c)

Figure 7.1: Visualization of spatially adaptive divisive normalization factors for the Flower

sequence. (a) The original frame. (b) Normalization factors for DC coefficients for each

MB. (c) Normalization factors for AC coefficients for each MB.

140



Reconstruction

Divisive 
Normalization

Transform Quantization

Inverse
Quantization

Inverse 
Divisive 

Normalization

Inverse
Transform

Frame 
Buffering

Entropy
Coding‐Dn

+
Input
video

Residual

Coded
stream

+

‐

Figure 7.2: Framework of the proposed scheme.

lower, we assign smaller normalization factors to the DC coefficients. These are conceptu-

ally consistent with the light adaptation and contrast masking effects of the HVS.

7.2.2 Perceptual Rate Distortion Optimization for Mode Selec-

tion

The RDO process in video coding can be expressed by minimizing the perceived distortion

D with the number of used bits R subject to a constraint Rc. This can be converted to an

unconstrained optimization problem by

min{J} where J = D + λ ·R, (7.14)

where J is called the Rate Distortion (RD) cost and λ is known as the Lagrange multiplier

that controls the trade-off between R and D.

Here we replace the conventional SAD and SSD with a new distortion model that is

consistent with the residual normalization process. As illustrated in Fig. 7.2, for each MB,

the distortion model is defined as the SSD between the normalized DCT coefficients, which

is expressed as

D =
l∑

i=1

N−1∑
k=0

(Ci(k)′ −Ri(k)′)2

=
l∑

i=1

(Xi(0)− Yi(0))2

f 2
dci

+

∑N−1
k=1 (Xi(k)− Yi(k))2

f 2
aci

(7.15)
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Based on (7.14), the RDO problem is given by

min{J} where J =
l∑

i=1

N−1∑
k=0

(Ci(k)′ −Ri(k)′)2 + λH ·R, (7.16)

where λH indicates the Lagrange multiplier defined in H.264/AVC or HEVC coding stan-

dard with the predefined quantization step Qs.

From the residual normalization point of view, the distortion model calculates the SSD

between the normalized original and distorted DCT coefficients, as shown in Fig. 7.2.

Therefore, we can still use the respective Lagrange multiplier defined in H.264 or HEVC,

λH, in this perceptual RDO scheme.

7.2.3 Sub-band Level Normalization Factor Computation

In this sub-section, we show that the proposed method in section 7.2.1 can be improved

further by fine tuning the DCT normalization matrix so that each AC coefficient has a

different normalization factor. Motivated by the fact that the normalized DCT coefficients

of residuals of different frequencies have different statistical distributions, we propose a

frame level quantization matrix selection algorithm considering the perceptual quality of

the reconstructed video. To begin with, we model the normalized transform coefficients

x with Laplace distribution, which has been proved to achieve a good trade-off between

model fidelity and complexity [79]:

fLap(x) =
Λ

2
· e−Λ·|x|, (7.17)

where Λ is called the Laplace parameter.

From (7.14), the Lagrange parameter is obtained by calculating the derivative of J with

respect to R, then setting it to zero, and finally solving for λ,

dJ

dR
=
dD

dR
+ λ = 0, (7.18)

which yields

λ = −dD
dR

= −
dD
dQs
dR
dQs

. (7.19)
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In [79], Laplace distribution based rate and distortion models were established to derive

λ for each frame dynamically. However, all the transform coefficients were modeled with

a single distribution and the variation in the distribution between DCT sub-bands was

ignored. Here we model the distortion and rate in a similar way as in [79], where D

is obtained by summing the perceptual distortion in each quantization interval and R is

calculated with the help of the entropy of the normalized coefficients. Let cmi,j be the DCT

coefficient in the (i, j)th sub-band of the mth block and ĉmi,j the reconstructed coefficient of

the same position in the decoder, the perceptual distortion for this sub-band Di,j is defined

as

Di,j =
1

NB

NB∑
m=1

(
cmi,j
fmi,j
−
ĉmi,j
fmi,j

)2

=
1

NB

NB∑
m=1

(
cm
′

i,j − ĉm
′

i,j

)2

(7.20)

where NB is the number of DCT blocks in each frame and fmi,j represents the normalization

factor for the (i, j)th sub-band of the mth block; cm
′

i,j and ĉm
′

i,j are the normalized coefficients

of cmi,j and ĉmi,j, respectively.

More specifically, the perceptual distortion defined in (7.20) is equivalent to the MSE in

the divisive normalization domain. If xi,j denotes the normalized coefficient in the (i, j)th

sub-band, then Di,j can be modeled in the divisive normalization domain according to the

quantization process in H.264/AVC, which is given by

Di,j ≈
∫ (Qs−γQs)

−(Qs−γQs)
x2
i,jfLap(xi,j)dxi,j +2

∞∑
n=1

∫ (n+1)Qs−γQs

nQs−γQs
(xi,j−nQs)

2fLap(xi,j)dxi,j, (7.21)

where γ is the rounding offset. Subsequently, we model the rate of the (i, j)th sub-band by

calculating its entropy [203]:

Ri,j = −P0 · log2 P0 − 2
∞∑
n=1

Pn · log2 Pn, (7.22)

where P0 and Pn are the probabilities of the transformed residuals quantized to the zero-th

and n-th quantization levels, respectively, which can be modeled by the Laplace distribu-

tion as
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P0 =

∫ (Qs−γQs)

−(Qs−γQs)
fLap(xi,j)dx, (7.23)

Pn =

∫ (n+1)Qs−γQs

nQs−γQs
fLap(xi,j)dx. (7.24)

Since the rounding offset can be regarded as a constant value for each frame, by in-

corporating (7.22) into (7.19), we conclude that the optimal Lagrange multiplier which

controls the trade-off between R and D is a function of the Laplace parameter and the

quantization step only, which is given by

λopt = f(Λ, Qs). (7.25)

The λopt for each (Λ, Qs) is shown in Fig. 7.3, which confirms the idea that λopt increases

monotonically with Qs but decreases monotonically with Λ. It suggests that for the same

λopt but different Λ, we will have different Qs values.
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Figure 7.4: Laplace distributions for DCT subband coefficients (Bus sequence).
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Figure 7.5: (a) Relationship between Edc and E ′dc at QP=30 for the Bus sequence. (b)

Relationship between Eac and E ′ac at QP=30 for the Bus sequence.

Fig. 7.4 shows that the distribution of the normalized transform coefficients in different

sub-bands have similar shape but different widths [71, 203], thus their optimal Lagrange

multipliers should be different. However, in the current hybrid video coding framework,

directly adjusting λopt for each subband is impractical because the Lagrange multiplier

needs to be uniform across the whole frame in RD optimization. To overcome this, we

generate a uniform λopt for each subband by modifying Qs values. Given the optimal λopt,

the optimal quantization step for the (i, j)th sub-band is calculated as

Qi,j = g(λopt,Λi,j) (7.26)

In our implementation, we keep λ of the DC coefficients unaltered and modify Qs of the

AC coefficients. To obtain the optimal Qi,j, we build a look-up table based on Fig. 7.3.

7.3 H.264/AVC Implementation

In video coding, the normalization factors defined in (7.10) and (7.11) need to be computed

at both the encoder and the decoder. However, before coding the current frame, the dis-

torted MBs are not available, which creates a chicken or egg causality dilemma. Moreover,
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at the decoder side, the original MB is not accessible either. Therefore, the normalization

factors defined in (7.10) and (7.11) cannot be directly applied in practice. To overcome

this problem, we propose to make use of the predicted MB, which is available at both the

encoder and the decoder for the calculation of the normalization factors. As such, we do

not need to transmit any additional overhead information to the decoder.

The relationship between Edc and E ′dc as well as Eac and E ′ac are illustrated in Fig. 7.5,

where Edc, E
′
dc, Eac and E ′ac are defined in (7.27). In these equations, Zi(k) is the kth DCT

coefficient of the ith prediction sub-MB for each mode. We can observe dependency between

the DC and AC energy values of the original and predicted MBs. Therefore, the DC and

AC energy of the original MB can be approximated with the help of the corresponding

energy of the prediction MB. Consequently, the approximation of the normalization factors

can be determined by

f ′dc =
1
l

∑l
i=1

√
2Zi(0)2 +N · C1

E(
√

2Z(0)2 +N · C1)
, (7.28)

f ′ac =

1
l

∑l
i=1

√∑N−1
k=1 (Zi(k)2+s·Zi(k)2)

N−1
+ C2

E(

√∑N−1
k=1 (Z(k)2+s·Z(k)2)

N−1
+ C2)

. (7.29)

For intra mode, we use the MB at the same position in the previously coded frames.

In order to compensate for the loss of AC energy, we use a factor s to bridge the

difference between the energy of AC coefficients in the prediction MB and the original MB,

which can be defined as

Edc =
1

l

l∑
i=1

√
Xi(0)2 + Yi(0)2 +N · C1 E ′dc =

1

l

l∑
i=1

√
2Zi(0)2 +N · C1

Eac =
1

l

l∑
i=1

√∑N−1
k=1 (Xi(k)2 + Yi(k)2)

N − 1
+ C2 E ′ac =

1

l

l∑
i=1

√∑N−1
k=1 (2 · Zi(k)2)

N − 1
+ C2

(7.27)
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s =
E(
∑N−1

k=1 X(k)2)

E(
∑N−1

k=1 Z(k)2)
. (7.30)
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Figure 7.6: Relationship between s and Qs for different sequences.

