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Abstract—The motion estimation (ME) process used in the
H.264/AVC reference software is based on minimizing a cost
function that involves two terms (distortion and rate) that are
properly balanced through a Lagrangian parameter, usually
denoted as λmotion. In this paper we propose an algorithm
to improve the conventional way of estimating λmotion and,
consequently, the ME process.

First, we show that the conventional estimation ofλmotion

turns out to be significantly less accurate when ME-compromising
events, which make the ME process to perform poorly, happen.
Second, with the aim of improving the coding efficiency in these
cases, an efficient algorithm is proposed that allows the encoder
to choose between three different values ofλmotion for the Inter
16x16 partition size. To be more precise, for this partition size,
the proposed algorithm allows the encoder to additionally test
λmotion = 0 and λmotion arbitrarily large, which corresponds to
minimum distortion and minimum rate solutions, respectively. By
testing these two extreme values, the algorithm avoids to make
large ME errors.

The experimental results on video segments exhibiting this type
of ME-compromising events reveal an average rate reduction of
2.20% for the same coding quality with respect to the JM15.1
reference software of H.264/AVC. The algorithm has been also
tested in comparison with a state-of-the-art algorithm called
CALM (Context Adaptive Lagrange Multiplier). Additionally,
two illustrative examples of the subjective performance improve-
ment are provided.

I. I NTRODUCTION

M ODERN video compression standards such as
H.264/AVC [1] achieve a high compression efficiency

by allowing the encoder to choose among many coding
options, such as several partition sizes (PS), motion vectors
(MV), reference pictures (Ref), and quantization parameters
(QP). Therefore, the selection of the optimal combination
of coding options from a rate-distortion (R-D) perspective
becomes a critical task. Generally, the video codec performs
an optimization task called rate-distortion optimization
(RDO), which aims to find the coding option that minimizes
a distortion measure subject to a given rate restriction:

min
θ

{D(θ)} subject toR(θ) ≤ Rc, (1)
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whereθ is a combination of the different coding options (PS,
MV, Ref, QP, etc.);D(θ) represents the distortion between
the original and the reconstructed coding unit;R(θ) is the
rate needed to encode it (the number of bits needed to
encode headers, MVs, Ref indexes, and residual transform
coefficients); andRc the maximum rate allowed (the rate
constraint).

Using a Lagrange formulation, this constraint optimization
problem turns to be an unconstrained problem [2]:

min
θ

{Jmode}
with Jmode(θ) = D(θ) + λmodeR(θ), (2)

where λmode is the Lagrange multiplier that weights the
relative importance betweenD(θ) andR(θ). A given value
of λmode yields a solutionθ∗(λmode) that turns out to be
an optimal solution to the original RDO problem (1) for a
particular value ofRc = R(θ∗).

This solution involves testing each combination of coding
optionsθ for each coding unit, so that the overallD along all
the coding units is minimized subject to the rate constraint.
Dynamic programming can solve this problem [3], but this
kind of approach is not feasible in practice due to the fact
that computational complexity grows exponentially with the
number of coding units. Therefore, in practical implementa-
tions of the H.264/AVC standard, such as the Joint Model
(JM) [4], many simplifications are made in order to obtain a
more efficient solution. These simplifications are outlined next.
Hereafter, we select the macroblock (MB) as coding unit.

First, the MB independence hypothesis is made so that each
MB can be coded and optimized independently of the rest.
Although this hypothesis is not true because theθ

∗ chosen
for an MB actually depends on thoseθ∗ chosen for previously
coded MBs, is a necessary approximation to obtain a practical
solution of the optimization process.

Furthermore, in order to avoid testing all the QP values
allowed by the standard for a givenλmode, a relationship
between the Lagrange parameterλmode and the QP has been
experimentally derived ( [5], [6]):

λmode = C · 2(QP−12)/3, (3)

whereC is a constant that depends on the slice type.
Concerning the ME-related optimization, which obtains

solutions for MVs and Refs, the evaluation ofD and R in
(2) for every potential MV would not be feasible since each
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evaluation involves DCT-like transform computation, quantiza-
tion, entropy coding, and inverse processes for reconstruction.
The solution to this high-complexity problem consists on
simplifying the MV search by minimizing a low-complexity
cost function instead of directly minimizingJmode. Thus, the
ME process is usually formulated as the minimization of a
second Lagrangian cost function:

min
MV,Ref

{Jmotion}

with Jmotion = Dmotion(MV,Ref) +

+λmotionRmotion(MV,Ref), (4)

where Dmotion is the sum of absolute differences (SAD)
between the original and predicted blocks given by MV and
Ref; Rmotion is an estimation of the number of bits needed
to encode the motion-related information; andλmotion is a
Lagrange multiplier.

Once the set of near-optimal MVs and their corresponding
Refs have been found by the ME process, they are used to
obtain the optimal PS by minimizingJmode, what is referred
to as the mode decision (MD) process. This MD process in
the H.264/AVC context refers to the selection of the partition
size for either intra- or inter- prediction; furthermore, the inter-
prediction can use one or two (bi-prediction) reference images.

Finally, considering thatD in Jmode is calculated as a
sum of squared differences (SSD) andDmotion in Jmotion

is computed as a SAD, an experimental relationship between
λmotion andλmode has been established [5]:

λmotion =
√

λmode. (5)

At this point, given a QP value set by a rate-control algorithm
in order to meet certain target rateRc, the Lagrange multipliers
can be estimated as in Eqs. (3) and (5), and the optimal MV
and Ref, and PS can be obtained by minimizingJmotion and
Jmode, respectively. These considerations allow the system to
obtain a near-optimal representation of the MB,θ̂

∗

, with a very
significant reduction of the computational cost in comparison
to the optimal solution.

The aim of this work is to find a coding option closer to
the optimal than the one obtained by the JM reference model,
without incurring in a significant increase of the computational
cost. Specifically, we allow the encoder to choose between
different values ofλmotion, which is equivalent to change the
relation betweenλmotion andλmode Lagrange multipliers.

