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AbstratWe onsider regular polynomial interpolation algorithms on reursively de�nedsets of interpolation points whih approximate global solutions of arbitrary well-posedsystems of linear partial di�erential equations. Convergene of the 'limit' of the re-ursively onstruted family of polynomials to the solution and error estimates areobtained from a priori estimates for some standard lasses of linear partial di�erentialequations, i.e. ellipti and hyperboli equations. Another variation of the algorithmallows to onstrut polynomial interpolations whih preserve systems of linear partialdi�erential equations at the interpolation points. We show how this an be applied inorder to ompute higher order terms of WKB-approximations of fundamental solutionsof a large lass of linear paraboli equations. The error estimates are sensitive to theregularity of the solution. Our method is ompatible with reent developments for so-lution of higher dimensional partial di�erential equations, i.e. (adaptive) sparse grids,and weighted Monte-Carlo, and has obvious appliations to mathematial �nane andphysis.1 IntrodutionThis work shows how multivariate interpolation tehniques an be ombined with analytiinformation of linear partial di�erential equations (i.e. a priori estimates and/or WKBrepresentations of solutions) in order to design e�ient and aurate numerial shemesfor solving (systems) of linear partial di�erential equations. These shemes are nothingbut sequenes of multivariate polynomials whih are onstruted reursively suh thatthey solve a given linear system of partial di�erential equations on a �nite disrete set ofinterpolation points. However, additional information is needed in order to ensure thatthe sequene of interpolation polynomials onverges to a (or, if uniqueness is proved, the)global solution of a given linear system of partial di�erential equations. As we shall see, thisinformation an be provided by a priori estimates whih in turn lead us to error estimatesin regular norms dependent on the regularity of the solution. We examine the situation inthe ase of linear ellipti equations with variable oe�ients. Another possibility is that(more or less) expliit representations of solutions are known whih lead to problems whihare easier to solve. A prominent example is the WKB-expansion whih was investigatedin [6℄. The reursive struture of WKB oe�ient funtions and the error analysis lead usto the problem of regular polynomial approximation. In this introdutionary Setion weour method on an abstrat level.1. 1. Regular polynomial interpolationSine we are interested in the relationship between multivariate polynomial interpolationand approximation of solutions of partial di�erential equations, our fous will be on mul-tivariate polynomial interpolation. However, in order to make basi ideas more aessible1



we shall desribe algorithms in the univariate ase �rst and then generalize to the mul-tivariate ase. It is well known that polynomial interpolation in the multivariate ase isquite di�erent from the univariate ase in general. However, in our approah whih aimsat solving linear systems of partial di�erential equations or aims at supplementing ertainstrategies of solving partial di�erential equations many features are already present in theunivariate framework. In order to avoid misunderstandings, we dwell a little on this point.Classially, the problem of multivariate interpolation an be stated as follows (f. [11℄):Given a set of interpolation points Θ = {x1, · · · , xN} and an N-dimensionalspae PΘ of polynomials �nd, for given values y1, · · · , yN , a unique polynomial f ∈ P suhthat
f(xj) = yj, j ∈ 1, · · · ,N. (1.1)In this form it turns out that there is an intriate relation between sets of interpolationpoints and interpolation spaes that must be satis�ed in order that the problem an beonsidered to be well-posed. Either we have to make some restritions onerning the setof interpolation points Θ (f. [11℄) or we onsider Θ to be �xed and onsider the problemof onstruting the polynomial spae Pθ (f.[1℄). This amounts to a onstrution of themap

Θ → PΘ (1.2)with additional onstraints suh as minimality of degree (f. [11, 1℄) or monotoniity (f.[1℄). In this paper we are interested in interpolation algorithms with the following features
• there are no essential restrition on the disrete set Θ of interpolation points exeptthat Θ ⊂ D, where D is the domain of the funtion to be interpolated.
• the map Θ → PΘ is monoton (indeed our basi algorithm is an extension of multi-variate versions of Newton's interpolation algorithm).
• the algorithm an be extended to vetor valued interpolation funtions g : D ⊆

