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Performance Bounds for Polynomial Phase Parameter
Estimation with Nonuniform and Random Sampling
Schemes
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Abstract—Estimating the parameters of a cisoid with an un- these provide a benchmark with which estimator performance
known amplitude and polynomial phase using uniformly spaced may be compared. They may also show whether or not the
samples can result in ambiguous estimates due to Nyquist sam-yagjred accuracy is theoretically possible. These variances are
pling limitations. It has been shown previously that nonuniform ided by the C 5—Ra0 b d hich ai titati
sampling has the advantage of unambiguous estimates beyondprOVI eabythe rgmer— Ao boti S w '(_: give a quantitative
the Nyqu|st frequency; however' the effect of Samp”ng on the measure Of the U|t|mate aCCUI‘acy W|th Wh|Ch a parameter may
Cramér—Rao bounds is not well known. be estimated by an unbiased estimator.

This paper first derives the maximum likelihood estimators and Many papers have been written on the subject of polynomial
Cramér—Rao bounds for the parameters with known, arbirary - ypnage parameter estimation, for example, Peleg and Porat [4]
sampling times. It then outlines two methods for incorporating . trod dth ti d di t | ial oh t
random sampling times into the lower variance bounds, describing introctce & Con muogs ik |sc?re € po ynom|fa phase trans-
one in detail. forms, and Peleg and Friedler [5] discussed the discrete polyno-

It is then shown that for a signal with additive white, Gaussian mial phase transform in detail. Friedler and Francos [6] deter-
noise the bounds for the estimation with nonuniform samplingtend mined the Cramér—Rao bounds for the estimates of parameters
toward those of uniform sampling. Thus, nonuniform sampling i, 5 mylticomponent polynomial phase signal in Gaussian noise

overcomes the ambiguity problems of uniform sampling without . . .
incurring the penalty of an increased variance in parameter esti- and presented an estimation algorithm, and Barbarssa 7]

mation. applied the high—order multilag ambiguity function to synthetic
Index Terms—Cramér-Rao bound, polynomial phase estima- aPerture radar. This paper is concerned with theoretical estima-
tion. ' tion and estimation bounds rather than implementation methods.

It differs from previous work in that it incorporates both arbi-
trary and random sampling times.

Section Il describes the model of the signals of interest. Sec-
HERE are situations when the parameters of a cisoid (réen Ill derives the maximum likelihood estimators for the un-
tating phasor) with unknown amplitude and polynomigtnown parameters in this model. Estimator bias is discussed in

phase need to be estimated when the signal’s spectrum exce&gftion IV. Cramér—Rao bounds are discussed in Section V for
the maximum allowable sampling rate. An example is synthetieterministic sampling and Section VI for random sampling.
aperture radar [1], [2], where the radar’s pulse repetition frdhese include a discussion of the optimal sampling scheme and
guency (sampling rate) determines the unambiguous Dopp#xamples of different sampling distributions, respectively. Sec-
bandwidth. This is chosen to accommodate the spectrum ofien VII shows the output from simulations to illustrate the re-
stationary target, which has an approximately quadratic phagéts, and Section VIII concludes the paper.
response. A moving target, on the other hand, has a Doppler
shifted response that causes Nyquist ambiguities if the radar II. SIGNAL MODEL
transmits at uniform intervals. Under these circumstances,
nonuniform sampling interval with specific properties permits
unambiguous estimates; a reconstructed spectrum tends toward
that of the underlying analog process [3].

It is useful to know the minimum possible variances of

the amplitude and polynomial phase coefficient estimatd§; Sampled at the timed#;}, ¢ = 1,---, N, wherep
is an unknown, positive amplitudgj? = -1, ¢ and