As depicted in Fig. 7.6, we can approximate s by a linear relationship with Qs, which

can be modeled empirically as

s = 1 + 0.005 ·Qs. (7.31)

In order to compute the normalization factors for DC and AC coefficients, as defined

in (28) and (29), the DC and AC energy of the prediction MB should firstly be calculated.

The DCT is an orthogonal transform that obeys Parseval’s theorem. Thus we will have

the following relations between the DCT coefficients and the spatial domain mean and

variance:

µx =

∑N−1
i=0 x(i)

N
=
X(0)√
N
, (7.32)

σ2
x =

∑N−1
i=1 X(i)2

N − 1
. (7.33)
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Therefore, to calculate the normalization factors in (28) and (29), in the actual im-

plementation for both the encoder and decoder, it is not necessary to perform the actual

DCT transform. Instead, we only need to compute the mean and variance of the prediction

block in spatial domain.

In our implementation, we combine the frame-level quantization matrix selection and

divisive normalization together and employ one quantization matrix to achieve two goals.

Analogous to [150], the quantization matrix for 4× 4 DCT transform is defined as

WSij = 16 ·


f ′dc · ω0,0 f ′ac · ω0,1 f ′ac · ω0,2 f ′ac · ω0,3

f ′ac · ω1,0 f ′ac · ω1,1 f ′ac · ω1,2 f ′ac · ω1,3

f ′ac · ω2,0 f ′ac · ω2,1 f ′ac · ω2,2 f ′ac · ω2,3

f ′ac · ω3,0 f ′ac · ω3,1 f ′ac · ω3,2 f ′ac · ω3,3

 , (7.34)

where

ωi,j = Qi,j/Qs. (7.35)

The Laplace parameter Λi,j and the expectation of the energy (as indicated in (7.11))

should be available before coding the current frame. However, these quantities can only be

obtained after coding it. As they are approximately constants during a very short period

of time, we estimate them by averaging their corresponding values from previous frames

coded in the same manner, i.e.,

Λ̂t
i,j =

1

Nf

Nf∑
n=1

Λt−n
i,j , (7.36)

where t indicates the frame number and Nf represents the number of previous frames used.

Practically, Nf is set to be 3 in this work.

At the decoder, the Laplace distribution parameters of the normalized coefficients in

each sub-band are not available. To address this issue, we transmit the frame-level quan-

tization matrix to the decoder. As the statistics of frames in a short time do not change

considerably, we empirically define a threshold to determine whether to refresh the quan-
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tization matrix, which is expressed as

ωt =

ωt−1
∑

(ωti,j − ωt−1
i,j )2 < Tr

ωt otherwise
(7.37)

where

ω = 16 ·


ω0,0 ω0,1 ω0,2 ω0,3

ω1,0 ω1,1 ω1,2 ω1,3

ω2,0 ω2,1 ω2,2 ω2,3

ω3,0 ω3,1 ω3,2 ω3,3

 . (7.38)

We set the threshold Tr to be 100 to balance the transmitted bits and the accuracy of

the matrix. Empirically, we find this to be a non-sensitive parameter as the quantization

matrix of each frame is very stable and the transmission of the matrix takes only a small

number of bits.

7.3.1 Objective Performance Evaluation

To validate the proposed scheme, we integrate it into H.264/AVC reference software JM15.1

[67]. All test video sequences are in YUV 4:2:0 format. The common coding configurations

are set as follows: all available inter and intra modes are enabled; five reference frames; one

I frame followed by all P frames; high complexity RDO and fixed quantization parameters

(QP).

The RD performance is measured in two cases: SSIM of Y component only and SSIM

of Y, Cb and Cr components, respectively. To apply SSIM to all three color components,

we combine the SSIM indices of these components by [171]

SSIMω = WY · SSIMY +WCb · SSIMCb +WCr · SSIMCr, (7.39)

where WY = 0.8, WCb = 0.1 and WCr = 0.1 are the weights assigned to Y, Cb and Cr

components, respectively. These quantities for the whole video sequence are obtained by

simply averaging the respective values of individual frames. The method proposed in [6]

is used to calculate the differences between two RD curves.
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Figure 7.7: Rate-SSIM Performance comparisons (Anchor: H.264/AVC).
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We use two different sets of QP values in the experiments: QP1={22, 26, 30, 34} and

QP2={26, 30, 34, 38}, which represent high bit-rate and low bit-rate coding configurations,

respectively. From Table 7.2, it can be observed that over a wide range of test sequences

with resolutions from QCIF to 720p, the proposed scheme achieves average rate reduction

of 15.0% for QP1 and 16.0% for QP2 for fixed SSIM values and the maximum coding gain is

42.5%. It can also be observed that our scheme performs better when there exist significant

statistical differences between different regions in the same frame, for example, in the cases

of Bus and Flower. This is likely because these frames allow us to borrow bits more

aggressively from the regions with complex texture or high contrast (high normalization

factor) and allocating them to the regions with relatively simple textures (low normalization

factor).

The R-D performances for two of the test sequences with different resolutions are shown

in Fig. 7.7. It can be observed that the proposed scheme achieves better R-D performance

over the full range of QP values. Moreover, the gains become more significant at middle

bit-rates. The reason may be that at high bit rate, the quantization step is small and

thus the differences of quantization steps among the MBs are not significant, while at low

bit rate, since the AC coefficients are severely distorted, the normalization factors derived

from the prediction frame do not precisely represent the properties of the original frame.

When evaluating the coding complexity overhead, we calculate ∆T as

∆T =
Tpro − TH.264

TH.264

× 100%, (7.40)

where TH.264 and Tpro indicate the total coding time for the sequence with H.264/AVC

and the proposed schemes, respectively. Table 7.3 shows the computational overhead for

both encoding and decoding. The coding time is obtained by encoding 100 frames of IPPP

GOP structure with Intel 2.83 GHz Core processor and 4GB random access memory. As

indicated in Section 7.3, we do not need to perform DCT transform at either the encoder

or the decoder. Therefore, it is observed that the encoding overhead is negligible (1.16%

on average). The complexity of the decoder is increased by 8.48% on average.

To show the advantage of our divisive normalization scheme, the performance com-

parisons of the proposed scheme, the state of the art SSIM based RDO scheme [159]
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Figure 7.8: Performance comparisons of the proposed, quantization matrix and the SSIM

based RDO coding techniques. (Anchor: conventional H.264/AVC)

and standard quantization matrix based video coding scheme in H.264/AVC are shown in

Fig. 7.8. In this experiment, IPP GOP structure and CABAC coding techniques are used.

The QP values range from 23 to 38 with an interval of 5. For most of the sequences, the

proposed divisive normalization scheme achieves better coding performance. As discussed

before, our scheme performs better especially for the sequences with significant statistical

differences in the same frame, such as Flower and Bus. On average, compared with the

SSIM based RDO scheme [159], the proposed scheme achieves better rate reduction of

-17.7% vs -13.0%.

7.3.2 Subjective Performance Evaluation

To further validate our scheme, we carried out two subjective quality evaluation tests

based on a two-alternative-forced-choice (2AFC) method. This method is widely used in

psychophysical studies [64, 183], where in each trial, a subject is shown a pair of video

sequences and is asked (forced) to choose the one he/she thinks to have better quality.
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Table 7.1: Performance comparison of the proposed algorithm with H.264/AVC Anchor

using HEVC standard testing sequences

Sequence Resolution Bit-Rate Savings Average

Class A
Traffic 2560× 1600 -19.48%

-18.37%
PeopleOnStreet 2560× 1600 -17.26%

Class B

Kimono 1920× 1080 -5.90%

-15.23%

ParkScene 1920× 1080 -12.55%

Cactus 1920× 1080 -13.22%

BasketballDrive 1920× 1080 -14.71%

BQTerrace 1920× 1080 -29.81%

Class C

BasketballDrill 832× 480 -15.08%

-14.24%
BQMall 832× 480 -15.01%

PartyScene 832× 480 -15.03%

RaceHorses 832× 480 -11.86%

Class D

BasketballPass 416× 240 -16.17%

-22.02%
BQSquare 416× 240 -46.54%

BlowingBubbles 416× 240 -14.79%

RaceHorses 416× 240 -10.56%

Class E

FourPeople 1280× 720 -13.87%

-14.10%Johnny 1280× 720 -14.89%

KristenAndSara 1280× 720 -13.55%

Class F

BasketballDrillText 832× 480 -18.79%

-13.66%
ChinaSpeed 1024× 768 -15.70%

SlideEditing 1280× 720 -6.48%

SlideShow 1280× 720 -24.02%

Average −16.26%

154



For each subjective test, we selected six pairs of sequences with different resolutions. In

the first test, the sequences were compressed by H.264/AVC and the proposed method at

the same bit rate but with different SSIM levels. In the second test, the sequences were

coded to achieve the same SSIM levels (where the proposed scheme uses much lower bit

rates). Tables 7.4 and 7.5 list all the test sequences as well as their SSIM values and bit

rates. In the 2AFC test, each pair is repeated four times with random order. As a result,

in each test we obtained 24 2AFC results for each subject. Eight subjects participated in

the experiments.