Since the discrete version of Lagrangian optimization in-
troduced by Everett [2], many works have focused on this
approach. For example, this Lagrangian optimization was used
in [7] in a source coding application. In [8] an algorithm
was proposed to obtain the optimalλmode parameter, best
basis (wavelet packet), and quantization step size in a wavelet
packet-based coding. In [9] particular QPs were selected for
each coding block to minimize theD under a Rc in a
HDTV digital recording application. Nevertheless, since these
approaches turned out to be expensive in computational cost
terms, many works were proposed to avoid testing all the
possible QP values by modellingR andD as a function of the
QP ( [10]–[13]). Furthermore, the value of theλmode param-
eter to be used in the optimization process can be obtained

analytically using theseR − D models asλmode = −dD
dR (

[14], [15]).

Some works take into account the actual video content in the
R andD modeling ( [15]–[19]). Specifically, in [16] aR-D
model was proposed in which theλmode selection depends on
a parameter derived from the number of zero-quantized trans-
formed residual coefficients, which was dynamically adapted.
This approach had the disadvantage of decoupling QP and
λmode, making the rate-control process more difficult. In [15]
an algorithm was proposed to accurately select the value of
λmode by considering a Laplace distribution of the quantized
residual and adapting theλmode value to the actual video
sequence, so that the overall coding efficiency was improved.
They modeledR andD as function of QP, some features of the
input sequence, and frame type. Then,λmode was obtained by
following the corresponding analytical model. Although the
model is elegant, its implementation turned out to be very
complex. Besides, some hypothesis have to be made to build
the model that require to implement specific solutions that
are also used when these hypothesis are not met. In [17] a
λmode estimation process for 3-D wavelet-based scalable video
coding is proposed.λmode was accurately estimated from the
target bit rate, some characteristics of the sequence, the motion
estimation algorithm, and the wavelet filter, but the algorithm
is conceived for medium to high bit rates. In [18] novelR
andD models were proposed in the context of the emerging
High Efficiency Video Coding (HEVC) standard. However,
the estimation estimation ofλmode from these models has
been left for future work. In [19] another alternative for
modeling theR andD terms based on a mixture of Laplacian
distributions was proposed, but again the estimation ofλmode

was not discussed in the paper.

Some works have been reported concerning theλmotion

parameter. In [20] a linear model was established for both
Rmotion and Dmotion to obtain analytically the optimal
λmotion value, but the method did not provide a significant
improvement in performance against the reference model. The
CALM method presented in [6] adjustedλmotion for each
block based on its context, that is, based on the Lagrangian
cost of its neighboring blocks. This approach has been im-
plemented in the JM reference software [4] since the 10.2
version.

In this paper, we propose a new approach that aims to
provide the encoder with more freedom to decide on the
λmotion value and, thus, on the optimal MV selection process.
It is based on the fact that the optimalλmotion is actually
content-dependent. The proposed method is simple and effec-
tive, and achieves good results in terms of PSNR and bit rate,
outperforming the algorithm proposed in [6].

The rest of the paper is organized as follows: section
II explains the motivation of the work. Section III gives
some background and insights about the problem. Section
IV describes the proposed method in depth. Section V is
devoted to experiments and results. Finally, the conclusions
are summarized in section VI.
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TABLE I
PROBABILITIES (%) OF SELECTING Aλ∗

i
LOWER, EQUAL, OR HIGHER

THAN λmotion =
√
λmode FOR A SET OF STANDARD SEQUENCES

P (λ∗

i
< λmotion) P (λ∗

i
= λmotion) P (λ∗

i
> λmotion)

Akiyo 1.21 93.87 4.92
Carphone 5.26 70.67 24.07

Claire 1.35 92.48 6.17
Foreman 6.07 60.27 33.66
Highway 9.61 72.04 18.35
Salesman 2.27 88.38 9.35

II. M OTIVATION

The goal of this work is to raise the coding efficiency
of the H.264/AVC JM reference software [4] through an
improvement of the ME-related RDO process that does not
incur in a significant computational cost. In particular, our
proposal relies on the observation that the approximation of
Jmode by Jmotion turns out to be suboptimal when the ME
process is compromised. To achieve a better solution for these
cases, we provide the encoder with the possibility of choosing
a MV different from the one that actually minimizesJmotion.

A. Accuracy of λmotion estimation

To prove that we are building on a sound hypothesis, we
start by investigating the cases in which the estimation of
λmotion given in (5) is not accurate. To that end, given a value
of λmode, the encoder has been modified to test several values
of λmotion. Each value ofλmotion produces a candidate MV
resulting from the optimization ofJmotion and each candidate
MV is tested onJmode. In this manner, the decision on the
best MV is made using the actualR and D values, instead
of estimates. As a result, an optimal MV and, consequently,
an optimal value ofλmotion are selected. Thus, in those
cases in whichλmotion =

√
λmode is the best solution, this

approximation is proven to be accurate, and vice versa.
Specifically,21 different values ofλmotion were tested. An

Fi factor

Fi = i×∆F, with i ∈ [0, 1, ..., 20] ,∆F = 0.2, (6)

was introduced intoJmotion to deliberately alter the balance
betweenRmotion andDmotion:

Ĵmotion = Dmotion + (Fi × λmotion)×Rmotion. (7)

On the one hand, as can be easily inferred,Fi = 0 produces a
MV that minimizesDmotion without any rate considerations.
On the other, the higherFi, the more the decision depends on
Rmotion, in detriment of distortion considerations. Hereafter,
we will refer toλmotion as the value estimated as

√
λmode, to

λi as the productFi × λmotion, and toλ∗

i as the optimalλi

value (the one selected onJmode).
Following this procedure, we gatheredλ∗

i resulting from
encoding each MB of several standard video sequences using
an IP GOP pattern at 30 frames-per-second (fps) and four
QP values (20, 24, 28, 32), with RDO enabled1 . Since our
main interest was to determine in which casesλmotion is not