R
n → R

k and if g satis�es a system of linear partial di�erential equations, thenthe interpolation polynomial p solves the same system of linear partial di�erentialequations on the given set Θ of interpolation points.
• the algorithm is numerially stable and pratial with respet to the problem thatthe interpolation funtion f and arbitrary set of partial derivatives of f are to beinterpolated simultaneously. For the appliation of higher order approximation ofthe fundamental solution of linear paraboli equations we omute aurate approx-imations of derivatives of smooth funtions up to order 10 in order to obtain anapproxmation of order 5 of the WKB-expansion of the fundamental solution.
• the algorithm an be re�ned in order to solve well-posed linear systems of partialdi�erential equations diretly.
• the algorithm an be ombined with olloation methods in an e�ient way; it anbe partially parallelized.
• the algorithm allows for error estimates whih depend on the regularity of the solutionsuh that the algorithm is ompatible with methods for higher dimensional problemsof linear systems of partial di�erential equations suh as sparse grids, adaptive sparsegrids, and weighted Monte-Carlo. 2



First we onsider the problem of polynomial approximation p of a regular (i.e smooth or�nitely many times di�erentiable) funtion
f : D ⊆ R

n → R (1.3)de�ned on disrete subset of Θ ⊂ D where for m given linear partial di�erential operators
Li =

∑

|α|≤βi

ai
α(x)∂α, (1.4)we require that

Lif(xj) = Lip(xj) for 1 ≤ i ≤ m (1.5)for some �nite set of points xj ∈ Θ ⊂ D. As indiated above we shall allow that the inter-polation set Θ an be onstruted reursively (and, hene, extended arbitrarily within thedomain of the interpolation funtion). Investigations of spei� instanes of this probleman be found in the literature on polynomial interpolation (f. the survey paper of [10℄ forthe development up to the year 2001). Note that other algorithms of natural interpolationof Ck-funtions have been proposed (f.[5℄ for hints at the history and further referenes).The paper is organized as follows. In Setion 1.2 we introdue the partial di�erential equa-tions for whih we seek global regular interpolation polynomials of their global solutions.All basi types of partial di�erential equations, i.e. ellipti equations, paraboli equations,and hyperboli equations are onsidered. While the basi algorithm is quite similar foreah type of partial di�erential equation, we shall see, however, that the onvergene ofthe sheme of reursively de�ned interpolation polynomials depends on very di�erent apriori estimates for di�erent type of equations. In ase of seond order ellipti equationslassial Shauder boundary estimates an be used, while in the ase of hyperboli equa-tions energy estimates are onsidered. In the ase of paraboli equations we refer bakto Safanov-Krylov estimates onsidered in the ontext of the trunation error analysis ofWKB-expansions. In Setion 2.1 we introdue �rst an extension of Newton's polynomialalgorithm whih interpolates a given funtion and its derivatives up to some given order
k simultaneously. Setion 2.2. desribes a variation of this algorithm whih interpolates agiven funtion suh that a given set of partial di�erential equations is preserved. Setion3 disusses the extension to the multvariate ase. In Setion 4 we re�ne the algorithm andonstrut polynomials whih satisfy a given linear (i.g. partial) di�erential equation ona given set of interpolation points, i.e. there is no given funtion to be interpolated. InSetion 5 we onsider re�nements whih show how polynomials onstruted on disjoint setsof interpolation points an be synthesized in order to get one polynomial whih interpo-lates on the union of sets of interpolation points. Naturally, parallelization is onsideredinthis ontext. In Setion 6 we show how a priori estimates of ellipti equations (standardShauder boundary estimates) and hyperboli equations (energy estimates) lead to on-vergent shemes implied by error estimates. Setion 7 disusses a speial use of regularpolynomial interpolation for paraboli equations where the global solution is given in theform of a WKB- expansion. Setion 8 provides a numerial example of global regular poly-nomial interpolation of a loally analyti funtion up to the third derivative. In Setion 9we provide a summary and give an outlook on urrent researh and researh in the nearfuture. Before we start with the desription of the algorithm, we state the typial linearpartial di�erential equations and indiate the di�erent types of approximations and errorestimates whih we aim at. 3



1. 2. Regular interpolation and partial di�erential equationsWe onsider the three standard types of linear partial di�erential equations, namely elliptiequations, paraboli equations, and hyperboli equations, and exemplify di�erent types ofappliation and extension.
• The most popular examples of ellipti partial di�erential equations are of the seondorder form, i.e.