, _ _ 6.}, k = 1,-.-, K are unknown polynomial phase co-
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I. INTRODUCTION

a
Suppose that the signal

y(t) = pej27r(¢+01t+62t2+~~~+6KtK) + n(t)
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The sampled signal can be represented by and
, - {3IR 'y}
_ Q2w g = ——
y(t) = p"Pu(0, t) +n P oHRv
wherey(t) = [y(t1), y(t2), -+, u(tn)]*. (Boldface indicates where®{-} andJ{-} return the real and imaginary parts, re-
vectors or matrices, and the superscfiplenotes the transposespectively. SinceR is positive definite 2" is positive definite,
operation.) The signal which means that!’ R~ 'v is real. Therefore
L g2m (0t Ot e Ot ) . Hp-1
(11(0, t))Z = ¢ L 2 K ﬁGJQm;S —_ % (2)
_ _ vHR v
With @ = [61, 60y, ---,0x]% andt = [t1,ta,---,tx]7. Thenoise . . _
vector which is the least squares amplitude estimator. If the noise were
white with variances? (so thatR = 021, wherel is the identity
n ~CNn(0, R) matrix), this would reduce to a matched filtges2™¢ = vy, If

0 = [64], this would be equivalent to evaluating the discrete time
Fouriertransform (DTFT) of the sampled signal at the frequency
of interest.

The estimator for the polynomial phase coefficients

N

R71| exp (—[:c — E[:c]]HRfl[:c — E[:c]]) .

R = E[nn'?] is the noise covariance matrix, the superscHpt
denoting the Hermitian conjugate-transpose oper&ip}.de-

notes the exp_ectation operator. _ 0= arg min(y — ﬁCij%U)HR—l(y _ ﬁcﬂﬂ—&v)
For convenience, the unknowns are stored in the vacter
[p, ¢, 8717 Itis assumed that the number of measuremahts |yHR_1v|2
exceeds the number of unknowns. = argmax —————— 3
0 v R v
[ll. M AXIMUM LIKELIHOOD ESTIMATION using (2). Thus@ can be estimated without knowledge of the

The maximum likelihood (ML) estimator for these parameamplitude or jnitial phase. Again, in thg case of white noise and
ters is found by applying classical theory, for example, [8] an%_: [6,], this is the frequency that maximizes the square_d mag-
[9]. This estimator is of interest since it returns the most likel{ftude of the DTFT. (In practice, a coarse frequency estimation
value of the parameters, given a uniform prior probability, witH'ay _be performe_d by finding the maximum sq_ugred value of
variances achieving the Cramér—Rao bound. The ML estimélﬁ? dlscrete_ Fourier transform evaluatgd ata f|n|.te numb_er of
corresponds to the parameters that maximize the probabifiiduency bins. Unfortunately, as the signal-to-noise ratio is re-
density function (PDF) of the observatiop&|t; «) (which is ddced, it suddenly becomes more likely thgt a noise sp|kg will
termed the likelihood function). This PDF is conditioned on thB€ 1arger than the value in the frequency bin nearest the signal,
random sampling times (whose PDF will be specified later) ar%?(;'ng to a gross error. This is known as the “threshold effect

is parameterized by the vectar Then i i ) ) )
The performance of this estimator will be considered in the

@ = arg max p(ylt; w) following sections.

1 p
= argmax.— R71| exp (—[y — ped?T eyt IV. Blas
u

~
s . .
Ry peﬂwv]) The expected value of the complex amplitude estimate

= argmin(y — pe?*"*v) I R (y — pe?*™%v) v R™'E[y]
uw _— =

v Rty P

B [pei2] =
wherev = (0, t).

For anyd, the ML estimator of the amplitude and initial phas(f:;md therefore, the estimator (2) is unbiased, irrespective of the

sampling times.

{p, $} = argmin(y — pe?>*u) TR~ (y — pe/>™®w). (1) Ambiguiti_es r_esult when more than one set of model param-
P eters can give rise to the observations. This is well known with

. . _ . uniform sampling since a cisoid with a constant frequency can

We can consn_zler the_amplltude a_md |r_1|t|a| phase to COMPIIS§ & fitted to the data at the signal’s frequency or at multiples of
complex amplltudelw!th real and imaginary compongntand the sampling frequency away from this. These aliases may be in-

pi- Due to the restrictions placed grand¢, it follows that terpreted as estimatidriasessince, with no prior knowledge, a

practical estimation strategy that searches for cisoids from a pre-
defined starting point will consistently take one of them as the

and differentiating the right-hand side of (1) with respect fyue value. (Another possibility, that the estimator has a random