1Further details concerning the test conditions will be given later on Section
V.
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accurate, we grouped the resultingλ∗

i into three classes: lower,
equal, or higher thanλmotion. The resulting probabilities
are shown on Table I.P (λ∗

i = λmotion) represents the
probability of selectingλmotion as the best coding option;
P (λ∗

i < λmotion) represents the probability of selecting
λ∗

i < λmotion, therefore giving more weight to theDmotion

term; andP (λ∗

i > λmotion) represents the probability of
selectingλ∗

i > λmotion, thus putting more emphasis on the
Rmotion term. According to the obtained results, choosing
λmotion as the optimal one is undoubtedly the most likely.
Nevertheless, there is a significant probability of selecting a
λ∗

i different from λmotion (especially, in some sequences).
Specifically, video sequences presenting size-changing objects
(e.g., zoom, approaching objects), such asHighway, produce
higher P (λ∗

i < λmotion); sequences exhibiting high transla-
tional movements, such asForeman or Carphone, show higher
P (λ∗

i > λmotion); and finally, in sequences showing low-
motion content, such asAkiyo or Claire, λmotion becomes
optimal with high probability.

With the aim of illustrating these ideas with specific
examples, Fig. 1 shows the conditional probability density
function (pdf) ofλ∗

i givenλmode, P (λ∗

i /λmode), for Akiyo and
Foreman. As long as the relationλ∗

i =
√
λmode is accurate,

the mean ofP (λ∗

i /λmode) would tend to
√
λmode and its

variance would tend to zero. As can be observed, the variance
is higher inForeman than in Akiyo, andP (λ∗

i = λmotion) is
significantly lower.

These results show a correlation with motion content. In
particular,λmotion is not an accurate estimation for sequences
such asForeman, which exhibits random motion due to
the hand-holding camera and the large head movements. In
contrast,λmotion turns out to be quite an accurate estimation
for sequences such asAkiyo, which was captured with a static
camera and shows small head movements.

In accordance with these results, which suggest that there
seem to be certain correlation between the motion content and
the accuracy of theλmotion − λmode relation, [6] identifies
certain content-related events in whichλmotion needs to be
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TABLE II
PROBABILITIES (%) OF SELECTING Aλ∗

i
LOWER, EQUAL, OR HIGHER

THAN λmotion =
√
λmode FOR A SELECTED SET OFME-COMPROMISING

VIDEO SEGMENTS

P (λ∗

i
< λmotion) P (λ∗

i
= λmotion) P (λ∗

i
> λmotion)

Airshow (rotation) 2.53 79.69 17.78
Corvette (fade in) 5.74 36.05 58.21
Ice age (crossfade) 4.36 55.58 40.06
Nature (blurring) 2.66 85.58 11.76

Sintel (rapid mov.) 3.40 73.98 22.62

adjusted to improveR−D performance. In particular, motion
content described by high module and random-pointing MVs
will better be coded by means of a modification on the
λmotion−λmode relationship. Some video transitions that pro-
duce this behavior are found in [21], [22] and [23], naming the
complex translational movements, rotations, fades or blurring
as typical events that compromise the accuracy ofλmotion.

B. Analysis of ME-compromising events

To prove that the accuracy of theλmotion − λmode relation
turns out to be significantly lower in those content-related
events where the ME actually is not accurate, we have repeated
the previous analysis focusing on selected video segments for
which we know “a priori” that ME does not correctly work,
such as non-translational events (fade transitions, rotation,
blurring, etc.) or complex movements, as mentioned in [6].

To this purpose, we gatheredλ∗

i resulting from encoding
each MB of a set of selected video segments (using the same
codec configuration of the previous section). The selected
video segments are on-line available at [24]. The results are
shown on Table II. When comparing these results to those of
Table I, which referred to standard sequences, it becomes obvi-
ous that the probability ofλ∗

i = λmotion is significantly lower
for these selected ME-compromising segments. Furthermore,
for the particular case of fade transitions,P (λ∗

i > λmotion) is
even higher thanP (λ∗

i = λmotion). This result is due to ME
does not correctly work in ilumination changes and the fact
that this transition affects the whole frame, so that every MB
in the frame is affected by this bad ME.

Therefore, we hypothesize that the estimation of the La-
grangian parameter inJmotion can be improved for ME-
compromising events. In other words, in these cases, the
estimation of the Lagrangian parameter inJmotion should be
adapted to produce a MV more similar to the one that would
be obtained by evaluatingJmode.

III. B ACKGROUND AND INSIGHTS

A. Jmotion as a low-complexity alternative to Jmode

In this section the differences betweenJmotion andJmode

will be discussed in order to gain insight into the causes that
may lead to poor performance ofJmotion.

To find the optimal MV, the ME process should ideally
evaluateJmode for all the points in the search range. Given that
this process is not computationally feasible, the ME process
minimizesJmotion instead (Eq. (4)), which could be viewed

as a low-complexity estimation ofJmode and can be rewritten
(from (4)) as follows:

Jmotion =
∑

(x,y)∈MB

∣∣∣I (x, y)− Î (x, y)
∣∣∣+ λmotionRmotion,

(8)
where x and y are the horizontal and vertical coordinates
within the MB; I (x, y) is the luminance of the pixel(x, y) on
the original MB; Î (x, y) is the luminance of the pixel(x, y)
on the predicted MB; andRmotion is an estimation of the
amount of bits allocated to the MV-related information.

In other words, the goal of the ME process is to obtain,
by minimizing Jmotion, the same MV that would have been
obtained by optimizingJmode, which can be rewritten as
follows:

Jmode =
∑

(x,y)∈MB

(
I (x, y)− Ĩ (x, y)

)2

+

λmode (RMV +Rcoeffs+head) , (9)

where Ĩ (x, y) is the luminance of the pixel(x, y) of the
reconstructed MB;RMV is the amount of bits allocated to the
MV-related information; andRcoeffs+head represents the bits
allocated for transformed coefficients and headers.