The results of the two subjective tests are reported in Figs. 7.9 and 7.10, respectively.

In each figure, the percentage by which the subjects are in favor of the H.264/AVC against

the proposed scheme are shown. We also plot the error bars (± one standard deviation

between the measurements) over the eight subjects and over the six sequences. Error bars

of right most data points are calculated based on standard deviation of average values. As

can be observed in Fig. 6.18, the subjects are inclined to select the proposed method for

better video quality. On the contrary, for the second test in Fig. 6.19, it turns out that for

almost all cases the percentage is close to 50% and nearly all error bars cross the 50% line.

These results provide useful evidence that the proposed method achieves the same level of

quality with lower bit rates or creates better quality video at the same bit rates.

7.4 HEVC Implementation

Recent advances in video capturing and display technologies, along with the exponentially

increasing demand of video services, challenge the video coding research community to

design new algorithms able to significantly improve the compression performance of the

current H.264/AVC standard. This target is currently gaining evidence with the standard-

ization activities in the High Efficiency Video Coding (HEVC) project. The distortion

models used in HEVC are mean squared error (MSE) and sum of absolute difference

(SAD). However, they are widely criticized for not correlating well with perceptual image

quality. The structural similarity (SSIM) index has been found to be a good indicator

of perceived image quality. Meanwhile, it is computationally simple compared with other
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Figure 7.9: Subjective test 1: Similar bit rate with different SSIM values. (a) Mean and

standard deviation (shown as error-bar) of preference for individual subject (1∼8: subject

number, 9: average).(b) Mean and standard deviation (shown as error-bar) of preference

for individual sequence (1∼6: sequence number, 7: average).
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Figure 7.10: Subjective test 2: Similar SSIM with different bit rates. (a) Mean and

standard deviation (shown as error-bar) of preference for individual subject (1∼8: subject

number, 9: average).(b) Mean and standard deviation (shown as error-bar) of preference

for individual sequence (1∼6: sequence number, 7: average).
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Table 7.2: Performance of the Proposed Algorithms (Compared with H.264/AVC Video

Coding)

Sequence
QP1={18,22,26,30} QP2={26,30,34,38}

∆SSIM ∆R ∆SSIMω ∆Rω ∆SSIM ∆R ∆SSIMω ∆Rω

Akiyo(QCIF) 0.0038 -20.5% 0.0044 -23.0% 0.0091 -14.0% 0.0084 -14.6%

Bridge-close(QCIF) 0.0066 -33.1% 0.0069 -28.3% 0.0289 -42.5% 0.0241 -42.6%

Carphone(QCIF) 0.0022 -12.9% 0.0027 -14.1% 0.0040 -8.2% 0.0042 -9.2%

Coastguard(QCIF) 0.0034 -7.0% 0.0027 -6.6% 0.0094 -9.0% 0.0075 -8.7%

Container(QCIF) 0.0024 -10.5% 0.0007 -3.9% 0.0046 -12.3% 0.0034 -10.9%

Grandma(QCIF) 0.0063 -20.0% 0.0066 -21.5% 0.0131 -14.6% 0.0119 -15.0%

News(QCIF) 0.0033 -15.7% 0.0034 -15.1% 0.0078 -13.2% 0.0077 -13.4%

Salesman(QCIF) 0.0041 -12.6% 0.0050 -14.3% 0.0136 -12.2% 0.0127 -12.7%

Akiyo(CIF) 0.0029 -20.5% 0.0032 -23.4% 0.0043 -12.5% 0.0042 -13.4%

Bus(CIF) 0.0048 -17.1% 0.0041 -14.6% 0.0205 -23.7% 0.0170 -23.2%

Coastguard(CIF) 0.0033 -7.4% 0.0028 -7.4% 0.0119 -11.7% 0.0097 -11.7%

Flower(CIF) 0.0036 -23.0% 0.0052 -24.7% 0.0092 -19.2% 0.0111 -22.1%

Mobile(CIF) 0.0014 -9.2% 0.0020 -9.7% 0.0056 -14.0% 0.0058 -13.8%

Paris(CIF) 0.0036 -15.0% 0.0025 -10.1% 0.0109 -17.9% 0.0091 -15.9%

Tempete(CIF) 0.0023 -13.4% 0.0035 -15.9% 0.0084 -14.7% 0.0084 -15.2%

Waterfall(CIF) 0.0038 -13.1% 0.0042 -12.7% 0.0132 -10.5% 0.0118 -10.5%

BigShip(720P) 0.0040 -11.8% 0.0036 -12.10% 0.0051 -7.3% 0.0044 -7.5%

Night(720P) 0.0030 -13.0% 0.0031 -14.1% 0.0064 -11.5% 0.0060 -12.0%

Spincalendar(720P) 0.0046 -19.9% 0.0024 -11.60% 0.0035 -13.8% 0.0017 -9.1%

Parkrun(720P) 0.0084 -3.9% 0.0066 -15.2% 0.0317 -36.5% 0.0257 -35.4%

Average 0.0039 -15.0% 0.0038 -14.9% 0.0111 -16.0% 0.0097 -15.8%
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Table 7.3: Complexity Overhead of the Proposed Scheme

Sequences ∆T in Encoder ∆T in Decoder

Akiyo(QCIF) 1.20% 8.97%

News(QCIF) 1.17% 11.30%

Mobile(QCIF) 1.34% 5.3%

Bus(CIF) 1.16% 9.16%

Flower(CIF) 1.11% 8.75%

Tempete(CIF) 0.96% 7.38%

Average 1.16% 8.48%

Table 7.4: SSIM Indices and Bit Rates of Testing Sequences Used in the Subjective Test

I. (Similar Bit Rate but Different SSIM Values)

Sequences
H.264/AVC Proposed

SSIM Bit rate SSIM Bit rate

Bridge-close(QCIF) 0.8892 29.56 0.9216 29.07

Bus(CIF) 0.8259 273.7 0.8531 262.03

Flower(CIF) 0.9121 317.8 0.9170 296.43

Mobile(CIF) 0.9462 631.89 0.9532 630.69

Paris(CIF) 0.8825 144.2 0.8902 142.59

Parkrun(720P) 0.7921 4311.6 0.8527 3768.34

state-of-the-art perceptual quality measures and has a number of desirable mathematical

properties for optimization tasks. We propose a perceptual video coding method to im-

prove upon the current HEVC based on an SSIM-inspired divisive normalization scheme

as an attempt to transform the DCT domain frame prediction residuals to a perceptually

uniform space before encoding. Based on the residual divisive normalization process, we

define a distortion model for mode selection and show that such a divisive normalization

strategy largely simplifies the subsequent perceptual rate-distortion optimization proce-

dure. Experiments show that the proposed scheme can achieve significant gain in terms of

rate-SSIM performance when compared with HEVC.
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Table 7.5: SSIM Indices and Bit Rates of Testing Sequences Used in the Subjective Test

II. (Similar SSIM Values but Different Bit Rate)

Sequences
H.264/AVC Proposed

SSIM Bit rate SSIM Bit rate

Bridge-close(QCIF) 0.8777 23.35 0.8764 12.76

News(QCIF) 0.9784 102.51 0.9786 86.18

Waterfall(CIF) 0.9619 474.09 0.962 408.79

Mobile(CIF) 0.9462 631.89 0.9467 537.78

Night(720P) 0.9845 18706.85 0.9839 15671.46

Bigship(720P) 0.9018 1552.8 0.9015 1390.08

The proposed scheme is completely compatible with any frame type supported by

HEVC, as well as any size or shape choices of CTB, PU and TU, which create signifi-

cant complications as opposed to the macroblock (MB) structure defined in previous video

coding standards such as H.264/AVC. First, the expected values of local divisive normal-

ization factors (the denominator in (7.10) and (7.11)) are obtained by first dividing the

predicted current frame into 4× 4 blocks (the greatest common divisor size for CTB, PU

and TU) and then averaged over the whole frame. This avoids the problem of variable

sizes of TU that create uneven number of DCT coefficients, and thus reduces the difficulty

in estimating the expected values of the divisive normalization factor. Second, the divisive

normalization factor for each 4 × 4 block is computed in pixel domain rather than DCT

transform domain. Since DCT is a unitary transform that obeys Parseval’s theorem, we

have

µx =

∑N−1
i=0 x(i)

N
=
X(0)√
N
, (7.41)

σ2
x =

∑N−1
i=1 X(i)2

N − 1
, σxy =

∑N−1
i=1 X(i)Y (i)

N − 1
. (7.42)

As a result, although our algorithm is derived in DCT domain, it is not necessary to

perform actual DCT transform for each block in order to perform residual normalization.

