380 research outputs found

    Moment-Based Ellipticity Measurement as a Statistical Parameter Estimation Problem

    Full text link
    We show that galaxy ellipticity estimation for weak gravitational lensing with unweighted image moments reduces to the problem of measuring a combination of the means of three independent normal random variables. Under very general assumptions, the intrinsic image moments of sources can be recovered from observations including effects such as the point-spread function and pixellation. Gaussian pixel noise turns these into three jointly normal random variables, the means of which are algebraically related to the ellipticity. We show that the random variables are approximately independent with known variances, and provide an algorithm for making them exactly independent. Once the framework is developed, we derive general properties of the ellipticity estimation problem, such as the signal-to-noise ratio, a generic form of an ellipticity estimator, and Cram\'er-Rao lower bounds for an unbiased estimator. We then derive the unbiased ellipticity estimator using unweighted image moments. We find that this unbiased estimator has a poorly behaved distribution and does not converge in practical applications, but demonstrates how to derive and understand the behaviour of new moment-based ellipticity estimators.Comment: 11 pages, 7 figures; v2 matches accepted version with minor change

    Performance Bounds for Parameter Estimation under Misspecified Models: Fundamental findings and applications

    Full text link
    Inferring information from a set of acquired data is the main objective of any signal processing (SP) method. In particular, the common problem of estimating the value of a vector of parameters from a set of noisy measurements is at the core of a plethora of scientific and technological advances in the last decades; for example, wireless communications, radar and sonar, biomedicine, image processing, and seismology, just to name a few. Developing an estimation algorithm often begins by assuming a statistical model for the measured data, i.e. a probability density function (pdf) which if correct, fully characterizes the behaviour of the collected data/measurements. Experience with real data, however, often exposes the limitations of any assumed data model since modelling errors at some level are always present. Consequently, the true data model and the model assumed to derive the estimation algorithm could differ. When this happens, the model is said to be mismatched or misspecified. Therefore, understanding the possible performance loss or regret that an estimation algorithm could experience under model misspecification is of crucial importance for any SP practitioner. Further, understanding the limits on the performance of any estimator subject to model misspecification is of practical interest. Motivated by the widespread and practical need to assess the performance of a mismatched estimator, the goal of this paper is to help to bring attention to the main theoretical findings on estimation theory, and in particular on lower bounds under model misspecification, that have been published in the statistical and econometrical literature in the last fifty years. Secondly, some applications are discussed to illustrate the broad range of areas and problems to which this framework extends, and consequently the numerous opportunities available for SP researchers.Comment: To appear in the IEEE Signal Processing Magazin

    Analysis of the Bayesian Cramer-Rao lower bound in astrometry: Studying the impact of prior information in the location of an object

    Full text link
    Context. The best precision that can be achieved to estimate the location of a stellar-like object is a topic of permanent interest in the astrometric community. Aims. We analyse bounds for the best position estimation of a stellar-like object on a CCD detector array in a Bayesian setting where the position is unknown, but where we have access to a prior distribution. In contrast to a parametric setting where we estimate a parameter from observations, the Bayesian approach estimates a random object (i.e., the position is a random variable) from observations that are statistically dependent on the position. Methods. We characterize the Bayesian Cramer-Rao (CR) that bounds the minimum mean square error (MMSE) of the best estimator of the position of a point source on a linear CCD-like detector, as a function of the properties of detector, the source, and the background. Results. We quantify and analyse the increase in astrometric performance from the use of a prior distribution of the object position, which is not available in the classical parametric setting. This gain is shown to be significant for various observational regimes, in particular in the case of faint objects or when the observations are taken under poor conditions. Furthermore, we present numerical evidence that the MMSE estimator of this problem tightly achieves the Bayesian CR bound. This is a remarkable result, demonstrating that all the performance gains presented in our analysis can be achieved with the MMSE estimator. Conclusions The Bayesian CR bound can be used as a benchmark indicator of the expected maximum positional precision of a set of astrometric measurements in which prior information can be incorporated. This bound can be achieved through the conditional mean estimator, in contrast to the parametric case where no unbiased estimator precisely reaches the CR bound.Comment: 17 pages, 12 figures. Accepted for publication on Astronomy & Astrophysic