The difference between the distortion terms in (8) and (9)
comes from the SAD calculation and the use ofÎ (x, y) in
Jmotion instead of the SSD calculation and̃I (x, y) in Jmode.
The difference between the rate terms is also clear:Jmotion

uses an estimation of the bits allocated to the MV-related
information, whileJmode considers the actual rate including
also the bits allocated to headers and DCT coefficients.

Thus,Jmotion relies on low-complexity estimations of the
R and D terms in Jmode. When these estimations produce
significantly different errors, the balance betweenRmotion and
Dmotion moves from that ofJmode, making its minimization
to, very likely, fail to produce the same MV than that ofJmode.
In these cases, we could resort to adaptλmotion to compensate
for this unbalance.

B. When Jmotion does not work: an illustrative example

To illustrate the correlation between the ME-compromising
situations and the lack of accuracy of theλmotion − λmode

relation, in this section we develop an example that deals with
a cross-fade transition. Fade transitions are characterized by
general illumination changes that severely affect the perfor-
mance of the block-matching-based ME process implemented
on the reference software JM15.1, which is specifically de-
signed for translational movements and is not able to cope with
illumination changes. It should be noted that there are specific
methods to deal with illumination changes, such as weighted
prediction [21], but such solutions are out of the scope of this
work. The selected example consists of a cross-fade happening
between two consecutive frames (#253 and #254) ofIce Age.
Fig. 2 shows the two considered frames. On this example, first,
we used the reference software implementation and selected
the MV by optimizingJmotion. We will refer to this approach
as Reference Decision (RFD). The MVs obtained following
the RFD approach (using the frame #253 as reference) have
been superimposed on frame #254. As can be observed, some
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Fig. 2. Frames #253 (left) and #254 (right) ofIce Age. MVs are superimposed on the #254 frame.

(a) ME process

(b) MD process

Fig. 3. Comparative illustration of RFD (top row) and MRD (bottom row) in the ME (a) and MD (b) processes.

large MVs appeared on regions where there is no actual move-
ment. These MVs appeared due to illumination changes, which
misled the ME process to find optimal locations different from
the co-located, which, intuitively, seems to be the best option.

To avoid this error, we performed a different ME process. In
particular, we used the modified cost functionĴmotion (6), that
allowed us to deliberately alter the balance betweenDmotion

and Rmotion. We employed an arbitrarily largeFi value in
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order to select the MV that minimizedRmotion, preventing
the ME process from choosing unrealistic large MVs. We
will refer to this second approach as Minimum Rate Decision
(MRD).

In a fade transition, the co-located MB has very similar
edges, but an average luminance different from that of the
current MB. Consequently, the SAD may turn out to be high,
implying that the ME process could select a MV pointing to an
MB that, being different from the co-located, exhibits a more
similar mean luminance. Fig. 3 aims to illustrate this idea
with a visual example. It shows a parallel analysis of the two
processes considered, RFD (top) and MRD (bottom). Fig. 3(a)
focuses on the ME process (Jmotion optimization), showing
the predicted MBs, the residues, and their histograms. Fig. 3(b)
focuses on the MD process (Jmode optimization), depicting the
DCT coefficients (before and after the quantization process),
the reconstructed residues, along with their histograms, and
the reconstructed MBs.

As can be observed in Fig. 3(a), the variance in the
luminance of the RFD residue is higher than that of MRD
(see either the residual MBs or the corresponding histograms).
Nevertheless, the SAD becomes higher for MRD because of
the illumination change, being this higher SAD what makes
RFD to make a wrong decision at the ME stage. To be more
precise, the balance betweenDmotion andRmotion turns out
to be dominated byDmotion: althoughRmotion for RFD is
significantly higher than that of MRD, the MV proposed by
RFD is chosen because of the SAD term.

Moving forward to Fig. 3(b), when the DCT coefficients
are obtained, it becomes clear that the RFD transformed
residual presents higher AC coefficients, implying that there is
something more than a mean illumination change between the
current and the selected reference MB. On the contrary, the
MRD transformed residual matches well with an illumination
change, as it mainly presents DC coefficients.

In the end, MRD turned out to be better in all senses. Re-
gardingR, the solution of the RFD approach was less efficient
since it had to encode some AC coefficients (not providing
long runs to the entropy coding phase) and additional MV-
related information. ConcerningD, MRD modeled better the
changes that had actually taken place between both frames and,
consequently, the resulting SSD was lower than that of RFD,
which failed to establish a proper balance betweenDmotion

andRmotion.
Fig. 4 provides a graphical explanation from the Lagrange

optimization theory point of view, using realR−D data taken
from the previous example. The ME process is illustrated in
the left part of the figure. The two compared solutions are
depicted in theRmotion−Dmotion space labelled asMVRFD

(MV associated with RFD) andMVMRD (MV associated
with MRD). The optimal solution for a givenλi is the
operating point in theRmotion − Dmotion space that is first
“hit” by a plane wave of slopeλi (dashed lines in Fig. 4)
[3]. Therefore, as shown,MVRFD becomes the best solution
for λi = λmotion, while MVMRD provides the lowest-rate
solution (λi arbitrarily large).

The MD process is shown in the right part of the figure.
The two compared operating points,MVRFD andMVMRD,

are depicted in theR−D space, and the optimal solution for
a givenλmode is the one that is first “hit” by a plane wave
of slopeλmode. In this case, where the termsR and D are
not estimations,MVMRD becomes the optimal solution in this
particular example.

In the same manner we have forced aRmotion-driven
solution to correct aDmotion-biased solution, it is natural to
think of the inverse case: sometimesλmotion would produce a
Rmotion-biased solution that could be corrected by aDmotion-
driven solution, which could be implemented just by using
Fi = 0. We would refer to this alternative approach as
Minimum Distortion Decision (MDD).

In summary, ME-compromising situations can lead to
Rmotion or Dmotion-biased solutions, which will require the
encoder to be able to select a differentλmotion value in order
to make a more accurate decision inJmotion.