It allows us to calculate the energy values in pixel domain instead of DCT domain. Since

the pixel values used to calculate the energy values are available at the decoder as well,
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(15) and (16) can also be employed at the decoder. Third, the divisive normalization

factor is spatially adaptive but coincides with individual TU. In other words, every TU

is associated with a single set of divisive normalization factors but different from other

TUs. The normalization matrix thus varies based on the size of TU. However, only two

divisive normalization factors are used, one for the DC coefficient and the other for all AC

coefficients. Since each TU may contain multiple 4 × 4 blocks, the divisive normalization

factor for each TU is estimated by averaging the divisive normalization factors computed

for all 4× 4 blocks contained in the TU.

7.4.1 Objective Performance Evaluation

To validate the accuracy and efficiency of the proposed divisive normalization represen-

tation based perceptual video coding scheme, we integrated our scheme into the HEVC

reference software HM 8.0. All test video sequences are in YUV 4:2:0 format. We use

the standard configuration files to compare our method with the HEVC coding scheme

in various aspects, including the R-D performance, the coding and decoding complexities

and the visual performance. The SSIM index for the whole video sequence are obtained

by simply averaging the respective values of individual frames. We employ the method

proposed in [6] to calculate the differences between two RD curves which is also used by

JCT-VC to compare the performance of various algorithms.1 The QP values used to obtain

the RD curves are 22, 27, 32 and 37, respectively.

Tables 7.6, 7.7, and 7.8 show the rate savings achieved using proposed scheme for various

standard test sequences using All-Intra, Low-Delay P, and Random Access configurations,

respectively. Over a wide range of test sequences with resolutions from WQVGA to 4K,

our proposed scheme achieves an average rate reduction of about 6% for the same SSIM

value and the maximum coding gain of 32%. The divisive normalization based video

compression can substantially improve the rate-distortion performance of HEVC as rate-

saving of more than 1% is considered very significant in the HEVC community. The

performance improvement varies substantially, depending on the content of the video frame

1Since R-SSIM curve exhibits a similar shape as R-PSNR curve, we use the same tool proposed in [6]

to calculate the average of SSIM differences.
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Table 7.6: Performance comparison of the proposed algorithm with HEVC Anchor (HM

8.0) for All-Intra configuration

Sequence Resolution Bit-Rate Savings Average

Class A

Traffic 2560× 1600 -4.28%

-4.85%
PeopleOnStreet 2560× 1600 -9.73%

Nebuta 2560× 1600 -1.99%

SteamLocomotive 2560× 1600 -3.41%

Class B

Kimono 1920× 1080 -1.27%

-4.50%

ParkScene 1920× 1080 0.56%

Cactus 1920× 1080 -3.54%

BasketballDrive 1920× 1080 -7.41%

BQTerrace 1920× 1080 -10.84%

Class C

BasketballDrill 832× 480 -9.81%

-3.81%
BQMall 832× 480 -3.85%

PartyScene 832× 480 1.25%

RaceHorses 832× 480 -2.82%

Class D

BasketballPass 416× 240 -7.20%

-6.76%
BQSquare 416× 240 -18.28%

BlowingBubbles 416× 240 2.06%

RaceHorses 416× 240 -3.62%

Class E

FourPeople 1280× 720 -4.95%

-7.19%Johnny 1280× 720 -5.28%

KristenAndSara 1280× 720 -11.35%

Class F

BasketballDrillText 832× 480 -12.03%

-9.51%
ChinaSpeed 1024× 768 -13.65%

SlideEditing 1280× 720 4.16%

SlideShow 1280× 720 -16.50%

Average −6.10%
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Table 7.7: Performance comparison of the proposed algorithm with HEVC Anchor (HM

8.0) for Low Delay P configuration

Sequence Resolution Bit-Rate Savings Average

Class B

Kimono 1920× 1080 -2.24%

-7.05%

ParkScene 1920× 1080 -4.83%

Cactus 1920× 1080 -5.53%

BasketballDrive 1920× 1080 -9.64%

BQTerrace 1920× 1080 -13.03%

Class C

BasketballDrill 832× 480 -11.97%

-5.85%
BQMall 832× 480 -1.85%

PartyScene 832× 480 -3.49%

RaceHorses 832× 480 -6.09%

Class D

BasketballPass 416× 240 -10.52%

-12.72%
BQSquare 416× 240 -32.42%

BlowingBubbles 416× 240 -0.56%

RaceHorses 416× 240 -7.41%

Class E

FourPeople 1280× 720 2.31%

2.36%Johnny 1280× 720 4.18%

KristenAndSara 1280× 720 0.59%

Class F

BasketballDrillText 832× 480 -13.74%

-3.83%
ChinaSpeed 1024× 768 -15.21%

SlideEditing 1280× 720 25.47%

SlideShow 1280× 720 -11.85%

Average −5.42%
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Table 7.8: Performance comparison of the proposed algorithm with HEVC Anchor (HM

8.0) for Random Access configuration

Sequence Resolution Bit-Rate Savings Average

Class A

Traffic 2560× 1600 -3.91%

-6.99%
PeopleOnStreet 2560× 1600 -9.29%

Nebuta 2560× 1600 -10.18%

SteamLocomotive 2560× 1600 -4.59%

Class B

Kimono 1920× 1080 -1.45%

-3.56%

ParkScene 1920× 1080 -1.44%

Cactus 1920× 1080 -1.81%

BasketballDrive 1920× 1080 -7.22%

BQTerrace 1920× 1080 -5.87%

Class C

BasketballDrill 832× 480 -7.44%

-2.35%
BQMall 832× 480 -0.84%

PartyScene 832× 480 2.20%

RaceHorses 832× 480 -3.31%

Class D

BasketballPass 416× 240 -7.14%

-7.17%
BQSquare 416× 240 -19.64%

BlowingBubbles 416× 240 2.59%

RaceHorses 416× 240 -4.47%

Class F

BasketballDrillText 832× 480 -7.64%

-3.46%
ChinaSpeed 1024× 768 -11.13%

SlideEditing 1280× 720 15.16%

SlideShow 1280× 720 -10.22%

Average −4.70%
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being encoded. In general, the video frames that have large variations in terms of the

texture content often result in more performance gain.

The R-D performance for sequences with various resolutions are shown in Fig. 7.11.

In general, the performance gap between the proposed method and the HEVC codec is

maximum at the mid-range of QP values because at high bit rate, the quantization step

is relatively smaller and thus the differences of quantization steps among the TUs are

not significant and at low bit rate, since the AC coefficients are severely distorted, the

normalization factors derived from the prediction frame do not precisely represent the

properties of the original frame.

Rate-distortion optimized quantization (RDOQ) is employed in HEVC as a tool for

pursuing high coding efficiency. RDOQ requires an exhaustive search over multiple can-

didates to determine the optimal quantized level by comparing their rate-distortion cost

using MSE as the distortion measure. We study the effect of RDOQ on the performance

of the proposed algorithm. Specifically, we compare the RD-performance of the divisive

normalization scheme (HM-DNT) with the combined performance of divisive normaliza-

tion scheme and RDOQ, i.e., HM-DNT-RDOQ. Table 7.9 shows that the performance of

the proposed algorithm degrades by almost 3% when RDOQ is employed. The loss in

performance can possibly be due to the conflict of optimization criterion between divi-

sive normalization and RDOQ, the former aims to maximize SSIM, however, the latter

optimizes for minimum MSE.

When evaluating the coding complexity overhead, we calculate ∆T with

∆T =
Tpro − THEV C

THEV C
× 100%, (7.43)

where THEV C and Tpro indicate the total coding time for the sequence with the HEVC and

the proposed coding schemes, respectively. The average encoding and decoding overhead

is 6% and 8%, respectively.

Figure 7.12 visually compares the proposed scheme with HEVC. For a fair comparison,

the bit rate for the proposed scheme is lower than that of HEVC. However, since our

proposed divisive normalization scheme is based on SSIM index optimization, higher SSIM

and lower PSNR values are achieved. We can be observe by visual comparison of the
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Figure 7.11: Rate-SSIM performance comparison between HEVC and the proposed video

coding scheme using Low Delay P configuration
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reconstructed frame with the original frame, the proposed method achieves significantly

better visual quality for the same rate. Furthermore, the quality improvement of the

reconstructed frame by the proposed scheme is evident from the SSIM maps. The proposed

method does a better job in preserving the texture present in the original frame as depicted

by the overall brighter SSIM map of the reconstructed frame. The distortion distribution of

the proposed scheme is more uniform across space and more information and details have

been preserved. The visual quality improvement is due to the fact that we perform coding

algorithms in a perceptual uniform space which can result in a better R-D performance

from perceptual point of view.

7.5 Adaptive Quantization

Residual divisive normalization based video compression is non-normative as the decoder

has to be modified as shown in Figure 7.2. Therefore, we devise the Adaptive Quanti-

zation (AQ) algorithm to make use of the divisive normalization approach in case of a

standard decoder. The purpose of the divisive normalization process is to convert the

transform residuals into an perceptually uniform space. Thus the factor f determines the

perceptual importance of each of the corresponding transform coefficient. The proposed

divisive normalization scheme can be interpreted in two ways. An adaptive normalization

factor is applied, followed by quantization with a predefined fixed step Qs. Alternatively,

an adaptive quantization matrix is defined for each coding unit based on the perceptual

information it carries and is subsequently quantized with quantization step Q′s. The blocks

which are less important are quantized coarsely with respect to the more important block.

