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Performance Bounds for Polynomial Phase Parameter
Estimation with Nonuniform and Random Sampling

Schemes
Jonathan A. Legg, Member, IEEE,and Douglas A. Gray, Member, IEEE

Abstract—Estimating the parameters of a cisoid with an un-
known amplitude and polynomial phase using uniformly spaced
samples can result in ambiguous estimates due to Nyquist sam-
pling limitations. It has been shown previously that nonuniform
sampling has the advantage of unambiguous estimates beyond
the Nyquist frequency; however, the effect of sampling on the
Cramér–Rao bounds is not well known.

This paper first derives the maximum likelihood estimators and
Cramér–Rao bounds for the parameters with known, arbitrary
sampling times. It then outlines two methods for incorporating
random sampling times into the lower variance bounds, describing
one in detail.

It is then shown that for a signal with additive white, Gaussian
noise the bounds for the estimation with nonuniform sampling tend
toward those of uniform sampling. Thus, nonuniform sampling
overcomes the ambiguity problems of uniform sampling without
incurring the penalty of an increased variance in parameter esti-
mation.

Index Terms—Cramér-Rao bound, polynomial phase estima-
tion.

I. INTRODUCTION

T HERE are situations when the parameters of a cisoid (ro-
tating phasor) with unknown amplitude and polynomial

phase need to be estimated when the signal’s spectrum exceeds
the maximum allowable sampling rate. An example is synthetic
aperture radar [1], [2], where the radar’s pulse repetition fre-
quency (sampling rate) determines the unambiguous Doppler
bandwidth. This is chosen to accommodate the spectrum of a
stationary target, which has an approximately quadratic phase
response. A moving target, on the other hand, has a Doppler
shifted response that causes Nyquist ambiguities if the radar
transmits at uniform intervals. Under these circumstances, a
nonuniform sampling interval with specific properties permits
unambiguous estimates; a reconstructed spectrum tends toward
that of the underlying analog process [3].

It is useful to know the minimum possible variances of
the amplitude and polynomial phase coefficient estimates;
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these provide a benchmark with which estimator performance
may be compared. They may also show whether or not the
desired accuracy is theoretically possible. These variances are
provided by the Cramér–Rao bounds, which give a quantitative
measure of the ultimate accuracy with which a parameter may
be estimated by an unbiased estimator.

Many papers have been written on the subject of polynomial
phase parameter estimation, for example, Peleg and Porat [4]
introduced the continuous and discrete polynomial phase trans-
forms, and Peleg and Friedler [5] discussed the discrete polyno-
mial phase transform in detail. Friedler and Francos [6] deter-
mined the Cramér–Rao bounds for the estimates of parameters
in a multicomponent polynomial phase signal in Gaussian noise
and presented an estimation algorithm, and Barbarossaet al.[7]
applied the high–order multilag ambiguity function to synthetic
aperture radar. This paper is concerned with theoretical estima-
tion and estimation bounds rather than implementation methods.
It differs from previous work in that it incorporates both arbi-
trary and random sampling times.

Section II describes the model of the signals of interest. Sec-
tion III derives the maximum likelihood estimators for the un-
known parameters in this model. Estimator bias is discussed in
Section IV. Cramér–Rao bounds are discussed in Section V for
deterministic sampling and Section VI for random sampling.
These include a discussion of the optimal sampling scheme and
examples of different sampling distributions, respectively. Sec-
tion VII shows the output from simulations to illustrate the re-
sults, and Section VIII concludes the paper.

II. SIGNAL MODEL

Suppose that the signal

is sampled at the times , where
is an unknown, positive amplitude, , and

are unknown polynomial phase co-
efficients, and is a known, zero mean, stationary, circular,
Gaussian noise process. Without loss of generality, letbe
restricted to . Note that the unknown signal model
parameters are nonrandom.

Throughout this paper, it is assumed that the sampling times
are known to the estimator. Unless stated otherwise, they are
arbitrary; in Section VI, they are governed by a probability dis-
tribution.
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The sampled signal can be represented by

where . (Boldface indicates
vectors or matrices, and the superscriptdenotes the transpose
operation.) The signal

with and . The noise
vector

is the noise covariance matrix, the superscript
denoting the Hermitian conjugate-transpose operator.de-
notes the expectation operator.