IV. PROPOSEDALGORITHM

This Section describes a computationally efficient method
to find a more suitable value ofλmotion. First, we discuss how
to reduce the number candidate values to make it feasible. And
second, we propose a way to reduce the MD evaluations.

A. Reduced set of λi values

The modified cost function̂Jmotion involving 21 different
factors Fi was useful to set the motivation for this work,
but becomes computationally impractical for coding purposes.
Therefore, it is necessary to propose an alternative that allows
us to take advantage of using a more suitable Lagrangian
parameter inJmotion without incurring in a significant increase
of the computational cost.

To this end, we decided to select a reduced set of three
λi values: one higher thanλmotion, which would allow
for compensatingDmotion-biased solutions, one lower than
λmotion, which would allow for compensatingRmotion-biased
solutions, andλmotion. In so doing, it seems reasonable to
select the extremes,λi = 0 andλi arbitrarily large (λi → ∞),
since they would allow for avoiding the potentially largest
errors. Interestingly,λi = 0 corresponds to the MDD discussed
previously, andλi → ∞ to the MRD.

Nevertheless, to study the suggested solution more in depth,
we gatheredλi values from encoding each MB of a set of
video segments. For these experiments, we used an IP GOP
pattern at 30 fps, four QP values (20, 24, 28, 32) and RDO
enabled (both video segments and codec configuration are
further described in Section V). The obtained results are shown
in Table III, where the reference value,λmotion, is labelled as
i = 5, which corresponds toF5 = 0.2× 5 = 1.

Regarding theλi < λmotion values, it seems reasonable to
selectλi = 0 since it clearly exhibits the highest probability
among theλi values lower thanλmotion.

Now regarding theλi > λmotion values, the probabilities
decrease withi, what suggests that takingλi → ∞ could turn
out unsuitable. Nevertheless, in this case, it should be noticed
that the probability of selecting the predictedMV (MVp) as
optimal grows withi (because the increasing importance of
the rate term). To be more precise, the probability ofMVp
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Fig. 4. Graphical illustration of the optimal coding option selection.

TABLE III
PROBABILITY (%) OF SELECTING EACHλi VALUE

i P (λ∗

i
= λi) i P (λ∗

i
= λi)

0 1.94 11 1.01
1 0.51 12 0.82
2 0.60 13 0.68
3 0.45 14 0.64
4 0.37 15 0.50
5 82.58 16 0.47
6 2.27 17 0.39
7 1.96 18 0.39
8 1.67 19 0.33
9 1.27 20 0.33
10 1.16

to be the optimal forλi > λmotion is 69%. Taking this
observation into account, we could compensate theDmotion-
biased solutions with anyλi value that leads toMVp as
optimal. So, we chooseλi → ∞.

As a conclusion,λi = 0 and λi → ∞ (MDD and MRD,
respectively) are good candidates to be evaluated in the ME
process of each MB.

B. Reduced number of MD evaluations

As mentioned, the proposed algorithm aims to avoid large
errors. Specifically, we suggest to consider three alternative
MVs, resulting fromλi = 0, λi = λmotion, and λi → ∞,
whereλi = 0 leads to the MV that minimizes the distortion
(MDD) and λi → ∞ to the one that minimizes the rate
(MRD).

We must highlight that, during the ME process, theDmotion

and Rmotion terms are computed for each position in the
search range. Therefore, only one ME pass is required to
obtain the three MVs sought. Subsequently, these MVs should
be tested onJmode to obtain the optimal coding option.

To reduce the computational cost associated with the two
additionalJmode evaluations, we propose to assess MDD and

MRD only for the 16x16 pixel PS, which is the most likely one
[25]. Furthermore, to achieve higher computational savings,
when the reference MV (derived byλi = λmotion) turns out
to be the same than that obtained by either MDD or MRD,
only this reference MV is tested in the MD process (since the
third option becomes very unlikely: MDD and MRD actually
represent “opposite” solutions). As a result, as empirically
shown in the next section, the proposed coding process does
not incur in a significant increment of the computational cost
with respect to the reference coding process.

C. Summary of the Algorithm

The complete algorithm is summarized in Algorithm 1.

Algorithm 1 Proposed coding process of an MB.
1: % ME process (Jmotion)
2: ObtainMVRFD, MVMRD, andMVMDD for 16x16 PS.
3: ObtainMVRFD for the remaining available modes.
4: % MD process (Jmode)
5: if MVRFD 6= MVMRD andMVRFD 6= MVMDD. then
6: TestMVRFD, MVMRD, andMVMDD for 16x16 on

Jmode.
7: Test MVRFD for the remaining available modes on

Jmode.
8: else
9: TestMVRFD for all the available modes onJmode.

10: end if
11: Select optimal mode:min Jmode.
12: return Best mode.

V. EXPERIMENTS AND RESULTS

The proposed algorithm was implemented on H.264/AVC
JM15.1 reference software [4]. The main test conditions were
selected according to the recommendations of the JVT [26],
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TABLE IV
ENCODER CONFIGURATION

Parameter Value
Profile IDC Main

QP 20, 24, 28, 32
GOP IP @ 30 fps.

ME algorithm Fast Full Search
Search Range ±32

Reference Frames 3
Symbol Mode CABAC

RD Optimizarion ON

namely: main profile,±32 pixel search range, CABAC, and
RDO enabled. Moreover, we used an IP GOP pattern and
four QP values (20, 24, 28 and 32). Table IV summarizes
the encoder configuration.

To assess the proposed algorithm in terms of R-D perfor-
mance, we have used the average bit rate differences (∆BR)
and the average PSNR differences (∆PSNR), as described in
[27]. Moreover, to evaluate the computational complexity of
the proposed algorithm, the time increment (TI) was calculated
as follows:

TI =
T ime(method)− T ime(JM15.1)

T ime(JM15.1)
× 100(%). (10)

The proposed algorithm has been tested with respect to the
H.264/AVC reference software and with respect to an state-of-
the-art algorithm called CALM [6], which suggests a context
adaptive adjustment ofλmotion to improve coding efficiency.
The comparative assessment has been performed on a varied
set of video segments exhibiting ME-compromising events to
show the improved performance of the proposed algorithm in
these cases.