Therefore, divisive normalization based video coding can also be interpreted as video com-

pression with adaptive quantization. Now, we will derive the relationship between the

normalization, f , and the change in quantization parameter, ∆QP, as a result of divisive

normalization process.

Assume X(k) to be the kth DCT transform coefficient of a residual block, then the

normalized coefficient is computed as X(k)′ = X(k)/f , where f is a positive normalization

factor which is calculated as the energy of a cluster of neighboring coefficients.
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Table 7.9: Effect of RDOQ on the performance of the proposed algorithm (HM-DNT vs

HM-DNT-RDOQ)

Sequence Resolution Bit-Rate Savings Average

Class B

Kimono 1920× 1080 4.24%

3.95%

ParkScene 1920× 1080 3.05%

Cactus 1920× 1080 4.18%

BasketballDrive 1920× 1080 5.30%

BQTerrace 1920× 1080 3.01%

Class C

BasketballDrill 832× 480 1.80%

3.13%
BQMall 832× 480 3.48%

PartyScene 832× 480 3.07%

RaceHorses 832× 480 4.17%

Class D

BasketballPass 416× 240 3.93%

3.30%
BQSquare 416× 240 2.53%

BlowingBubbles 416× 240 3.04%

RaceHorses 416× 240 3.72%

Class E

FourPeople 1280× 720 1.44%

1.47%Johnny 1280× 720 0.61%

KristenAndSara 1280× 720 2.36%

Class F

BasketballDrillText 832× 480 1.76%

2.84%
ChinaSpeed 1024× 768 2.27%

SlideEditing 1280× 720 2.17%

SlideShow 1280× 720 5.17%

Average 3.06%
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The quantization process of the normalized residuals for a given predefined Qs can be

formulated as

Q(k) = sign{X(k)′}round{|X(k)′|
Qs

+ p}

= sign{X(k)}round{|X(k)|
Qs · f

+ p}

= sign{X(k)}round{|X(k)|
Q′s

+ p} (7.44)

where p is the rounding offset.

The HEVC test model (HM) and the H.264/AVC standard employ a similar quantiza-

tion parameter (QP) scaling scheme. The quantization step size applied to each transform

coefficient is determined approximately as

Qs = 2
QP−4

6 . (7.45)

The expression for Q′s can be written as

Q′s = f ·Qs,

= 2
QP′−4

6 , (7.46)

where QP′ = QP + ∆QP is the modified quantization parameter as a result of the divisive

normalization process. The corresponding ∆QP as a function of the normalization factor,

f , is given by

∆QP = 6 log2 f. (7.47)

Since f is real, ∆QP is not necessarily an integer, which provides fine tuning of the QP

value of each coding unit in order to obtain the best perceptual quality. If the decoder the

standard compatible then we cannot signal a non-integer ∆QP to the decoder. Therefore

we perform the rounding operation to determine the final ∆QP using

∆QPf = b6 log2 f + 0.5c. (7.48)
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The effective fn as a result of the rounding operation can be determined as

fn = 2
∆QPf

6 . (7.49)

For the purpose of Adaptive Quantization, ∆QPf is calculated for every MB in case of

H.264/AVC and for every CU in case of HEVC. The average MB/CU’s energy is calculated

after dividing it in non-overlapping 4 × 4 sub-blocks. The perceptual rate distortion op-

timization for mode selection is also performed based on the method explained in Section

7.2.2.

We use the images in LIVE and TID2008 databases with compression as the distortion

type to test the performance of fn based IQA measure. We also provide its comparison

with PSNR and SSIM. Three metrics are employed for evaluation, which include PLCC

and MAE after nonlinear mapping between subjective and objective scores and Spear-

man’s rank-order correlation coefficient (SRCC). The results are shown in Table 7.10. The

proposed distortion measure significantly outperforms PSNR and mostly performs at least

as well as SSIM.

Table 7.10: Performance comparison of IQA measures using the LIVE and TID2008

databases
PLCC MAE SRCC

PSNR SSIM fn PSNR SSIM fn PSNR SSIM fn

LIVE - JPEG2000 (1) 0.9332 0.9687 0.9656 6.5033 4.7620 4.7941 0.9264 0.9637 0.9588

LIVE - JPEG2000 (2) 0.8740 0.9726 0.9591 9.9693 5.2016 4.913 0.8549 0.9604 0.9611

LIVE - JPEG (1) 0.8867 0.9667 0.9637 8.6817 4.7096 4.731 0.8779 0.9637 0.9594

LIVE - JPEG (2) 0.9168 0.9851 0.9817 10.0107 4.6077 4.4379 0.7699 0.9215 0.9308

TID2008 - JPEG2000 0.8629 0.9667 0.9702 0.8137 0.3969 0.3619 0.8132 0.9625 0.9591

TID2008 - JPEG 0.8666 0.9540 0.9589 0.6858 0.3725 0.3673 0.3590 0.9252 0.9124

The complexity overhead, calculated using Equation (7.43), at the encoder is 1%, on

average. There is no change in the complexity of the decoder as the bitstream generated

by the encoder can be decoded by a standard decoder.

7.5.1 H.264/AVC

To validate the accuracy and efficiency of the proposed adaptive quantization based per-

ceptual video coding scheme, we integrated our scheme into the H.264/AVC reference
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software JM 15.1. All the test video sequences are in YUV 4:2:0 format. We use the IPPP

GOP structure and compare our scheme with the H.264/AVC coding schemes in terms

of R-D performance. From Table 7.11, we can be observe that over a wide range of test

sequences with resolutions from WQVGA to 4K, the proposed scheme achieves an average

rate reduction of 14.36% while keeping the SSIM value the same and the maximum coding

gain is 41.77%. The RD-curves for two of the sequences used to test the performance of

the proposed method are shown in Figure 7.13. The adaptive quantization mechanism

substantially improves the rate-SSIM performance of H.264/AVC on average.

7.5.2 HEVC

We integrated our scheme into the HEVC reference software HM 8.0 in order to validate

the accuracy and efficiency of the proposed adaptive quantization based perceptual video

coding scheme. All the test video sequences are in YUV 4:2:0 format. We use standard

configuration settings of All-Intra, Low-Delay P, and Random Access profiles to compare

our method with the HEVC coding scheme in terms of R-D performance. From Tables 7.12,

7.13, and 7.14, we can be observe that over a wide range of test sequences with resolutions

from WQVGA to 4K, the proposed scheme achieves an average rate reduction of -3.67%,

-2.53% and -2.64% respectively at the same quality level in terms of the SSIM index. The

RD-curves for two of the sequences used to test the performance of the proposed method

are shown in Figure 7.14. The adaptive quantization method can substantially improve the

rate-distortion performance of HEVC as rate-saving of more than 1% is considered very

significant in the HEVC community.
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Table 7.11: Performance comparison of the proposed Adaptive Quantization algorithm

with H.264/AVC Anchor (JM 15.1) using HEVC standard testing sequences

Sequence Resolution Bit-Rate Savings Average

Class A
Traffic 2560× 1600 -17.69%

-15.51%
PeopleOnStreet 2560× 1600 -13.34%

Class B

Kimono 1920× 1080 -2.92%

-12.92%

ParkScene 1920× 1080 -10.37%

Cactus 1920× 1080 -9.28%

BasketballDrive 1920× 1080 -15.02%

BQTerrace 1920× 1080 -27.01%

Class C

BasketballDrill 832× 480 -13.10%

-17.09%
BQMall 832× 480 -13.05%

PartyScene 832× 480 -15.22%

RaceHorses 832× 480 -12.19%

Class D

BasketballPass 416× 240 -14.94%

-20.06%
BQSquare 416× 240 -41.77%

BlowingBubbles 416× 240 -13.88%

RaceHorses 416× 240 -9.64%

Class E

FourPeople 1280× 720 -3.81%

-4.78%Johnny 1280× 720 -4.53%

KristenAndSara 1280× 720 -6.01%

Class F

BasketballDrillText 832× 480 -18.24%

-15.78%
ChinaSpeed 1024× 768 -13.01%

SlideEditing 1280× 720 -5.79%

SlideShow 1280× 720 -26.11%

Average −14.36%
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(a)

(b) (c)

(d) (e)

Figure 7.12: Visual quality comparison between HEVC and the proposed coding scheme:

(a) Original frame; (b) HEVC coded; Bit rate: 356.5192 Kbit/s, SSIM = 0.8744, PSNR

= 30.949 dB; (c) Proposed scheme; Bit rate: 349. 6576 Kbit/s, SSIM = 0.8936, PSNR =