P = pelT6 =, + jipi

these components results in starting frequency, is not considered since the resulting error,
which is a variance, depends on the strategy adopted. For the
. R{WIR 1y} evaluation of the variance, it is assumed that the correct alias is

Pr = vHER 1y chosen.) These biases will now be considered in detalil.
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The expected value of the polynomial phase coefficient esti- V. CRB’SFOR DETERMINISTIC SAMPLING

mator (3) is There is a requirement for a figure of merit for the perfor-

mance of the estimator (3) that takes into account the bias issues
discussed above (4), such as the mean square error. However, as
mentioned previously, the bias achieved depends on the specific
implementation of (3); therefore, it will be assumed here that the
correct alias is chosen. The mean square error is then equivalent
to the variance.
) Z |:pe—j27r(¢+01tk+02ti) + ﬂk:| The, lower variance _bound for an unbiased estimator, the
Cramér—Rao bounds given by

. |yHR_lv|2}
B[] — 2 [sng e 2120
{fug;nfxx TR-L,

=E |argmax ————
o ©vHER ‘v

k1

2
o CRBI(i)1] = (J i & 5
.R;:’lzﬁeﬂ’rw'i'@ltz-l-@ztf) [(@)e] = (J~ v ©)

(e.g., [10]), where the Fisher information matdxhas the ele-

ments
where only a second-order polynomial phase is being consid-
ered for brevity. D 2F {81np(y|t; u) 9 1n p(ylt; u)} . ©)
For white noise, this becomes ’ INu)k d(u),
. It can be shown that fay ~ CA (m(w), R), (6) simplifies to
E [0} =E |argmax
o B om(w)" | Om(u)
N7 pf2Ald— ot (BL—bu) (82— 62)1] 0= 2%{ (u)y, = A(u)
‘ 327V H 327
2 , :m{a(pc )" p-19pe v)}
8(u)k a(u)l

+ny, oI 2w (G401t +6213)

for this problem [2, App. D], where (v); =
2 eI (BitiFbat? 440t ) Al parameters are assumed to be
Zpeﬂw[(el—el)tw(e;—02)t%1 +nl, unknown, and therefores = [p, ¢, 6717

=FE [argmax . : .
Here, we have, using vector notation for brevity

k

R R j27

where the noise term), = n;c/27(@+6:1t:+6:1) has the same Ope ™y = /Ty
statistics am,. (This is because the amplitude is unchanged, a.p
andn,, has a uniformly distributed random phase.) Opel?™y _ 27 pei 2Ty

For uniform sampling, where, = kT, the sum of the ex- d¢ )
ponentials will reach a maximum when the exponential’s arggnd e
ments are multiples gf2. This will happen when both 3pf;9 v — 27 peI Ty

b =00+ /T } (4) WhereT is a matrix containing the sampling times
and ég =6, +y/T2
t1 0

for arbitrary integers andy. The estimated spectrum will reach ta
the same value in each of these cases. Tthesestimator is r=
biased. 0 tn

Any nonuniform or random sampling scheme will suppress
these effects since the phases will then not be aligned. Howevelt can then be shown that
it may be important to suppress aliases as much as possible. This ot
is especially true when there are several signals, whichisacase  (J)1,1 =2R{v" R v}
not considered here. Bilinskis and Mikelsons [3, pp. 80-88] dis- Hoepk p—1
. . . D =4 TR , E>0
cuss the degree of aliasing, which is defined as the squared sum (Dit23 oty vt - 7)
of the Fourier coefficients of the signal at aliasing frequencies, (J)1 142 = — 47rp3‘{v”R‘1Tlv}, [>0
for a variety of different random sampling schemes. They show o2 2eny Hepk o Loyl
that random intervals with a positive correlation perform better (Disz, 142 =8 p"Rw" TR T'v}, K, 12 0.
than with no correlation or periodic sampling with jitter. (In gen- it is well known that the Cramér—Rao bounds represent the minimum vari-

eral, sampling schemes that approximate a uniform probabili’tgﬁe with which a parameter may be estimated by an unbiased estimator. In this
’ case, there is the potential for additive bias, as illustrated by (4). However, an

