41,744 research outputs found

    Equivalence Theorems in Numerical Analysis : Integration, Differentiation and Interpolation

    Get PDF
    We show that if a numerical method is posed as a sequence of operators acting on data and depending on a parameter, typically a measure of the size of discretization, then consistency, convergence and stability can be related by a Lax-Richtmyer type equivalence theorem -- a consistent method is convergent if and only if it is stable. We define consistency as convergence on a dense subspace and stability as discrete well-posedness. In some applications convergence is harder to prove than consistency or stability since convergence requires knowledge of the solution. An equivalence theorem can be useful in such settings. We give concrete instances of equivalence theorems for polynomial interpolation, numerical differentiation, numerical integration using quadrature rules and Monte Carlo integration.Comment: 18 page

    The nonconforming virtual element method for eigenvalue problems

    Full text link
    We analyse the nonconforming Virtual Element Method (VEM) for the approximation of elliptic eigenvalue problems. The nonconforming VEM allow to treat in the same formulation the two- and three-dimensional case.We present two possible formulations of the discrete problem, derived respectively by the nonstabilized and stabilized approximation of the L^2-inner product, and we study the convergence properties of the corresponding discrete eigenvalue problem. The proposed schemes provide a correct approximation of the spectrum, in particular we prove optimal-order error estimates for the eigenfunctions and the usual double order of convergence of the eigenvalues. Finally we show a large set of numerical tests supporting the theoretical results, including a comparison with the conforming Virtual Element choice

    Regular polynomial interpolation and approximation of global solutions of linear partial differential equations

    Get PDF
    We consider regular polynomial interpolation algorithms on recursively defined sets of interpolation points which approximate global solutions of arbitrary well-posed systems of linear partial differential equations. Convergence of the 'limit' of the recursively constructed family of polynomials to the solution and error estimates are obtained from a priori estimates for some standard classes of linear partial differential equations, i.e. elliptic and hyperbolic equations. Another variation of the algorithm allows to construct polynomial interpolations which preserve systems of linear partial differential equations at the interpolation points. We show how this can be applied in order to compute higher order terms of WKB-approximations of fundamental solutions of a large class of linear parabolic equations. The error estimates are sensitive to the regularity of the solution. Our method is compatible with recent developments for solution of higher dimensional partial differential equations, i.e. (adaptive) sparse grids, and weighted Monte-Carlo, and has obvious applications to mathematical finance and physics.Comment: 28 page

    On Approximation of the Eigenvalues of Perturbed Periodic Schrodinger Operators

    Full text link
    This paper addresses the problem of computing the eigenvalues lying in the gaps of the essential spectrum of a periodic Schrodinger operator perturbed by a fast decreasing potential. We use a recently developed technique, the so called quadratic projection method, in order to achieve convergence free from spectral pollution. We describe the theoretical foundations of the method in detail, and illustrate its effectiveness by several examples.Comment: 17 pages, 2 tables and 2 figure
    corecore