464 research outputs found

    Flows and bisections in cubic graphs

    Get PDF
    A kk-weak bisection of a cubic graph GG is a partition of the vertex-set of GG into two parts V1V_1 and V2V_2 of equal size, such that each connected component of the subgraph of GG induced by ViV_i (i=1,2i=1,2) is a tree of at most k−2k-2 vertices. This notion can be viewed as a relaxed version of nowhere-zero flows, as it directly follows from old results of Jaeger that every cubic graph GG with a circular nowhere-zero rr-flow has a ⌊r⌋\lfloor r \rfloor-weak bisection. In this paper we study problems related to the existence of kk-weak bisections. We believe that every cubic graph which has a perfect matching, other than the Petersen graph, admits a 4-weak bisection and we present a family of cubic graphs with no perfect matching which do not admit such a bisection. The main result of this article is that every cubic graph admits a 5-weak bisection. When restricted to bridgeless graphs, that result would be a consequence of the assertion of the 5-flow Conjecture and as such it can be considered a (very small) step toward proving that assertion. However, the harder part of our proof focuses on graphs which do contain bridges.Comment: 14 pages, 6 figures - revised versio

    Colourings of cubic graphs inducing isomorphic monochromatic subgraphs

    Get PDF
    A kk-bisection of a bridgeless cubic graph GG is a 22-colouring of its vertex set such that the colour classes have the same cardinality and all connected components in the two subgraphs induced by the colour classes (monochromatic components in what follows) have order at most kk. Ban and Linial conjectured that every bridgeless cubic graph admits a 22-bisection except for the Petersen graph. A similar problem for the edge set of cubic graphs has been studied: Wormald conjectured that every cubic graph GG with ∣E(G)∣≡0(mod2)|E(G)| \equiv 0 \pmod 2 has a 22-edge colouring such that the two monochromatic subgraphs are isomorphic linear forests (i.e. a forest whose components are paths). Finally, Ando conjectured that every cubic graph admits a bisection such that the two induced monochromatic subgraphs are isomorphic. In this paper, we give a detailed insight into the conjectures of Ban-Linial and Wormald and provide evidence of a strong relation of both of them with Ando's conjecture. Furthermore, we also give computational and theoretical evidence in their support. As a result, we pose some open problems stronger than the above mentioned conjectures. Moreover, we prove Ban-Linial's conjecture for cubic cycle permutation graphs. As a by-product of studying 22-edge colourings of cubic graphs having linear forests as monochromatic components, we also give a negative answer to a problem posed by Jackson and Wormald about certain decompositions of cubic graphs into linear forests.Comment: 33 pages; submitted for publicatio

    Equivalence and stable isomorphism of groupoids, and diagonal-preserving stable isomorphisms of graph C*-algebras and Leavitt path algebras

    Get PDF
    We prove that ample groupoids with sigma-compact unit spaces are equivalent if and only if they are stably isomorphic in an appropriate sense, and relate this to Matui's notion of Kakutani equivalence. We use this result to show that diagonal-preserving stable isomorphisms of graph C*-algebras or Leavitt path algebras give rise to isomorphisms of the groupoids of the associated stabilised graphs. We deduce that the Leavitt path algebras LZ(E2)L_Z(E_2) and LZ(E2−)L_Z(E_{2-}) are not stably *-isomorphic.Comment: 12 pages. Minor corrections. This is the version that will be publishe

    The Peculiar Phase Structure of Random Graph Bisection

    Full text link
    The mincut graph bisection problem involves partitioning the n vertices of a graph into disjoint subsets, each containing exactly n/2 vertices, while minimizing the number of "cut" edges with an endpoint in each subset. When considered over sparse random graphs, the phase structure of the graph bisection problem displays certain familiar properties, but also some surprises. It is known that when the mean degree is below the critical value of 2 log 2, the cutsize is zero with high probability. We study how the minimum cutsize increases with mean degree above this critical threshold, finding a new analytical upper bound that improves considerably upon previous bounds. Combined with recent results on expander graphs, our bound suggests the unusual scenario that random graph bisection is replica symmetric up to and beyond the critical threshold, with a replica symmetry breaking transition possibly taking place above the threshold. An intriguing algorithmic consequence is that although the problem is NP-hard, we can find near-optimal cutsizes (whose ratio to the optimal value approaches 1 asymptotically) in polynomial time for typical instances near the phase transition.Comment: substantially revised section 2, changed figures 3, 4 and 6, made minor stylistic changes and added reference

    Internal Partitions of Regular Graphs

    Full text link
    An internal partition of an nn-vertex graph G=(V,E)G=(V,E) is a partition of VV such that every vertex has at least as many neighbors in its own part as in the other part. It has been conjectured that every dd-regular graph with n>N(d)n>N(d) vertices has an internal partition. Here we prove this for d=6d=6. The case d=n−4d=n-4 is of particular interest and leads to interesting new open problems on cubic graphs. We also provide new lower bounds on N(d)N(d) and find new families of graphs with no internal partitions. Weighted versions of these problems are considered as well
    • …
    corecore