    MiniMax Affine Estimation of Parameters of Multiple Damped Complex Exponentials

    Get PDF
    Multiple damped complex exponentials are of great practical importance as they are useful for describing many technological situations. Several estimators have been developed for the parameters of these complex exponentials. In this paper, we apply the MiniMax affine estimator to this problem in order to obtain a better performance (in terms of the mean squared error) than other unbiased estimators. Through simulations, this estimator is shown to have a reduced mean squared error, especially for the adverse case of lower signal-to-noise ratio. Additionally, a closed form expression for the MiniMax affine estimator is presented.Sociedad Argentina de Informática e Investigación Operativ

    Information Geometric Approach to Bayesian Lower Error Bounds

    Full text link
    Information geometry describes a framework where probability densities can be viewed as differential geometry structures. This approach has shown that the geometry in the space of probability distributions that are parameterized by their covariance matrix is linked to the fundamentals concepts of estimation theory. In particular, prior work proposes a Riemannian metric - the distance between the parameterized probability distributions - that is equivalent to the Fisher Information Matrix, and helpful in obtaining the deterministic Cram\'{e}r-Rao lower bound (CRLB). Recent work in this framework has led to establishing links with several practical applications. However, classical CRLB is useful only for unbiased estimators and inaccurately predicts the mean square error in low signal-to-noise (SNR) scenarios. In this paper, we propose a general Riemannian metric that, at once, is used to obtain both Bayesian CRLB and deterministic CRLB along with their vector parameter extensions. We also extend our results to the Barankin bound, thereby enhancing their applicability to low SNR situations.Comment: 5 page

    Fourier Analysis of Gapped Time Series: Improved Estimates of Solar and Stellar Oscillation Parameters

    Full text link
    Quantitative helio- and asteroseismology require very precise measurements of the frequencies, amplitudes, and lifetimes of the global modes of stellar oscillation. It is common knowledge that the precision of these measurements depends on the total length (T), quality, and completeness of the observations. Except in a few simple cases, the effect of gaps in the data on measurement precision is poorly understood, in particular in Fourier space where the convolution of the observable with the observation window introduces correlations between different frequencies. Here we describe and implement a rather general method to retrieve maximum likelihood estimates of the oscillation parameters, taking into account the proper statistics of the observations. Our fitting method applies in complex Fourier space and exploits the phase information. We consider both solar-like stochastic oscillations and long-lived harmonic oscillations, plus random noise. Using numerical simulations, we demonstrate the existence of cases for which our improved fitting method is less biased and has a greater precision than when the frequency correlations are ignored. This is especially true of low signal-to-noise solar-like oscillations. For example, we discuss a case where the precision on the mode frequency estimate is increased by a factor of five, for a duty cycle of 15%. In the case of long-lived sinusoidal oscillations, a proper treatment of the frequency correlations does not provide any significant improvement; nevertheless we confirm that the mode frequency can be measured from gapped data at a much better precision than the 1/T Rayleigh resolution.Comment: Accepted for publication in Solar Physics Topical Issue "Helioseismology, Asteroseismology, and MHD Connections

    Performance bounds for polynomial phase parameter estimation with nonuniform and random sampling schemes

    Get PDF
    Copyright © 2000 IEEEEstimating the parameters of a cisoid with an unknown amplitude and polynomial phase using uniformly spaced samples can result in ambiguous estimates due to Nyquist sampling limitations. It has been shown previously that nonuniform sampling has the advantage of unambiguous estimates beyond the Nyquist frequency; however, the effect of sampling on the Cramer-Rao bounds is not well known. This paper first derives the maximum likelihood estimators and Cramer-Rao bounds for the parameters with known, arbitrary sampling times. It then outlines two methods for incorporating random sampling times into the lower variance bounds, describing one in detail. It is then shown that for a signal with additive white Gaussian noise the bounds for the estimation with nonuniform sampling tend toward those of uniform sampling. Thus, nonuniform sampling overcomes the ambiguity problems of uniform sampling without incurring the penalty of an increased variance in parameter estimation.Jonathan A. Legg and Douglas A. Gra
    corecore