n
∑

j,k

ajk(x)
∂2u

∂xj∂xk
+
∑

l

bl(x)
∂u

∂xl
+ c(x)u = f(x), (1.6)to be solved on a domain Ω ⊆ R

n with the boundary ondition
u
∣

∣

∣

∂Ω
= g (1.7)for some funtion f : ∂Ω → R whih is usually assumed to be Lipshitz ontinuousat least. Here, ajk are (at least) measurable oe�ient funtions satisfying for someonstant c, and elliptiity means that

∑

jk

ajk(x)ξiξj ≥ c > 0 (uniformly in x). (1.8)We onstrut an extension of the polynomial interpolation algorithm whih produesa multivariate polynomial solving this ellipti equation on an arbitrary grid of inter-polation points. In order to obtain error estimates b standard boundary Shauderestimates in this paper we shall make some regularity assumptions. We derive onver-gene of the family of multivariate polynomials onstruted by our our interpolationsheme to the global solution of the linear ellipti equation on a bounded domainand we derive error estimates from a priori estimates.
• Paraboli equations of the form

∂u

∂t
− Lu = 0, (1.9)on D := Ω × (0, T ), (Ω ⊆ R

n, with
u(0, x) = δy(x) := δ(x − y), y ∈ R

n, (1.10)where δ is the Dira delta distribution, and where
Lu ≡ 1

2

∑

ij

aij(x)
∂2u

∂xi∂xj
+
∑

i

bi(x)
∂u

∂xi
(1.11)is an ellipti operator. The solution of this equation is alled fundamental solution,beause solutions of standard paraboli initial-value boundary problems an be rep-resented by onvolution integrals of data funtions with the fundamental solution.The standard assumptions for suh a fundamental solution to exist are4



(A) The operator L is uniformly paraboli in R
n, i.e. there exists 0 < λ < Λ < ∞suh that for all ξ ∈ R

n \ {0}

0 < λ|ξ|2 ≤
n
∑

i,j=1

aij(x)ξiξj ≤ Λ|ξ|2.(B) The oe�ients of L are bounded funtions in R
n whih are uniformly Hölderontinuous of exponent α (α ∈ (0, 1)).If some regularity assumptions on the oe�ients hold in addition, then it an beshown that the fundamental solution p is of the form

p(t, x, y) =
1√
2πt

n exp



−d2(x, y)

2t
+
∑

k≥0

ck(x, y)tk



 , (1.12)with some regular oe�ient funtions d2 and ck. We shall show how our regularpolynomial interpolation algorithm an be used to ompute the fundamental solutionin terms of this representation.Remark 1.1 The algorithm designed in the ase of ellipti equations an be appliedto the paraboli ase diretly, of ourse. However, it turns out that the onvergeneis better if the speial representation (1.12) is used.
• As an example of a hyperboli equation we onsider an equation of the form

Lu = f in Ω, (1.13)where
Lu ≡

∑

ij

hij
∂u

∂xi∂xj
+
∑

i

∂

∂xj
+ c(x)u (1.14)and (hij) is a symmetri matrix of signature (n, 1), if dimΩ = n + 1. We assumethat some O ⊂ Ω is bounded by two spaelike surfaes Σi and Σe and swept out bya family of spaelike surfaes Σe(s). We assume the initial onditions

u = g and du = ω (1.15)where g is a funtion on Ω and Ω is a 1-form.2 Interpolation algorithm (univariate ase)We start with the desription of the algorithm whih produes polynomials whih satisfysome given requirements on interpolation points. Our starting point is an extension ofNewton's polynomial interpolation method suh that the interpolation polynomial and itsderivatives up to a given order k (an integer) equal a given funtion and its derivativesup to order k at the interpolation points. For simpliity of representation and sine theessential features of the algorithm an be demonstrated for one dimensional funtions, wedesribe our ideas �rst in the univariate ase and then generalize to the multivariate asein the next setion. 5



2. 1. Extension of Newton's methodLet us reall the Newtonian interpolation for an univariate funtion
f : [a, b] ⊂ R → R. (2.1)Given a disrete set of interpolation points D = {x0, x1 · · · , xN} ⊂ [a, b] we want toonstrut a polynomial

p : [a, b] ⊂ R → R suh that
f(xi) = p(xi) for all xi ∈ D.