29.1254 dB; (d) SSIM map of the HEVC coded video; (e) SSIM map of the video coded

using the proposed scheme. In SSIM maps, brighter indicates better quality/larger SSIM

value.
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Figure 7.13: Rate-SSIM performance comparison between H.264/AVC and the proposed

video coding scheme using IPP GOP structure
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Figure 7.14: Rate-SSIM performance comparison between HEVC and the proposed video

coding scheme using All-Intra configuration
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Table 7.12: Performance comparison of the proposed Adaptive Quantization algorithm

with HEVC Anchor (HM 8.0) for All-Intra configuration

Sequence Resolution Bit-Rate Savings Average

Class A

Traffic 2560× 1600 -3.41%

-3.70%
PeopleOnStreet 2560× 1600 -4.70%

Nebuta 2560× 1600 -0.70%

SteamLocomotive 2560× 1600 -5.99%

Class B

Kimono 1920× 1080 -1.89%

-3.78%

ParkScene 1920× 1080 -1.79%

Cactus 1920× 1080 -3.38%

BasketballDrive 1920× 1080 -5.17%

BQTerrace 1920× 1080 -6.68%

Class C

BasketballDrill 832× 480 -6.79%

-3.37%
BQMall 832× 480 -2.40%

PartyScene 832× 480 -1.25%

RaceHorses 832× 480 -3.04%

Class D

BasketballPass 416× 240 -3.20%

-3.22%
BQSquare 416× 240 -9.69%

BlowingBubbles 416× 240 1.31%

RaceHorses 416× 240 -1.29%

Class E

FourPeople 1280× 720 -2.63%

-3.85%Johnny 1280× 720 -1.50%

KristenAndSara 1280× 720 -7.43%

Class F

BasketballDrillText 832× 480 -7.50%

-4.11%
ChinaSpeed 1024× 768 -5.60%

SlideEditing 1280× 720 -6.81%

SlideShow 1280× 720 -10.15%

Average −3.67%
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Table 7.13: Performance comparison of the proposed Adaptive Quantization algorithm

with HEVC Anchor (HM 8.0) for Low Delay P configuration

Sequence Resolution Bit-Rate Savings Average

Class B

Kimono 1920× 1080 -0.91%

-4.03%

ParkScene 1920× 1080 -1.65%

Cactus 1920× 1080 -1.94%

BasketballDrive 1920× 1080 -6.27%

BQTerrace 1920× 1080 -9.37%

Class C

BasketballDrill 832× 480 -4.90%

-0.47%
BQMall 832× 480 -1.81%

PartyScene 832× 480 4.41%

RaceHorses 832× 480 -0.63%

Class D

BasketballPass 416× 240 -3.47%

-3.43%
BQSquare 416× 240 -15.27%

BlowingBubbles 416× 240 5.54%

RaceHorses 416× 240 -0.53%

Class E

FourPeople 1280× 720 0.39%

-1.02%Johnny 1280× 720 -1.07%

KristenAndSara 1280× 720 -2.39%

Class F

BasketballDrillText 832× 480 -6.47%

-3.43%
ChinaSpeed 1024× 768 -4.69%

SlideEditing 1280× 720 6.47%

SlideShow 1280× 720 -9.04%

Average −2.53%
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Table 7.14: Performance comparison of the proposed Adaptive Quantization algorithm

with HEVC Anchor (HM 8.0) for Random Access configuration

Sequence Resolution Bit-Rate Savings Average

Class A

Traffic 2560× 1600 -5.06%

-2.98%
PeopleOnStreet 2560× 1600 -3.98%

Nebuta 2560× 1600 0.49%

SteamLocomotive 2560× 1600 -3.36%

Class B

Kimono 1920× 1080 -1.02%

-3.31%

ParkScene 1920× 1080 -2.02%

Cactus 1920× 1080 -2.32%

BasketballDrive 1920× 1080 -5.03%

BQTerrace 1920× 1080 -6.16%

Class C

BasketballDrill 832× 480 -4.46%

-1.56%
BQMall 832× 480 -1.45%

PartyScene 832× 480 1.77%

RaceHorses 832× 480 -2.08%

Class D

BasketballPass 416× 240 -2.37%

-3.04%
BQSquare 416× 240 -11.61%

BlowingBubbles 416× 240 2.65%

RaceHorses 416× 240 -0.84%

Class F

BasketballDrillText 832× 480 -4.95%

-2.30%
ChinaSpeed 1024× 768 -5.10%

SlideEditing 1280× 720 8.80%

SlideShow 1280× 720 -7.94%

Average −2.64%
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Chapter 8

Perceptual Experience of

Time-Varying Video Quality

In real-world visual communications, it is a common experience that end-users receive video

with significantly time-varying quality due to the variations in video content/complexity,

codec configuration, and network conditions. How human visual quality-of-experience

(QoE) changes with such time-varying video quality is not yet well-understood. In this

Chapter, we present the subjective experiments we designed to examine the quality pre-

dictability between individual video segment of relatively constant quality and combined

video consisting of multiple segments that have significantly different quality. Based on the

subjective data, we propose an asymmetric adaptation (AA) model that leads to improved

performance of both subjective and objective quality assessment approaches when using

segment-level quality scores to predict multi-segment time-varying video quality.

8.1 Introduction

In practical network digital video communication systems, the source video content is

subject to a series of distortions during the compression and transmission processes before
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Figure 8.1: A schematic example of a three-scene sequence with time-varying quality in

the subjective test.

being delivered to the end receivers. Very often, the quality of the received video varies over

time. The source of such time-varying video quality may be at the sender side or within the

communication network. At the sender side, video is compressed to meet the bandwidth

constraints. Because of the large variations in the spatial/temporal/motion complexity in

the video content, it is difficult to maintain constant video quality while making the best

use of the communication channels, which often prefer approximately constant bit rate.

In the communication network, packet loss and delay occur in somewhat random fashion,

which, combined with the complexity of the coded video stream, often result in complicated

distortions and quality variations when the video is decoded at the receiver side. Error

correction and concealment techniques are commonly applied to partially recover the video

but their performance varies as well.

In this work, we attempt to investigate the problem in a more straightforward way. In

particular, we carry out subjective test on both individual video segments (each with a

single scene) and combined video consisting of multiple segments that have significantly

different quality. We then study different approaches that use the quality of the individual

segments to predict that of the combined multi-segment video. This study is different from

previous works, which typically focused on instantaneous video quality (often measured on
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a frame-by-frame basis) and its relationship to the aggregated quality of a video that con-

tains one scene or multiple scenes. In reality, however, human subjects rarely judge video

quality at such a high temporal resolution. Instead, based on our observation, they would

rather give a single score to a segment of video, often of the same scene (regardless of the

instantaneous quality variations between frames within the scene). Further, subjects tend

to maintain their opinions until scene cut occurs, especially when adjacent scenes have very

different content and quality. Eventually, the overall subjective opinion of the multi-scene

video would be a result of pooling the segment-level quality. In this sense, our study better

matches real-world scenarios, where a meaningful video content (such as a Youtube video)

often contains multiple scenes with different levels of complexity and quality. The data col-

lected from our subjective experiment allows us to study the quality predictability between

individual video segments and combined multi-segment video. Our results show that none

of the simple models such as linear averaging and weighted-averaging, nonlinear min- and

median-filtering, and distortion-weighted averaging, produces impressive performance. We

thus propose an asymmetric adaptation model to better account for the data. The model is

useful in better understanding the psychological behavior of human subjects in evaluating

time-varying video quality. It can also be directly applied to objective VQA algorithms to

improve their performance, which is demonstrated using peak signal-to-noise-ratio (PSNR)

and the multi-scale structural similarity index (MS-SSIM) [177] as examples.

8.2 Subjective Study

8.2.1 Video Database

We start building our video database by selecting video segments, each of which contains

a single scene, thus in the rest of the chapter, the terms “scene” and “segment” are inter-

changeable. Four reference video segments are selected that contain indoor and outdoor

scenes, flat areas and complex patterns, camera zooming/panning and object motion to-

wards different directions. Frames extracted from the reference video segments are shown

in Figure 8.2. The video sequences are progressively scanned, with high definition (HD)

resolution (1280 × 800), and in YUV 4:2:0 format. All the videos are five seconds long,
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Figure 8.2: Frames extracted from the reference video segments used in the subjective test
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with a frame rate of 30 frames/second. Every raw video scene is compressed at three

quality levels using the recent high efficiency video coding (HEVC) reference software HM

8.0 [139]. The three quality levels are obtained by adjusting the quantization parameter

(QP) of the encoder, for which a small-scale initial subjective test was conducted, such

that each scene has three compressed versions at high-, medium- and low-quality levels

(the distribution of quality levels will be discussed later). In the end, a total of 147 video

sequences are included in the database, which are classified into three categories:

• 12 single-scene 5-second-long sequences, created by HEVC compression;

• 27 two-scene 10-second-long sequences, constructed by concatenating two of the

single-scene sequences with combinations of varying quality;

• 108 three-scene 15-second-long sequences, constructed by concatenating three single-

scene sequences with combinations of varying quality.

Figure 8.1 shows representative frames extracted from a three-scene test sequence, where

the time-varying segment-level quality are indicated by the variations of the Difference of

Mean Opinion Score (DMOS). A large number of combinations are included in the 2-scene

and 3-scene categories to provide precise information necessary to study human behaviors in

evaluating time-varying video quality. In addition, single-scene videos are used as prefixes

of two-scene videos. Likewise, two-scene videos are used as prefixes of three-scene videos.

As a result, by simply asking each subject to score every sequence (1-scene, 2-scene, or

3-scene), we have the chance to monitor, track, and record the changes in quality scores

along with the subject.