For convenience, the unknowns are stored in the vector
. It is assumed that the number of measurements

exceeds the number of unknowns.

III. M AXIMUM LIKELIHOOD ESTIMATION

The maximum likelihood (ML) estimator for these parame-
ters is found by applying classical theory, for example, [8] and
[9]. This estimator is of interest since it returns the most likely
value of the parameters, given a uniform prior probability, with
variances achieving the Cramér–Rao bound. The ML estimate
corresponds to the parameters that maximize the probability
density function (PDF) of the observations (which is
termed the likelihood function). This PDF is conditioned on the
random sampling times (whose PDF will be specified later) and
is parameterized by the vector. Then

where .
For any , the ML estimator of the amplitude and initial phase

(1)

We can consider the amplitude and initial phase to comprise a
complex amplitude with real and imaginary componentsand

. Due to the restrictions placed onand , it follows that

and differentiating the right-hand side of (1) with respect to
these components results in

and

where and return the real and imaginary parts, re-
spectively. Since is positive definite, is positive definite,
which means that is real. Therefore

(2)

which is the least squares amplitude estimator. If the noise were
white with variance (so that , where is the identity
matrix), this would reduce to a matched filter: . If

, this would be equivalent to evaluating the discrete time
Fourier transform (DTFT) of the sampled signal at the frequency
of interest.

The estimator for the polynomial phase coefficients

(3)

using (2). Thus, can be estimated without knowledge of the
amplitude or initial phase. Again, in the case of white noise and

, this is the frequency that maximizes the squared mag-
nitude of the DTFT. (In practice, a coarse frequency estimation
may be performed by finding the maximum squared value of
the discrete Fourier transform evaluated at a finite number of
frequency bins. Unfortunately, as the signal-to-noise ratio is re-
duced, it suddenly becomes more likely that a noise spike will
be larger than the value in the frequency bin nearest the signal,
leading to a gross error. This is known as the “threshold effect”
[8].)

The performance of this estimator will be considered in the
following sections.

IV. BIAS

The expected value of the complex amplitude estimate

and therefore, the estimator (2) is unbiased, irrespective of the
sampling times.

Ambiguities result when more than one set of model param-
eters can give rise to the observations. This is well known with
uniform sampling since a cisoid with a constant frequency can
be fitted to the data at the signal’s frequency or at multiples of
the sampling frequency away from this. These aliases may be in-
terpreted as estimationbiasessince, with no prior knowledge, a
practical estimation strategy that searches for cisoids from a pre-
defined starting point will consistently take one of them as the
true value. (Another possibility, that the estimator has a random
starting frequency, is not considered since the resulting error,
which is a variance, depends on the strategy adopted. For the
evaluation of the variance, it is assumed that the correct alias is
chosen.) These biases will now be considered in detail.
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The expected value of the polynomial phase coefficient esti-
mator (3) is

where only a second-order polynomial phase is being consid-
ered for brevity.

For white noise, this becomes

where the noise term has the same
statistics as . (This is because the amplitude is unchanged,
and has a uniformly distributed random phase.)

For uniform sampling, where , the sum of the ex-
ponentials will reach a maximum when the exponential’s argu-
ments are multiples of . This will happen when both

and
(4)

for arbitrary integers and . The estimated spectrum will reach
the same value in each of these cases. Thus,the estimator is
biased.

Any nonuniform or random sampling scheme will suppress
these effects since the phases will then not be aligned. However,
it may be important to suppress aliases as much as possible. This
is especially true when there are several signals, which is a case
not considered here. Bilinskis and Mikelsons [3, pp. 80-88] dis-
cuss the degree of aliasing, which is defined as the squared sum
of the Fourier coefficients of the signal at aliasing frequencies,
for a variety of different random sampling schemes. They show
that random intervals with a positive correlation perform better
than with no correlation or periodic sampling with jitter. (In gen-
eral, sampling schemes that approximate a uniform probability
of a sample occurring as a function of time have the best prop-
erties.) These schemes will be discussed later.

V. CRB’s FOR DETERMINISTIC SAMPLING

There is a requirement for a figure of merit for the perfor-
mance of the estimator (3) that takes into account the bias issues
discussed above (4), such as the mean square error. However, as
mentioned previously, the bias achieved depends on the specific
implementation of (3); therefore, it will be assumed here that the
correct alias is chosen. The mean square error is then equivalent
to the variance.