(2.2)The idea of the basi Newton interpolation algorithm is that instead of looking for somepolynomial of form ∑N
i=1 bix

i for some onstants bi we may write
N
∑

l=0

alΦl(x) (2.3)with
Φ0(x) = 1 and Φl(x) = Πl

i=0(x − xi) for l ≥ 1. (2.4)In order to determine a0, · · · aN we then may solve the system
R0a :=















1 0 0 · · · 0
1 φ1(x1) 0 · · · 0
1 φ1(x2) φ2(x2) · · · 0... ... ... ...
1 φ1(xN ) φ2(xN ) · · · φN (xN )





























a0

a1

a2...
aN















=















f(x0)
f(x1)
f(x2)...
f(xN )















(2.5)This leads to an L2-approximation of the funtion f similar to the Gaussian algorithm.Note however, that the matrix R0 is a lower diagonal. Hene the linear system an besolved easily. Moreover the matrix ondition number is muh better than that of theVandermonde matrix used in the lassial Gaussian interpolation. We extend this idea toa Ck-norm interpolation, i.e. we design an algorithm that approximates f up to the k-thderivative, i.e. we onstrut a polynomial
q : [a, b] ⊂ R → R suh that
f (l)(xi) = q(l)(xi) for all xi ∈ D and all l ≤ k,

(2.6)where for a funtion g : [a, b] ⊂ R → R g(l) denotes the derivative of order l while g = g0.We onsider the polynomial
(N+1)(k+1)−1

∑

m=0

amΦm,k(x) (2.7)where
Φm,k(x) = (x − x

m div(k+1))
m mod(k+1)Π

mdiv(k+1)−1
l=0 (x − xl)

k+1, (2.8)where, by onvention, we understand
Π−1

l=0(x − xl)
k+1 := 1. (2.9)6



For simpliity of notation we sometimes use the abbreviations
p(m) = mdiv(k + 1) and q(m) = mmod(k + 1). (2.10)Next we de�ne

Φ
(l)
m,k(x) :=

d

dxl
Φm,k(x), (2.11)and for eah k ≥ 1 the linear system

Rk















a0

a1

a2...
a(k+1)(N+1)−1















=

























f(x0)
f ′(x0)...

f (k)(x0)
f(x1)...

f (k)(x(k+1)(N+1)−1)

























(2.12)
where Rk is a (N + 1)(k + 1) × (N + 1)(k + 1)-matrix determined by (k + 1) × (k + 1)matries Alm

k as follows:
Rk :=















A00
k Zk Zk Zk · · · Zk

A10
k A11

k Zk Zk · · · Zk

A20
k A21

k A31
k Zk · · · Zk... ... ... ... ... ...

AN0
k AN1

k AN2
k AN3

k · · · ANN
k















, (2.13)where Zk is the (k + 1) × (k + 1) matrix with 0 entries, and
A

ij
k = Ai

k(xj) (2.14)with
A

ij
k :=



















Φ(k+1)p(i),k(xj) Φ(k+1)p(i)+1,k(xj) Φ(k+1)p(i)+2,k(xj) · · · Φ(k+1)p(i)+k,k(xj)

Φ
(1)
(k+1)p(i),k(xj) Φ

(1)
(k+1)p(i)+1,k

(xj) Φ
(1)
(k+1)p(i)+2,k

(xj) · · · Φ
(1)
(k+1)p(i)+k,k

(xj)

Φ
(2)
(k+1)p(i),k(xj) Φ

(2)
(k+1)p(i)+1,k

(xj) Φ
(2)
(k+1)p(i)+2,k

(xj) · · · Φ
(2)
(k+1)p(i)+k,k

(xj)... ... ... ... ...
Φ

(k)
(k+1)p(i),k(xj) Φ

(k)
(k+1)p(i)+1,k

(xj) Φ
(k)
(k+1)p(i)+2,k

(xj) · · · Φ
(k)
(k+1)p(i)+k,k

(xj)



















.(2.15)Note that
A00

k :=















1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 2 0 · · · 0... ... ... ... ... ...
0 0 0 0 · · · k!