8.2.2 Subjective Test

Our subjective test generally follows the Absolute Category Rating (ACR) methodology,

as suggested by ITU-T recommendation P.910 [65]. Although SSCQE [65] is designed for

continuously tracking instantaneous video quality over time, it is not adopted in our ex-

periment for the following reasons. First, as mentioned earlier, in practice human subjects
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often opt to judge video quality on per scene or segment basis, discounting the instan-

taneous quality variations between frames within a scene. Second, in our database, the

same coding configuration and parameters are applied to the full duration of each scene,

which is also roughly constant in terms of content and complexity. As a result, a single

quality score is sufficient to summarize its quality. Third, in SSCQE, there is time delay

between the recorded instantaneous quality and the video content, and such delay varies

between subjects and is also a function of slider “stiffness”. This is an unresolved issue

of the general SSCQE methodology, but is avoided when only a single score is acquired.

Fourth, we observe that humans tend to keep their opinions unless there is a significant

change in video quality that attracts their attention. This is more realistically matched

to real-world scenarios when subjects are watching a movie or online video. Compared

with SSCQE, ACR is much simpler and provides more reliable and more realistic quality

evaluations in our video database.

Thirty näıve subjects (17 males, 13 females) - all university undergraduate and graduate

students - took part in the 40-minute subjective test. The viewing distance is set to be four

times of the picture height. Instructions were given to the subjects in both written and

oral forms. A training session preceded the test where the subject was shown examples of

distorted video sequences expected in the test. All the reference video sequences were also

shown during the training session. During the main test, the 147 distorted video sequences

were ordered randomly irrespective of their categories. Subjects scored the quality of each

video sequence according to the eleven-grade 0 − 10 numerical quality scale suggested in

ITU-T recommendation P.910 [65].

After screening the data, 4 subjects were discovered to be outliers, and the scores given

by the remaining 26 subjects were averaged to produce a mean opinion score (MOS) for

each test sequence. Figure 8.3 plots the MOS scores versus video indices. Thanks to the

initial subjective test before determining the Qp parameters used to create the compressed

videos (as mentioned in Section 8.2.1), the resulting MOS values scatter in a wide range of

the available scales [0− 10], which allows us to study different cases of quality transitions

between the scenes.

After each test session, we also discussed with each subject, inquiring about what

strategy had been used by the subject to determine the scores. This step did not affect the
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Figure 8.3: MOS scores of all video sequences.

data that had been collected, but helped us understand the data better, and also provided

us with intuitive ideas that could be employed in the development of computational models

that mimic human behaviors.

8.2.3 Observations

By investigating the subjective data collected and discussing with the subjects regarding

their scoring strategies, we have a number of empirical observations. Although these obser-

vations are only qualitative, they provide useful insights in understanding the problem and

in developing quantitative models that approximate human judgment. These observations

are summarized as follows. Generally speaking, when watching a video with time-varying

quality,
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1. Subjects are resistant in updating their opinions. When there is a small quality

variation between consecutive scenes, subjects tend to keep their opinions or change

their opinions only slightly;

2. Subjects use asymmetric strategies in updating their opinions. A significant quality

degradation between consecutive scenes results in a large penalty, as compared to the

reward obtained by a significant quality improvement between consecutive scenes;

3. Subjects prefer consistent quality over time. Maintaining a “reasonable” quality for

longer duration results in a small bias towards better subjective experience;

4. Subjects’ judgments are not heavily influenced by the quality of the last (or the first)

scene, which is in contrast to what was reported in [102]. This observation is also

reflected in the numerical test results reported in Section 8.3.2.

8.3 Objective Model

8.3.1 Asymmetric Adaptation (AA) Model

Based on the analysis of the subjective data and the observations described in Section 8.2.3,

here we propose a model to better account for the perceptual experience of time-varying

video quality. Assume that when subjects are watching a video, they maintain their overall

opinions about the video quality until quality changes in consecutive scenes are observed.

We can then focus on modeling the human strategy in updating their opinions.

Let n be the number of scenes in a video sequence, qi be the perceptual quality of the

i-th scene in the sequence (i.e., the quality when the single scene is assessed), li be the time

span of the i-th scene, and Qi be the perceptual quality experience after the i-th scene

(i.e., the quality opinion after the first i scenes are watched). The change in the quality of

successive individual scenes can be calculated by

∆qi =

qi, i = 1

qi − qi−1, i = 2, 3 . . . n
. (8.1)
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perceptual quality experience.

We model the quality opinion update between watching the (i− 1)-th and the i-th scenes

as

Qi =

qi, i = 1

αif(∆qi) + (1− αi)Qi−1, i = 2, 3 . . . n
, (8.2)

where αi = li/
∑i

k=1 lk controls the scale of change that decreases as time progresses,

and the function f determines how subjective opinion changes as a function of ∆qi. In a

simple special case, when f(x) = x, the model corresponds to quality averaging over time.

However, the observations discussed in Section 8.2.3 suggest that f should be nonlinear. In
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particular, based on Observation 1 in Section 8.2.3, f should change slowly when |∆qi| is

small; By Observation 2, f needs to change faster with negative values of ∆qi and slower for

positive values of ∆qi; By Observation 3, f should be slightly positive when ∆qi is close to

0. Combining all the desired properties, we use a piecewise linear function to approximate

f , which is plotted in Figure 8.4, where the three linear pieces correspond to significantly

decreasing ∆qi, small change of ∆qi, and significantly increasing ∆qi, respectively. Because

of the asymmetric properties of f , we call our quality updating scheme the asymmetric

adaptation (AA) model.

8.3.2 Validation

We test the proposed AA model by using it to predict the MOS value of a sequence from

the MOS values of individual scenes that compose the sequence. All the MOS values are

available in the subjective database described in Section 8.2. In addition to the proposed

AA model, a series of other predictive models are also included for comparison. These

include the Mean, Min, Max, and Median MOS values of all scenes, the MOS value of the

first scene (FS) and the last scene (LS), weighted average MOS with increasing weights

(W+), where w = [1
6

2
6

3
6
] for 3 scenes; decreasing weights (W-), where w = [3

6
2
6

1
6
], and

distortion-based weights (DW), where w = 1/MOS. Correlation between the predicted

and actual sequence-level MOS scores is then calculated to provide quantitative evaluation

of the performance. The results are reported in Table 8.1, where due to space limit, only

Kendall’s rank-order correlation coefficient (KRCC) results are given, but other measures

give similar results. Furthermore, Figs. 8.5(d) and 8.5(g), and Figs. 8.6(a) and 8.6(d)

compare the scatter plots of the actual MOS values versus Mean- and AA-predicted MOS

values for 2-scene and 3-scene sequences, respectively. It can be observed that AA provides

better predictions then Mean-MOS, which is one of the best in Table 8.1 among all other

pooling methods being compared.

If a pooling scheme is effective at predicting sequence-level quality using the quality

of each segment, then it should also be useful in improving objective VQA models in the

pooling stage. We use the well-known PSNR and MS-SSIM [177] as examples to verify

this. Note that the purpose here is not to find the best objective VQA approach, but to
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Figure 8.5: Scatter plots of sequence-level actual MOS (vertical axis) versus predicted MOS

(horizontal axis) using different scene-level base quality measures and different pooling

strategies. Column 1: predicted by scene-level MOS; Column 2: predicted by scene-level

PSNR; Column 3: predicted by scene-level MS-SSIM. Row 1: 1-scene sequence; Rows 2

and 3: 2-scene sequence; Rows 2: Mean prediction; Rows 3: AA prediction.
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Figure 8.6: Scatter plots of sequence-level actual MOS (vertical axis) versus predicted MOS

(horizontal axis) using different scene-level base quality measures and different pooling

strategies for 3-scene sequences. Column 1: predicted by scene-level MOS; Column 2:

predicted by scene-level PSNR; Column 3: predicted by scene-level MS-SSIM. Rows 1:

Mean prediction; Rows 2: AA prediction.
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Table 8.1: KRCC comparison between actual MOS and predicted MOS using different base

quality measures (scene-level MOS, PSNR and MS-SSIM) and different pooling strategies
Base measure MOS PSNR MS-SSIM

Sequence type 1-scene 2-scene 3-scene 1-scene 2-scene 3-scene 1-scene 2-scene 3-scene

Mean 1.0000 0.8388 0.7939 0.6061 0.6163 0.5203 0.7273 0.7346 0.7151

Min 1.0000 0.7274 0.6245 0.6061 0.5722 0.4752 0.7273 0.6477 0.5214

Max 1.0000 0.6546 0.4973 0.6061 0.5477 0.4468 0.7273 0.5928 0.4639

Median 1.0000 0.8388 0.7033 0.6061 0.6163 0.6133 0.7273 0.7346 0.6601

FS 1.0000 0.5553 0.3574 0.6061 0.4365 0.3156 0.7273 0.5078 0.3452

LS 1.0000 0.5292 0.4390 0.6061 0.4763 0.3828 0.7273 0.5075 0.4113

W+ 1.0000 0.7475 0.7299 0.6061 0.6562 0.5288 0.7273 0.6733 0.6657

W- 1.0000 0.8103 0.6553 0.6061 0.5307 0.4784 0.7273 0.7247 0.6136

DW 1.0000 0.8445 0.7808 0.6061 0.6220 0.5380 0.7273 0.7232 0.7133

AA 1.0000 0.8902 0.8447 0.6061 0.6676 0.5660 0.7273 0.7703 0.7517

demonstrate the usefulness of the proposed model. The PSNR and MS-SSIM values are

computed for each frame and then averaged within each scene, resulting the scene-level

PSNR and MS-SSIM measures, which are used as the basis to predict the sequence-level

MOS. The quantitative results are shown in Table 8.1 and the corresponding scatter plots

for Mean- and AA-prediction are given in Figures 8.5 and Figures 8.6. It can be seen that

the pooling schemes being tested generally behave consistently when using MOS, PSNR

and MS-SSIM as the basis for scene-level quality measurement, and the proposed AA model

generally outperforms the other approaches.
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

The goal of this thesis was to propose novel solutions for perceptually optimal visual

communications. In the first section we will summarize the contributions to the scientific

community that were brought forward in this thesis. In the second section we will discuss

different avenues for future research. Our related publications are listed at the end of the

chapter.