of a sample occurring as a functl.on of time have the best Prafmitive offset will not affect the variance of a random variable so the lower
erties.) These schemes will be discussed later. variance bound is still the Cramér—Rao bound, despite the bias.
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For white noise an@ = [6;, 6,]7, this ig n()
1 SAMPLER
J= ; u = v(t) > y
2N 0 0 0 ]
2 2 2 2 2 2 2
0 8np"N  &n7p Ztk 8mp Ztk SAMPLING ¢ SIGNAL A
K K Bl = conME PROCESSOR [— U
0 87r2p22tk 87r2p22ti 87r2p22tz .
Fig. 1. Representation of the random sampling parameter estimation scenario.
0 8W2P22tz 8W2P22t% 87T2P22t% The sampling times are randomly distributed and assumed to be known to the
L k k k . signal processor.

(8)
) ) . the off-diagonal terms in (8) is a problem, for example, for the
Since absolute timeft; } are referred to, it is necessary to,m of the times to be zero. we have
specify a reference relative to the origin This will be consid-

ered next for the cases of uniform and nonuniform sampling. iy ]
=5 (1 = N)mi 11)
A. Uniform Sampling i=1
If we let the sampling times be centeredgnwe have so that the origin is positioned at the “center of gravity” of the
times. Other criteria, such as setting the sum of cubed times
N-1 to be zero [which corresponds to another off-diagonal term in

o= |h=l) =~ | THto, k=1, N (9) (8)], gives different results to (11) in general. The value@f

to be used is therefore not clear; the global minimum of the

whereT" is the sampling interval. Cramér—Rao bounds may need to be found.

Some of the Cramér—Rao bounds dependgmhich is not
intuitive. The effect was observed for the simpler problem @. On the Optimal Sampling Scheme
estimating bothp and#; by Rife et al. [8, p. 592], who stated

that the minimum Cramér—Rao bound grwas obtained by of optimum sampling of polynomial phase signals. In [11], it

choosingy :._((N_ 1)/2)T. When (9) is used in (5) and (8), is conjectured that the optimal sampling strategy is to cluster
the lower variance bound for phase reaches a minimum when

the sampling times are centeredfn= +/T2(N? + 1)/20, samples intd< + 1 groups evenly spaced across the sampling

L R 7 . interval wherek is the order of the polynomial phase. However,
which is a significant departure from 0. Although this is an in;_. . . . .
. A . : this strategy also imposes the physically unrealizable condition
teresting phenomenon, it will not be investigated further here, o S
: that samples within a cluster must be infinitely close together.

The most appropriat, to use may be when as many Cross Further research, particularly considering the effect of noise
terms in the Fisher matrix (8) as possible are forced to 0. This P y g X

happens whery, = 0. Elements with sums afto odd powers 'S requlred: One approaph, for exgmple, yvould be to maximize
the determinant of the Fisher matrix (8) with respect to the sam-
become zero, and therefore, the bounds become

Apart from [11], little work has been reported on the problem

pling times.
CRB[j] =o”/(2N) )
VI. CRB’s FOR RANDOM SAMPLING
s 3 o2 3N?2-7
CRBI[¢] = 5277 07 N(N? — 4) Provided the sampling times are fixed, the Cramér—Rao
5 o2 ) (10) bounds in the colored Gaussia_m noise case can b_e found using
CRB[él] _ 2 , and (7) and (5). However, if the times are specified in terms of
2m2 p? T2N(N? - 1) distributionsp(¢) rather than specific instants, it is desirable
) 45 o2 1 to know theexpectedCramér—Rao boundét is assumed that
CRBI[f:] = 92 2 TIN(N* — 5N2 1 4) the actual times are known for estimating the parame#gtsit
r e differ from one realization to the nexthis situation is shown
in Fig. 1. The Cramér—Rao bounds for a particular realization
B. Nonuniform Sampling can be found from the results of the previous section. However,
For nonuniform sampling, we have what may also be required is a bound for the variance over

the ensemble of realizations. Two possible approaches will be
discussed here.
1) Find the expectation of the bounds themselves with re-
spect to the timing distributions

k—1
th=> 7, k=1 N
=0

wherery, is the interval between sampling timgsandt 1, 7o
being the offset ot; from the origin. Simultaneously zeroing Er[CRB[(u);]] = / CRBI[(u);; t]pr(t) dt. (12)
T