The lower variance bound for an unbiased estimator, the
Cramér–Rao bound1 is given by

CRB (5)

(e.g., [10]), where the Fisher information matrixhas the ele-
ments

(6)

It can be shown that for , (6) simplifies to

for this problem [2, App. D], where
. All parameters are assumed to be

unknown, and therefore, .
Here, we have, using vector notation for brevity

and

where is a matrix containing the sampling times

...

It can then be shown that

(7)

1It is well known that the Cramér–Rao bounds represent the minimum vari-
ance with which a parameter may be estimated by an unbiased estimator. In this
case, there is the potential for additive bias, as illustrated by (4). However, an
additive offset will not affect the variance of a random variable so the lower
variance bound is still the Cramér–Rao bound, despite the bias.
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For white noise and , this is2

(8)

Since absolute times are referred to, it is necessary to
specify a reference relative to the origin. This will be consid-
ered next for the cases of uniform and nonuniform sampling.

A. Uniform Sampling

If we let the sampling times be centered on, we have

(9)

where is the sampling interval.
Some of the Cramér–Rao bounds depend on, which is not

intuitive. The effect was observed for the simpler problem of
estimating both and by Rife et al. [8, p. 592], who stated
that the minimum Cramér–Rao bound onwas obtained by
choosing . When (9) is used in (5) and (8),
the lower variance bound for phase reaches a minimum when
the sampling times are centered on ,
which is a significant departure from 0. Although this is an in-
teresting phenomenon, it will not be investigated further here.

The most appropriate to use may be when as many cross
terms in the Fisher matrix (8) as possible are forced to 0. This
happens when . Elements with sums of to odd powers
become zero, and therefore, the bounds become

CRB

CRB

CRB and

CRB

(10)

B. Nonuniform Sampling

For nonuniform sampling, we have

where is the interval between sampling timesand ,
being the offset of from the origin. Simultaneously zeroing

2The second-order case is of interest due to its relevance to synthetic aperture
radar, where the distance to a target and, hence, the phase of its response may
be approximated by a quadratic.

Fig. 1. Representation of the random sampling parameter estimation scenario.
The sampling times are randomly distributed and assumed to be known to the
signal processor.

the off-diagonal terms in (8) is a problem, for example, for the
sum of the times to be zero, we have

(11)

so that the origin is positioned at the “center of gravity” of the
times. Other criteria, such as setting the sum of cubed times
to be zero [which corresponds to another off-diagonal term in
(8)], gives different results to (11) in general. The value of
to be used is therefore not clear; the global minimum of the
Cramér–Rao bounds may need to be found.

C. On the Optimal Sampling Scheme

Apart from [11], little work has been reported on the problem
of optimum sampling of polynomial phase signals. In [11], it
is conjectured that the optimal sampling strategy is to cluster
samples into groups evenly spaced across the sampling
interval where is the order of the polynomial phase. However,
this strategy also imposes the physically unrealizable condition
that samples within a cluster must be infinitely close together.

Further research, particularly considering the effect of noise,
is required. One approach, for example, would be to maximize
the determinant of the Fisher matrix (8) with respect to the sam-
pling times.

VI. CRB’s FOR RANDOM SAMPLING

Provided the sampling times are fixed, the Cramér–Rao
bounds in the colored Gaussian noise case can be found using
(7) and (5). However, if the times are specified in terms of
distributions rather than specific instants, it is desirable
to know theexpectedCramér–Rao bounds.It is assumed that
the actual times are known for estimating the parameters, but
differ from one realization to the next.This situation is shown
in Fig. 1. The Cramér–Rao bounds for a particular realization
can be found from the results of the previous section. However,
what may also be required is a bound for the variance over
the ensemble of realizations. Two possible approaches will be
discussed here.

1) Find the expectation of the bounds themselves with re-
spect to the timing distributions

CRB CRB (12)

This is an intuitive method; however, its true meaning is
not clear, and we do not further pursue this.
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2) Since the likelihood function now contains random times,
should be incorporated in to the Fisher information

matrix (6) giving

(13)

is the joint probability density function of the
sampled signal and the sampling times, parameterized
by the unknowns. Note that the expectation is over the
sample spaces of both the random measurementsand
the random measurement times.