Since the proposed algorithm aims to improve the ME
process, we have first tested this improvement avoiding po-
tential interference from spatial prediction tools (Intra modes
in Inter frames). Then, we have tested the coding performance
adding the spatial prediction tools (this will be referred to as
overall coding performance). Additionally, we have computed
an upper performance bound resulting from assessing the
complete set ofλi values. Subsequently, we have analysed in
detail the contribution of each part of the proposed algorithm,
namely: the MDD and MRD. Finally, two illustrative examples
of the improved subjective quality achieved by the proposed
algorithm are also provided.

A. Evaluation of the ME performance

The proposed method aims to improve the performance of
ME process by avoiding bad choices of the MV. Therefore,
our first experimental evaluation is directed to assess the actual
improvement of the ME performance. To this end, we have
disabled the use ofIntra modes in Inter Frames since this
coding tool can mask failures of the ME process.

Table V shows the obtained results. For each of the consid-
ered sequences, the mean values of TI,∆BR, and∆PSNR
across the four QP values are shown. Additionally, the last row
of the table shows the mean values for all the sequences. These
results reveal that the proposed algorithm clearly improve

the JM15.1 coding performance under the same experimental
setup. Specifically, the proposed algorithm obtains an average
∆BR reduction of9.27% for the same coding quality with
respect to the reference software. Alternatively, these improve-
ments can be seen in terms of PSNR, where the proposed
algorithm achieves an average gain of0.52 dB.

It is important to highlight that a higher gain is obtained
on video segments where fade transitions take place, as on
Mobisode or Corvette, where∆BR reductions of21.18% and
32.60% are obtained, respectively. This is due to the fact that
the optimal value ofλmotion in these cases is different from
the reference one with high probability, as it was shown on
Section II-B (see Table II).

Comparing with CALM algorithm, the proposed method
produces a better coding quality with quite similar complexity
increment. It should be noted, however, that CALM works
better in the low-complexity RDO scenario (RDO off).

Regarding the computational complexity, a good compro-
mise have been achieved as TI reaches an average value of
3.07% comparing with the reference software and a1.74%
comparing with CALM, while providing very significant im-
provements in terms of R-D performance. Moreover, looking
at the individual video segments, the highest value of TI
incurred by the proposed method is close to4%, while the
worst case for CALM is close to14%.

Although codec configurations using GOP patterns with B
frames have not been assessed on this study, other techniques
designed to cope with illumination changes [21] have shown
similar coding improvements for GOP patterns with P or B
frames. Therefore, although the experiments with B frames
are left for future work, similar results are expected.

B. Evaluation of the overall coding performance

To evaluate the overall coding performance,Intra modes
in Inter Frames coding option was enabled on the JM15.1
reference software. It is expected that the use of the Intra
mode coding tool will compensate for some ME failures and,
consequently, the performance improvement achieved by the
proposed algorithm will be lower than the one obtained in
section V-A.

The obtained results are shown on Table VI. An average
2.20% ∆BR reduction was achieved in comparison with the
reference software. Alternatively, in PSNR terms, an improve-
ment of 0.12 dB was obtained. On the one hand, the best
results continue to appear in fade sequences likeIce Age and
Corvette for the same reasons (now softened by the use of the
Intra modes). On the other, the performance improvements be-
comes less relevant in zoom-type transitions, where the results
tend to be similar to those of the reference. In summary, it can
be concluded that, despite the use of the Intra mode coding
tool overcomes some of the problems associated with ME-
compromised events, allowing more freedom for the selection
of λmotion still provides significant R-D improvements in
exchange of a low increment of computational complexity.

As can be seen, for the experimental protocol used in this
paper, CALM does not provide any average improvement
with respect to the reference software, likely because it was
conceived for RDO-disabled operation.
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TABLE V
PERFORMANCE EVALUATION OF THE PROPOSED ALGORITHM RELATIVE TOJM15.1WITH INTRA CODING IN INTER FRAMES DISABLED. COMPARATIVE

RESULTS REGARDINGCALM [6] ARE ALSO PROVIDED

Proposed method CALM [6]
Sequence Size Effect # Coded Frames TI % ∆BR % ∆PSNR dB TI % ∆BR % ∆PSNR dB
Ice Age CIF crossfade 42 1.87 −9.34 0.64 0.16 0.40 0.02
Ice Age CIF crossfade 13 2.89 −11.24 0.76 0.19 0.50 0.02
Nature CIF blurring 100 2.08 −1.67 0.08 0.00 0.01 0.00

Airshow SD rotation 150 3.33 −6.64 0.40 0.20 0.56 0.00
Corvette SD fade in 8 2.96 −32.60 1.95 0.63 −0.75 0.06
Corvette SD zoom in 50 4.03 −0.40 0.01 1.68 −0.01 0.00
Corvette SD zoom out 5 2.73 −0.58 0.03 14.06 −0.10 0.01
Mobisode SD crossfade 20 2.34 −21.18 0.82 −1.15 0.84 0.01

Controlled Burn HD crossfade 10 3.16 −15.86 0.82 −0.38 −1.77 0.10
Dinner HD blurring 62 3.98 −4.22 0.22 0.11 −0.73 0.02
Dinner HD zoom out 100 4.10 −1.05 0.05 −0.19 −0.24 0.01
Sintel HD rapid mov. 73 3.37 −6.43 0.41 0.64 −0.21 0.01

Average 3.07 −9.27 0.52 1.33 −0.13 0.02
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Fig. 5. PSNR-BR curves achieved by the compared algorithms forIce Age.
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Fig. 6. PSNR-BR curves achieved by the compared algorithms forNature.

Figs. 5 and 6 show the PSNR-BR curves for two selected
sequences:Ice Age and Nature, respectively. As it can be
observed, the proposed algorithm clearly outperforms both
JM15.1 and CALM.