2The second-order case is of interest due to its relevance to synthetic aperture This i intuiti thod: h its t . .
radar, where the distance to a target and, hence, the phase of its response may ' IS IS an intuitive metnod; however, 1ts frue meaning 1s
be approximated by a quadratic. not clear, and we do not further pursue this.
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2) Since the likelihood function now contains random times, In the case of white nois&® = +%1, and (14) becomes
pr(t) should be incorporated in to the Fisher information

d - alk, 1 4
matrix (6) giving (I Vi1 (0_2 )f {/ T T9* Dyp(t) dt}
T
/ dlnp(y, t;w) dlup(y, t;u) .
I 2E > 22 @3 a(k, ! e
e =Ev,r | =500 a(u); (13) = (02 s > T(v)nt%<’“”>(v)np:r(t) dt
p(y, t;u) is the joint probability density function of the
sampled signal and the sampling times, parameterized = 5 {Z/ £k D }
by the unknowns. Note that the expectation is over the 7
sample spaces of both the random measuremeated  gjnce the phase terms cancel. The supersefgnotes the con-
the random measurement timges jugation operation, ang(k, 1) expresses the powers of
We are now considering approach 2. Equation (13) can be )
simplified. Using a conditional probability expression 0, k=i=1
(k, D= k+1—-4, k1>2
p(y7 t; 'u,) — p(y|t7 'u,) pT(t; 'u,) Undeﬁned otherwise.

andpr(t;u) = pr(t) since the sampling times do not depend I the PDF's are independent, we have

upon the parameters; then, from (13) k1
_ (J/)kJ:a( 27 )f Z/ / / t%(k:l)
N 9 In(p(y|t; w) pr(t)) Oln(p(ylt;w) pr(t)) g W oy I n
(S =Ey, 7
I I(w)x Iu)
[Olnp(y|t; u) + ln pr(E) : Hme(tm) dty dty - diy
=Ey r
I I(w)x Ll
Olnp(ylt;u) + Inpr(t) LD {Z / 5"z, (1) dt}
8(11,)1 g - T,
[0 lnp(ylt;u) O 1n p(ylt; u)} and
=Ey, k, 1
"L 9w Iu) (I Vi1 = alk ) Nf {/ 9% Dy (1) dt}
// alnp y|t u) Jln p(y|t; w) o? T
I(u); if the PDF’s are the same. (Note that the argumenf & the
p(y, t;u) dy dt g(k, [)th moment of the PDF of.)
ol t;u) 91 t
= / U np(yltiu) Olnplylt;w) A. Example Sampling Distributions
rlly  O(uh )y _
1) Random Offsetsif there are random offsets from uni-
plylt;w) dy} pr(t) dt formly spaced samples centeredtos 0 (i.e., jitter), we have
:/(J)k,lpT(t)dt tn=<n—¥>T+un, n=0,---,N—1
T

=Er[()r,] whereu,, ~ (0, bT) and

whereJ was defined in (6). The fm_al re_sult is 5|m|lar_|n concept_ A [1/(28), p—s<z<p+s
to (12), except that the expectation is over the Fisher matrix Uzn(pty 5) = 0 otherwise
elements rather than the Cramér—Rao bounds. ’

J'’s elements (7) can be written in the form for uniformly distributed offsets. Then
(D1 =alk, ) flw ()R (1)} pr, (1) = U([n — (N — 1)/2]T, bT).
where It can be shown that
2, k=1l=1 / )
drp, k>1,1=1 (41,1 =2N/o )

alk, 1) =

’ —4drp, k=1,1>1 Fan -0
sr2p?, k1> 1. (I )iz,
o ()1,k42 =0, and
f{-} extracts the real or imaginary part, am(k) and=(k) are ) o
of the formT™*~2y with w(1) = x(1) = v; therefore / 8n”p 1

(S, ie2 = =25 2b(k+1+1)

(15)

Di=alt 0 { [ 0" Fapr@af. a9
T Z{ n— _ 1 /2]T + b}k+l+1

This cannot readily be simplified Sin¢®),., ,, = r(tm — t,);

it is a function of the variables being integrated over. —{[n— (N = 1)/2]T — p}rtirt,