. (2.16)This leads to a system whih an be solved row by row. It is therefore very easy toimplement and numerially well-onditioned.Remark 2.1 In order to avoid large entries in the matries Alm
k one may onsider basisfuntions of form 1

l!Φ
(l)
(k+1)p(i),k, but we do not deal with the peuliar nieties of omputationhere. 7



2. 2. Interpolation preserving linear systems of di�erential equationsThe preeding algorithm an be adapted it in order to onstrut a polynomial approxima-tion p of f where the k di�erential operators
Lif(x) =

∑

j≤qi

ai
j(x)

d

dxj
f(x), i = 1, · · · , k (2.17)are preserved on a disrete set of points Θ = {x0, · · · , xN} in the sense that

Lif(xj) = Lip(xj) for xj ∈ Θ. (2.18)At this point the linear system of the operators {Li|1 ≤ i ≤ k} is quite arbitrary; we justassume that the operators are de�ned pointwise, i.e. x → ai
j(x) are lassial funtionswhih an be evaluated pointwise (at least on the set of interpolation points). Note thatwe do not ask about onvergene of a family of interpolation polynomials to at this point.There are several possibilities to extend our preeding algorithm. One is the following. Let

Qi :=
{

j|ai
j 6= 0

} (2.19)and de�ne
Lm

i =
∑

j∈Qi,j≤m

a1
ij
(x)

dij

dxij
. (2.20)We start with

Q1 = {i11, · · · , i1r1} , (2.21)and assume that
i11 < · · · < i1r1 (2.22)We onsider �rst the interpolation point x0 and start with the following ansatz for theinterpolation polynomial

p10(x) =
∑

i1j∈Q1

b10
ij

(x − x0)
i1j . (2.23)We assume f(x0) = p10(x0) = 0 w.l.o.g. ; we shall see later how we interpolate valuesof f di�erent from zero at the other interpolation points x1, · · · , xN . First we apply theoperator

Li1
1 ≡ a1

i1
(x)

di1

dxi1
(2.24)to f and p10 at x0. This leads to

i1!b
10
i1

= a1
i1

(x0)
di1f

dxi1
(x0) ⇒ b10

i1
=

1

i1!
a1

i1

dijf

dxi1
(x0) (2.25)Indutively we assume that the oe�ients b10

ij
have been de�ned up to the index im forsome m < r1 and that the operator Lim

1 has been de�ned aordingly. We apply theoperator
L

im+1

1 ≡ Lim
1 + a1

im+1
(x)

dim+1

dxim+1
(2.26)8



to f and p10 at x0. For an integer s with m + 1 ≤ s ≤ r1 de�ne
ps
10(x) =

s
∑

j=1

b10
ij

(x − x0)
ij . (2.27)Then we have

L
im+1

1 p10(x0) = Lim
1 p10(x0) + a1

im+1
(x0)

dim+1

dxim+1
p10(x0) =

Lim
1 pim

10 (x0) + im+1!a
1
im+1

(x0)b
10
im+1

= L
im+1

1 f(x0).

(2.28)This gives b10
im+1

. Next indutively assume that an interpolation polynomial p1k has beenonstruted whih interpolates f on the set of interpolation points {x0, · · · , xk} for somepositive integer k with k < N subjet to the ondition
L1f(xi) = p1k(xi) for 1 ≤ i ≤ k. (2.29)First we extend that polynomial in order to interpolate f at the point xk+1. We onsiderthe ansatz

p0
1(k+1)(x) = p1k(x) + b

1(k+1)
0 Πk

l=0(x − xl)
q1 . (2.30)We then get b

1(k+1)
0 from the equation

p0
1(k+1)(xk+1) = f(xk+1). (2.31)The ansatz for p1(k+1) (i.e. the interpolation polynomial whih preserves L1f on the setof interpolation points {x1, · · · , xk+1}) is

p1(k+1)(x) = p0
1(k+1)(x) +

∑

ij∈Q1

b
1(k+1)
ij

(x − xk+1)
ijΠk

l=0(x − xl)
q1+1 (2.32)and the determination of oe�ient onstants b

1(k+1)
ij

is similar to the proedure for theinterpolation point x0 desribed above. Proeeding indutively, we are lead to the polyno-mial p1 whih interpolates f at the interpolation points of Θ = {x0, · · · , xN} suh that
L1p1(xj) = L1f(xj) for all xj ∈ Θ. (2.33)Finally assuming that for some integer s < k the polynomial ps satis�es the ondition that