In Chapter 3 we present a Reduced Reference Image Quality Assessment (RRIQA)

method for visual communication by SSIM estimation. The contributions are as follows:

• General-purpose Image Quality Assessment measure;

• Reduced-Reference SSIM estimation with high accuracy;

• Partial “repair” of the received distorted images using reduced-reference features.

We demonstrate in Chapter 4 that SSIM should be used for image restoration tasks

so as to obtain better perceptual quality than MSE, and present our SSIM-based image

restoration algorithm using sparse and redundant representations. Our contributions in

this chapter are summarized below:
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• Combination of SSIM with optimal sparse signal representation in the context of

image restoration;

• Solution for the optimal coefficients for a sparse and redundant dictionary in a max-

imal SSIM sense;

• Modification of Orthogonal Matching Pursuit (OMP), keeping in view the SSIM

index instead L2 distance;

• Estimation of the best compromise between the distorted and sparse dictionary re-

constructed images for maximal SSIM.

Chapter 5 presents SSIM-Inspired Non-Local means image de-noising algorithm. The

main contribution are:

• Use of SSIM as the similarity criterion for non-local means image de-noising;

• A two-stage approach for robust SSIM-estimation in the presence of noise.

Chapter 6 proposed a novel method for Rate Distortion Optimization (RDO) for video

coding using SSIM, which aims to achieve optimal perceptual quality for an available rate

budget. This chapter makes the following key contributions:

• We employ SSIM as the distortion measure in the proposed mode selection scheme,

where both the current MB to be coded and neighboring pixels are taken into account

to fully exploit the properties of SSIM;

• At the frame level, we present an adaptive Lagrange multiplier selection scheme based

on a novel statistical reduced-reference SSIM model and a source-side information

combined rate model;

• At the MB level, we present a Lagrange multiplier adjustment scheme, where the scale

factor for each MB is determined by an information theoretical approach based on the

motion information content and perceptual uncertainty of visual speed perception.
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Chapter 7 presents an SSIM-inspired novel residual divisive normalization scheme for

perceptual video coding. The main highlights of the chapter are as follows:

• Divisive normalization scheme to transform the DCT domain residuals which are

obtained after prediction to a perceptually uniform space based on a DCT domain

SSIM index;

• Following the divisive normalization scheme, we define a new distortion model and

propose a novel perceptual RDO scheme for mode selection;

• In the divisive normalized domain, we propose a frame-level quantization matrix

selection approach so that the normalized coefficients of different frequencies share

the same R-D relationship;

• Adaptive Quantization method inspired residual divisive normalization that gener-

ates bit-stream compatible with standard decoders.

Chapter 8 presents a study that helped us better understand perceptual experience of

time-varying video quality in more realistic scenarios. Our contributions in this chapter

are summarized are:

• We created a video database and carried out subjective test that are designed to

directly examine the perceptual experience of time-varying video quality;

• Simple models that pool segment-level quality are limited in predicting the overall

human quality assessment of the combined video;

• The proposed asymmetric adaptation (AA) model leads to improved performance of

both subjective and objective quality assessment approaches;

• The scheme has the potential to be employed in the optimization of modern video

compression technologies and in the optimal allocation of network resources.
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9.2 Future Work

The research work presented in this thesis aims to convince the readers that optimization

of image and video processing algorithms based on perceptual image and video quality

assessment methods yields fruitful results. As this is just the beginning of this exciting

direction of research, we expect that many researchers will realize the potential of using

perceptual quality assessment measures for image and video processing applications. Some

of the possible directions to continue this research work are mentioned as follows.

9.2.1 Video Processing based on Perceptual Video Quality As-

sessment Methods

PSNR and SSIM are mainly IQA methods as they do not consider inter-frame interactions

and as a result fail to capture specific temporal artifacts such as flickering and ghosting

in compressed video [197]. There is a strong need to develop novel approaches for video

quality assessment that possess the following properties, which are critical for their use in

the optimization of video processing algorithms/solutions.

• High correlation with subjective video quality scores

• Low computational complexity so that the algorithm is practically usable for video

processing

• Accurate local quality prediction that can help determine varying local quality level

based on content

• Good mathematical properties that can help in solving optimization problems i.e. a

valid distance metric that satisfies convexity, differentiability, symmetry, etc.

9.2.2 Perceptual Video Compression

Video quality is generally divided into spatial quality and temporal quality of a video.

SSIM-Inspired divisive normalization based video compression technique, proposed in Chap-
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ter 7, provides an intuitive method to convert transform residuals to a perceptually uniform

space by adaptively adjusting the quantizer of each block based on perceptual importance.

The framework can easily be scaled to Frame-level and GOP-level using

∆QP = ∆QPb + ∆QPf + ∆QPg, (9.1)

where ∆QPb, ∆QPf , ∆QPg represent the change in QP at the block, frame, and GOP

level, respectively.

Perceptual cues such as the variation and complexity of visual content, amount of

motion between consecutive frames, etc. can prove useful in the calculation of ∆QPf . The

subjective study presented in Chapter 8 can be applied to adjust the GOP-level quantizer

in order to provide an overall better quality of service to viewers.

9.2.3 No-Reference Video Quality Assessment

Existing FR image and video quality assessment measures cannot be used to evaluate the

perceptual quality of a video at the receiver or at a network node because the reference video

is available only at the transmitter. Therefore, NR image and video quality assessment

techniques are highly desirable in visual communications, specially for the purpose of QOS

monitoring. Network service providers need to monitor quality degradation in real-time,

in order to optimize network resource allocation and achieve the required quality of service

within certain cost constraints. General purpose NR-IQA is still in its infancy stage.

Also, objective video quality assessment is a greater challenge than objective image quality

assessment. Considering that the most of the data transmitted over the networks suffer

mainly from lossy compression, solving the problem of NR-VQA of a compressed video

would be an excellent start.
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9.2.4 SSIM-based Dictionary Learning Algorithm for Sparse Rep-

resentations and Image Restoration

Sparse representation based algorithms have become a key research topic in signal and

image processing with numerous applications, e.g., image de-noising, restoration, compres-

sion and more. Sparse representations based algorithms represent most or all information

contained in a signal, with a linear combination of a small number of elements or atoms

adequately chosen from an overcomplete or redundant bases or dictionary. Formally, such

a dictionary is a collection of atoms whose number is much larger than the dimension of

the signal space, i.e., than the number of components of the vector representing the signal.

Any signal admits then an infinite number of representations and the sparsest such repre-

sentation has interesting properties for a number of image processing tasks. The crucial

question in sparse representations is the choice of dictionary. One can use a variety of

predefined bases like DCT, wavelets, or others. However, the sparsity of the representa-

tion depends on how well the dictionary is adapted to the data at hand. The problem

of dictionary learning, that goes beyond the concatenation of a few off-the-shelf bases,

has therefore become a key issue for further progress in this area. Thus, researchers have

developed various learning schemes in order to provide adapted dictionaries for the data

considered. The popular dictionary learning algorithms include the K-SVD, the Method of

Optimal Directions (MOD) and so on which use MSE as the IQA measure. Significant im-

provement in visual quality can be expected by improving the dictionary learning process

based on SSIM, as dictionary encapsulates in itself the prior knowledge about the image

to be restored. An SSIM-optimal dictionary will capture structures contained in the image

in a better way and the restoration task will result into sharper output image. Further

improvement is also expected when some of the advanced mathematical properties of SSIM

and normalized metrics are incorporated into the optimization framework.

9.2.5 SSIM-motivated non-local sparse image restoration

State-of-the-art image de-noising performance can be achieved when K-SVD (dictionary

learning) and Non-Local image de-noising methods are merged. The idea of joint sparsity
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in Leaning Simultaneous Sparsity Coding (LSSC) [87] and image clustering in Clustering-

based Sparse Representation (CSR) [42] takes advantage of such an approach. We believe

it is fruitful to further explore such connections in the future while keeping SSIM in mind

as the optimization criterion.
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