7
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2) Uniformly Distributed Over Whole Intervalin this case, -10p *
for all n * * %P N
=20+t
1/(2a), —a<t<a ¥
t) = ? - . ¥
pr, () { 0, otherwise. -30¢ ¥ X0 ¥
+
This distribution is impractical since it requires that some sam- & gt :
ples occur with intervals that are unrealistically small. However, z/ N ‘;
it may be approximated in practice by the use of random inter- & _sot ;L + 9,
vals between samples; the distribution of the intervals is of no t+ x :
real importance whetv is large and may incorporate a min- 60} x
imum value. (Bilinskiset al.[3] discuss this, methods of gener- : 0,
ating the sequences, and the relative merits of different sampling  _,41 :
schemes in detail.) M
It can be shown that -80 . . . . . .
10 15 20 25 30 35
N
(J)1,1 =2N/o* . ) . A
, Fig. 2. Cramér—Rao bounds for uniform samplifg‘{optimum” nonuniform
(J )k+2, 1=0 deterministic sampling (x), and uniformly distributed random sampling (+) with
(J/)l ja2 =0 normalized parameters.
and
,p°  Naktl 3) Known Times:As a final example, nonrandom sampling
(Iigz42 =4 Zhtit D) k+leven times can be treated as a limiting case of random sampling with
0, otherwise.

This is the same as the result achieved with random offsets (15),
where the offsets ar&-0.57". However, it is preferable to use

random intervals in practice. The intervals may be constrained t% . . . .
- L . . : whered(t) is the Dirac delta function. It can easily be shown
have a minimum sampling time separation, unlike with rando

;L o . - . :
offsets, and there need only be a small degree of randomnesggu = J, which is the Fisher matrix discussed in Section V.

a large amount, such ak0.57, leads to a degree of unpre-
dictability in performance [3].

If « = (N — 1)T/2, making the time span the same as
for a uniform sequence, af®i= [6;, #2]*, the corresponding

pr,(t) =6t —t,)Vn

VII. SIMULATIONS

Fig. 3 shows the estimation errors obtained as a function of

Cramér—-Rao bounds are the noise variance when the four paramejers, 6,, and 6,
were estimated with simulated data and uniform sampling. The
CRB[j] =0?/(2N) 3 signal’s magqitude; was 1, the number of samplés was 20,
) the sampling intervél” was 2, the phase paramegewvas 0.123,
CRB[d] = 9 o° 1 the frequency; was 0.106, and the frequency rdte0.01. 15
32m2 p2 N estimations were performed for each noise variance; the ver-
. 3 o 1 tical bars in the figure show the corresponding 99% confidence
CRBlO\| =5 S mmvv 12 (16) intervals. The noise values were the same for each of the three
2m% p? TPN(N =) simulations.
and Fig. 4 shows the errors obtained during a similar simulation
CRB[G}] _ ﬁO_Q 1 using uniformly distributed sampling. The sampling times were
272 p2 TAN(N — 1)) the same for each of the three noise variances. The sample vari-

o _ . . ances are very similar to the Cramér—Rao bounds.
This is equivalent to the bounds for uniform sampling (10) for

large N and slightly larger for smallV. Increasing the interval
a will not make them the same; the effects are nonlinear.

Fig. 2 shows a comparison between the Cramér—Rao bounds
corresponding to uniform sampling (10), the nonuniform It was shown that under the right conditions, the parameters
sampling strategy discussed in Section V-C, and uniformbf a polynomial phase signal can be estimated unambiguously
distributed random sampling (16) as a function of the numbeith nonuniform sampling to the same accuracy as with uniform
of samplesN. o2 = 1, p> = 1, andZ = 1. There is very sampling but without the bias errors due to aliasing effects. This
little difference between the uniform and uniformly distributeghermits the accurate, unambiguous measurement of signal pa-
random schemes whe¥ > 15. Forf; andf-, the scheme of rameters beyond the Nyquist limits encountered with uniform
Section V-C consistently out performs the other two. sampling.

VIII. CONCLUSION
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Fig. 3. Estimation errors found by simulation with uniform sampling. The
solid curves show the Cramér—Rao lower variance bounds.
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