We are now considering approach 2. Equation (13) can be
simplified. Using a conditional probability expression

and since the sampling times do not depend
upon the parameters; then, from (13)

where was defined in (6). The final result is similar in concept
to (12), except that the expectation is over the Fisher matrix
elements rather than the Cramér–Rao bounds.

’s elements (7) can be written in the form

where

extracts the real or imaginary part, and and are
of the form with ; therefore

(14)

This cannot readily be simplified since ;
it is a function of the variables being integrated over.

In the case of white noise, , and (14) becomes

since the phase terms cancel. The superscriptdenotes the con-
jugation operation, and expresses the powers of

undefined otherwise.

If the PDF’s are independent, we have

and

if the PDF’s are the same. (Note that the argument ofis the
th moment of the PDF of.)

A. Example Sampling Distributions

1) Random Offsets:If there are random offsets from uni-
formly spaced samples centered on (i.e., jitter), we have

where and

otherwise

for uniformly distributed offsets. Then

It can be shown that

and

(15)
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2) Uniformly Distributed Over Whole Interval:In this case,
for all

otherwise.

This distribution is impractical since it requires that some sam-
ples occur with intervals that are unrealistically small. However,
it may be approximated in practice by the use of random inter-
vals between samples; the distribution of the intervals is of no
real importance when is large and may incorporate a min-
imum value. (Bilinskiset al. [3] discuss this, methods of gener-
ating the sequences, and the relative merits of different sampling
schemes in detail.)

It can be shown that

and

even

otherwise.

This is the same as the result achieved with random offsets (15),
where the offsets are . However, it is preferable to use
random intervals in practice. The intervals may be constrained to
have a minimum sampling time separation, unlike with random
offsets, and there need only be a small degree of randomness;
a large amount, such as , leads to a degree of unpre-
dictability in performance [3].

If , making the time span the same as
for a uniform sequence, and , the corresponding
Cramér–Rao bounds are

CRB

CRB

CRB

and

CRB

(16)

This is equivalent to the bounds for uniform sampling (10) for
large and slightly larger for small . Increasing the interval

will not make them the same; the effects are nonlinear.
Fig. 2 shows a comparison between the Cramér–Rao bounds

corresponding to uniform sampling (10), the nonuniform
sampling strategy discussed in Section V-C, and uniformly
distributed random sampling (16) as a function of the number
of samples . , , and . There is very
little difference between the uniform and uniformly distributed
random schemes when . For and , the scheme of
Section V-C consistently out performs the other two.

Fig. 2. Cramér–Rao bounds for uniform sampling (�), “optimum” nonuniform
deterministic sampling (×), and uniformly distributed random sampling (+) with
normalized parameters.

3) Known Times:As a final example, nonrandom sampling
times can be treated as a limiting case of random sampling with

where is the Dirac delta function. It can easily be shown
that , which is the Fisher matrix discussed in Section V.

VII. SIMULATIONS

Fig. 3 shows the estimation errors obtained as a function of
the noise variance when the four parameters and
were estimated with simulated data and uniform sampling. The
signal’s magnitude was 1, the number of samples was 20,
the sampling interval was 2, the phase parameterwas 0.123,
the frequency was 0.106, and the frequency rate0.01. 15
estimations were performed for each noise variance; the ver-
tical bars in the figure show the corresponding 99% confidence
intervals. The noise values were the same for each of the three
simulations.

Fig. 4 shows the errors obtained during a similar simulation
using uniformly distributed sampling. The sampling times were
the same for each of the three noise variances. The sample vari-
ances are very similar to the Cramér–Rao bounds.

VIII. C ONCLUSION

It was shown that under the right conditions, the parameters
of a polynomial phase signal can be estimated unambiguously
with nonuniform sampling to the same accuracy as with uniform
sampling but without the bias errors due to aliasing effects. This
permits the accurate, unambiguous measurement of signal pa-
rameters beyond the Nyquist limits encountered with uniform
sampling.
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Fig. 3. Estimation errors found by simulation with uniform sampling. The
solid curves show the Cramér–Rao lower variance bounds.

Fig. 4. Estimation errors found using uniformly distributed random sampling.
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