ps(xj) = f(xj) for xj ∈ Θ

Lips(xj) = Lif(xj) for xj ∈ Θ and i ≤ s,

(2.34)it is lear that we only need to onsider the redued operator
Ls+1 ≡

∑

ijj∈Qs+1\∪s
i=1Qi

as+1
ij

(x)
dij

dxij
. (2.35)and proeed analogously. 9



3 Extension to the multivariate aseNext we onsider generalizations to the multivariate ase. There are several possibilitiesbut the most simple seems to be the following. First we formulate the problem in a waythat will turn out to be useful in the ontext of polynomial interpolation of global solutionsof linear systems of partial di�erential equations. In its most simple form it is a form ofmultivariate Newton interpolation: given a funtion
f : S ⊂ R

n → R (3.1)we want to onstrut a polynomial
p : S ⊂ R

n → R suh that
f(xi) = p(xi) for all xi ∈ D ⊆ S,

(3.2)where D = {x0, x1, · · · , xn} is some disrete sets of points in R
n whose oordinates willbe denoted by supersript indies as x

j
i , j = 1, · · · , n. This is done then by reursivede�nition of polynomials p0, p1, · · · . First, de�ne

p0(x) ≡ f(x0). (3.3)Next, ansatz and equation
p1(x) ≡ f(x0) + a1Π

n
i=1(x

i − xi
0) = f(x1) (3.4)leads to the determination of p1 by

a1 = f(x1)−f(x0)
Πn

i=1(xi−xi
0)

(3.5)Next assume that p0, p1, · · · , pq have been de�ned. Then ansatz and equation
pq+1(xq+1) ≡ p(xq+1) + aq+1Π

q
k=0Π

n
i=1(x

i − xi
k) = f(xq+1) (3.6)leads to the determination of pq+1 by

aq+1 =
f(xq+1)−pq(xq+1)

Πq

k=0Π
n
i=1(x

i−xi
k
) (3.7)3. 1. Extension of Newton's methodNext we extend a multivariate version of Newton's method, i.e. we design an algorithmthat approximates f up to the β-th derivative (β = (β1, · · · , βn) being some multiindex)where we onstrut a polynomial

q : S ⊂ R → R suh that
∂f
∂xγ (xi) = ∂q

∂xγ (xi) for all xi ∈ D ⊆ S and all γ ≤ β.

(3.8)where β is given (i.e. the multivariate substitute for k in the univariate ase desribedabove), and ordering is in the following sense:10



De�nition 3.1 Let xα and xβ be monomials in R [x1, · · · , xn]. We say that xα > xβ (lexiographial order) if∑i α
i >

∑

i β
i or ∑i α

i =
∑

i β
i, and in the di�erene α−β ∈ Z

nthe left-most non zero entity is positive.Now, let α0, α1, · · · , αm, · · · an enumeration of multiindies with respet to this ordering.We de�ne a sequene of polynomials pα0 , pα1 , · · · , pαm , · · · reursively. First, let
pα0(x) = aα0 +

∑

γ≤β

aα0γΠn
i=1(x

i − xi
α0

)γi . (3.9)If pα0 , · · · , pαm−1 have been de�ned, then we de�ne
pαm(x) = pαm−1(x)+

∑

γ≤β aαm−1γΠn
i=1(x

i − xi
αm−1

)γ
i

Πm−1
j=0 Πn

i=1(x
i − xi

αj
)β

i+1.

(3.10)This leads to a linear system to be solved for a vetor (aα0 , · · · , aαN β) of length (N +
1)
(
∑

i βi + 1
)

Rβ





















aα0...
aα0β

aα1...
aαN β





















=





















f(xα0)...
f (β)(xα0)
f(xα1)...

f (β)(xαN
)





















(3.11)with
Rβ :=















A00
β Zβ Zβ Zβ · · · Zβ

A10
β A11

β Zβ Zβ · · · Zβ

A20
β A21

β A31
β Zβ · · · Zβ... ... ... ... ... ...

