A k-bisection of a bridgeless cubic graph G is a 2-colouring of its
vertex set such that the colour classes have the same cardinality and all
connected components in the two subgraphs induced by the colour classes
(monochromatic components in what follows) have order at most k. Ban and
Linial conjectured that every bridgeless cubic graph admits a 2-bisection
except for the Petersen graph. A similar problem for the edge set of cubic
graphs has been studied: Wormald conjectured that every cubic graph G with
∣E(G)∣≡0(mod2) has a 2-edge colouring such that the two
monochromatic subgraphs are isomorphic linear forests (i.e. a forest whose
components are paths). Finally, Ando conjectured that every cubic graph admits
a bisection such that the two induced monochromatic subgraphs are isomorphic.
In this paper, we give a detailed insight into the conjectures of Ban-Linial
and Wormald and provide evidence of a strong relation of both of them with
Ando's conjecture. Furthermore, we also give computational and theoretical
evidence in their support. As a result, we pose some open problems stronger
than the above mentioned conjectures. Moreover, we prove Ban-Linial's
conjecture for cubic cycle permutation graphs.
As a by-product of studying 2-edge colourings of cubic graphs having linear
forests as monochromatic components, we also give a negative answer to a
problem posed by Jackson and Wormald about certain decompositions of cubic
graphs into linear forests.Comment: 33 pages; submitted for publicatio