Finally, note that the computational cost is almost the same
in the proposed algorithm than in the reference software.
Specifically, using the proposed algorithm implies an incre-
ment of2.99% of TI with respect to the reference.

C. An upper performance bound

An extended version of the algorithm that assess 40 different
λmotionvalues has also been tested with the aim of providing a
upper performance bound. The procedure described in Section
II-Awas used fori ∈ [0, 1, · · · , 40] in (6). Table VII shows
comparative results between the proposed method and this
upper performance bound.

As can be observed, although the upper performance bound
clearly exceeds the results of the proposed method, the room
for improvement is quite moderate. The upper performance
bound is not higher (as could be expected) because it has been
obtained by taking locally optimal decisions (at MB level),
which could not be globally optimal.

These results allow us to conclude that, although there is
some room for improvement, the proposed solution provides
an excellent balance between performance and computational
cost: it achieves a 2.20% bit rate reduction vs. a 3.21% of the
upper bound without incurring in a significant increment of
the computational cost.

D. Evaluation of the MRD and MDD contributions

An analysis on the individual contributions of both MRD
and MDD has been done to check their relative influence
on the global performance. Table VIII shows the overall
coding performance of both MRD and MDD with respect
to the reference software. In the first case onlyMVMRD

is considered together withMVRFD. In the second, it is
MVMDD the only additional MV considered. As can be
seen, both strategies provides quite similar∆BR reductions.
Interestingly, it is worth mentioning that the TI generated by
MRD is low in comparison to that of MDD. This is due to
the fact that the probability ofMVRFD being the same than
MVMRD is higher than forMVMDD.

It is also interesting to notice that, in some particular cases,
working just with MRD or MDD outperforms the complete
algorithm. The reason is that the decisions made are locally
optimal (for the current MB), but given that they affect
the encoding of neighboring MBs, sometimes they could be
globally sub-optimal.
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TABLE VI
PERFORMANCE EVALUATION OF THE PROPOSED ALGORITHM RELATIVE TOJM15.1WITH INTRA CODING IN INTER FRAMES ENABLED. COMPARATIVE

RESULTS REGARDINGCALM [6] ARE ALSO PROVIDED

Proposed method CALM [6]
Sequence Size Effect # Coded Frames TI % ∆BR % ∆PSNR dB TI % ∆BR % ∆PSNR dB
Ice Age CIF crossfade 42 −0.55 −7.57 0.50 −0.65 −0.47 0.02
Ice Age CIF crossfade 13 1.21 −4.98 0.32 −1.25 −0.24 0.02
Nature CIF blurring 100 1.84 −1.81 0.09 0.51 0.26 −0.01

Airshow SD rotation 150 3.22 −0.85 0.04 0.47 −0.03 0.01
Corvette SD fade in 8 5.17 −6.21 0.28 1.24 −0.15 0.01
Corvette SD zoom in 50 3.79 −0.14 0.00 −0.30 0.00 −0.01
Corvette SD zoom out 5 5.12 −0.56 0.03 2.21 −0.04 0.00
Mobisode SD crossfade 20 3.53 −2.70 0.06 −0.54 0.76 −0.03

Controlled Burn HD crossfade 10 2.29 −1.18 0.04 −0.88 0.03 0.00
Dinner HD blurring 62 3.33 0.19 0.00 0.07 0.04 0.00
Dinner HD zoom out 100 3.55 −0.30 0.01 0.75 0.00 0.00
Sintel HD rapid mov. 73 3.32 −0.31 0.02 1.23 −0.13 0.00

Average 2.99 −2.20 0.12 0.24 0.00 0.00

TABLE VII
PERFORMANCE EVALUATION OF THE PROPOSED ALGORITHM WITH RESPECT TO AN EMPIRICAL UPPER BOUND. RESULTS IN BOTH CASES ARE RELATIVE

TO JM15.1WITH INTRA CODING IN INTER FRAMES ENABLED.

Proposed method Upper Bound
Sequence Size Effect # Coded Frames TI % ∆BR % ∆PSNR dB TI % ∆BR % ∆PSNR dB
Ice Age CIF crossfade 42 −0.55 −7.57 0.50 1924 −6.79 0.48
Ice Age CIF crossfade 13 1.21 −4.98 0.32 2022 −4.42 0.29
Nature CIF blurring 100 1.84 −1.81 0.09 1748 −2.58 0.12

Airshow SD rotation 150 3.22 −0.85 0.04 1927 −2.34 0.11
Corvette SD fade in 8 5.17 −6.21 0.28 2130 −5.70 0.24
Corvette SD zoom in 50 3.79 −0.14 0.00 1977 −2.11 0.09
Corvette SD zoom out 5 5.12 −0.56 0.03 1908 −2.26 0.13
Mobisode SD crossfade 20 3.53 −2.70 0.06 2106 −4.61 0.14

Controlled Burn HD crossfade 10 2.29 −1.18 0.04 2089 −1.81 0.06
Dinner HD blurring 62 3.33 0.19 0.00 1984 −1.41 0.06
Dinner HD zoom out 100 3.55 −0.30 0.01 2064 −3.49 0.15
Sintel HD rapid mov. 73 3.32 −0.31 0.02 2036 −0.97 0.05

Average 2.99 −2.20 0.12 1993 −3.21 0.16

TABLE VIII
INDEPENDENT PERFORMANCE EVALUATION OFMRD AND MDD.

MRD MDD
Sequence Size Effect # Coded Frames TI % ∆BR % ∆PSNR dB TI % ∆BR % ∆PSNR dB
Ice Age CIF crossfade 42 −0.46 −6.97 0.48 3.00 −7.14 0.49
Ice Age CIF crossfade 13 −0.04 −4.00 0.26 2.88 −4.12 0.27
Nature CIF blurring 100 0.81 −1.86 0.09 4.28 −2.16 0.09

Airshow SD rotation 150 2.07 −0.23 0.01 3.92 −0.28 0.01
Corvette SD fade in 8 3.04 −6.61 0.29 4.15 −6.49 0.29
Corvette SD zoom in 50 3.36 0.52 −0.03 3.85 0.46 −0.02
Corvette SD zoom out 5 1.75 0.15 0.00 3.50 0.17 0.00
Mobisode SD crossfade 20 −1.42 −2.89 0.07 1.18 −2.96 0.08

Controlled Burn HD crossfade 10 −0.97 −1.15 0.04 0.39 −1.28 0.04
Dinner HD blurring 62 0.66 0.17 0.00 0.32 −0.02 0.01
Dinner HD zoom out 100 2.00 0.50 −0.03 1.44 0.48 −0.02
Sintel HD rapid mov. 73 3.01 −0.24 0.01 6.33 −0.16 0.01

Average 1.15 −1.88 0.10 2.74 −1.96 0.10

E. Subjective quality evaluation

Although the objective R-D results shown in previous sub-
sections support our claim, a brief comment about subjective
quality is in order. To this purpose, we show in Figs. 7 and 8
two examples of reconstructed frames, for two different video
segments, obtained with the reference software JM15.1 and
the proposed method.

In the first example, one selected frame of the first of the

Ice Age video segments (specifically, frame # 20) has been
encoded, and we have comparatively shown the corresponding
reconstructed versions of that frame. To make this comparison
as fair as possible, we have adjusted the QP value so that the
number of bits produced by this frame would be almost the
same in both cases; in particular, it takes up to 8.3 Kb when
encoded by the reference software and 8.2 Kb by the proposed
method.
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Fig. 7 shows three versions of a selected area of the
mentioned frame in theIce Age video segment: (a) original; (b)
reconstructed by the reference software; and (c) reconstructed
by the proposed method. As can be inferred when comparing
Figs. 7(b) and 7(c), a higher subjective quality is achieved
by the proposed method in comparison with the reference
software. Specifically, when looking carefully at the region
showing the snowy peak of the mountain, a lot of details are
lost in the frame reconstructed by the reference software, while
several of them are preserved in the version reconstructed by
the proposed method. Another example can be found in the
low part of the figures, where two characters (at small size)
can be observed: in the reconstructed frame by the reference
software one of this characters is missing, while it still appears
in the frame reconstructed by the proposed method.

In the second example, one selected frame of theMobisode
video segment (specifically, frame # 17) was used. Again, the
QP value was adjusted to obtain almost the same number of
bits with the reference software and with our proposal; specif-
ically, 52.5 and 51.1 Kb respectively. In Fig. 8 three versions
of a selected area are shown (original (a), reconstructed by
the reference software (b), and reconstructed by the proposed
method (c)). As it can be observed in Figs. 8(b) and 8(c), in
the region showing the bars of the stairs our method achieves
better defined edges than the reference software. Moreover,
this improvement can be also observed in the shaded peak of
the suit in the right part of the figures.

This higher subjective quality can be explained by the fact
that the proposed method improves the ME process, coding
some MBs with higher efficiency. In such a way, for the same
amount of bits than in the reference coding process, we are
able to code with higher quality, preserving more details in
the coded sequence.

VI. CONCLUSIONS AND FURTHER WORK

In this paper we have proposed an algorithm to improve
the conventional way of estimatingλmotion and, consequently,
the ME process in RDO-based video codecs. Specifically,
an algorithm has been proposed that allows the encoder to
choose between three different values ofλmotion. Actually,
this choice has been limited to the Inter 16x16 partition size
to avoid incurring in a significant increase of the computa-
tional cost. For this partition size, the proposed algorithm
allows the encoder to additionally testλmotion = 0 and
λmotion → ∞, which corresponds to minimum distortion
and minimum rate solutions, respectively. By testing these
two extreme values, the algorithm avoids to make large ME
errors in ME-compromising events, which refer to a wide set
of content-related events that make the ME process to perform
poorly; for example: complex or non translational movement,
edited transitions such as fades, blurring, etc.

The proposed algorithm has been extensively tested with
respect to the H.264/AVC reference software and a state-
of-the-art algorithm called CALM [6], which suggests a
context adaptive adjustment ofλmotion to improve coding
efficiency. Furthermore, the comparative assessment has been

(a)

(b)

(c)

Fig. 7. Illustrative example of the achieved subjective quality. (a) selected part
of the original frame selected from theIce Age sequence; (b) reconstructed
frame with the reference software; and (c) reconstructed frame with the
proposed method.

performed on a varied set of video segments exhibiting ME-
compromising events to show the performance of the proposed
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(a)

(b)

(c)

Fig. 8. Illustrative example of the achieved subjective quality. (a) selected part
of the original frame selected from theMobisode sequence; (b) reconstructed
frame with the reference software; and (c) reconstructed frame with the
proposed method.

algorithm in these cases.

The experimental results allowed us to conclude that the

proposed algorithm substantially improves the performance of
the ME process (when intra modes in inter MB are disabled),
achieving average bit rate reductions of9.27% with respect to
the reference software, while the CALM algorithm achieved
a bit rate reduction of0.13%. When considering the overall
coding efficiency, the performance improvement was lower
because the Intra modes used in Inter frames actually compen-
sated ME errors; nevertheless, the performance improvement
was still significant: an average bit rate reduction of2.20%
with respect to the reference software; while CALM does not
achieve any improvement.

Furthermore, we have experimentally tested the effective-
ness of each of the two additionalλmotion values, concluding
that both are equally important.

Finally, two illustrative examples of the improved subjective
quality achieved by the proposed algorithm have been also
provided.

Regarding future lines of research, we suggest the evaluation
of the proposed algorithm with GOP patterns using B frames.
Moreover, considering that there is still a moderate room for
improvement, we propose the design of a data-driven regressor
that would allow us to estimate more precisely the optimal
λmotion parameter, so that the algorithm would be able to
use a near-optimalλmotion value instead of just testing the
extreme cases.
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