AN0
β AN1

β AN2
β AN3

β · · · ANN
β















(3.12)We abbreviate ∑β =
∑

i(β
i + 1) and de�ning p(m) = m ÷∑β we have

A
ij
k :=



















ΦP

βp(i),β(xj) ΦP

βp(i)+β1,β(xj) ΦP

βp(i)+β2,β(xj) · · · ΦP

βp(i)+β,β(xj)

Φ
(β1)
P

βp(i),β(xj) Φ
(1)
P

βp(i)+β1,β
(xj) Φ

(β1)
(k+1)p(i)+β2,β

(xj) · · · Φ
(β1)
P

βp(i)+β,β
(xj)

Φ
(β2)
P

βp(i),β(xj) Φ
(β2)
P

βp(i)+β1,β
(xj) Φ

(β2)
P

βp(i)+β2,k
(xj) · · · Φ

(β2)
P

βp(i)+β,β
(xj)... ... ... ... ...

Φ
(β)
P

βp(i),β(xj) Φ
(β)
P

βp(i)+β1,β
(xj) Φ

(β)
P

βp(i)+β2,β
(xj) · · · Φ

(β)
P

βp(i)+β,β
(xj)



















.(3.13)3. 2. Multivariate Interpolation preserving linear systems of PDEsSimilar to the univariate ase one an adapt the preeding algorithm to the interpolationof multivariate funtions, i.e. interpolate f by a polynomial p suh that f = p, and
Lif(x) = Lip(x) for x ∈ Θ. (3.14)11



where Θ = {x0, · · · , xN} is the set of interpolation points, and the partial di�erentialoperators are de�ned by
Lif(x) =

∑

|α|≤qi

ai
α(x)∂αf(x), = 1, · · · , k. (3.15)The proedure is analogue to that desribed in Setion 2.2. (f.also [7℄).4 Approximation of global solutions of linear partial di�er-ential equationsWe re�ne the algorithm further in order to solve linear partial di�erential equations glob-ally. In this ase the funtion u to be approximated is not known. In this setion weshall simply desribe an algorithm whih onstruts a polynomial whih sati�es a linearsystem of partial di�erential equations on an arbitrary set of interpolation points. It is notlear, however, if this polynomial approximation onverges to the solution of the system.To ensure that and in order to estimate the rate of onvergene we shall need the a prioriestimates and regularity results. Note however, that the regularity onstraints on the so-lution maybe low for problems on ompat domains as any ontinuous solution funtions

u an be approximated by a families of polynomial funtions approximating u. Therefore,prinipally, the families of polynomial funtions onstruted here may approximate ontin-uous global solutions in visosity sense. An investigation of this problem will be onsideredelsewhere in a more general framework where we inlude some lass of nonlinear problems.In order to make the basi ideas transparent we onsider �rst salar linear problems. Weexemplify our algorithm �rst in the ase of dimension n = 1 and then generalize to thease n > 2. What we have in mind here are ellipti equations but we need the elliptiityondition only when we wan to prove that the family of polynomials onstruxted onvergesto the global solutions. Then we exemplify our method in the ase of a typial linear �rstorder system. It is then lear how to generalize to systems of linear equations of any order.4. 1. The ase salar seond order equations of dimension n = 1We onsider the simple boundary value problem
L1u ≡ a(x)

d2u

dx2
+ b(x)

du

dx
+ c(x)u = f(x) on (d, e) ⊂ R, (4.1)with the boundary ondition u(d) = cd and u(e) = ce (atually an ordinary di�erentialequation). If a(x) ≥ λ > 0 for all x ∈ R, then we have an ellipti operator, but this is notan assumption whih we need to onstrut an univariate polynomial whih satis�es theboundary problem on the interpolation points.We start with the point d. We onstrut a list of polynomial qm,m ≥ 0. We de�ne the qmin substeps. Let p0 = a0. In order that p0 satis�es the boundary ondition at x = d weimpose

p0 = a0 = cd (4.2)Next we de�ne
p1(x) = a0 + a1(x − d) (4.3)12



In order to satisfy the seond boundary ondition we get
p1(e) = a0 + a1(e − d) = cd + a1(e − d) = ce ⇒ a1 =

ce − cd

e − d
. (4.4)It is lear that p1 preserves the boundary onditions, i.e. p(d) = u(d) = cd and p(e) =

u(e) = ce. Next let x0 be the �rst interpolation point (any point in the interval (d, e). Wewant to ensure that
a(x0)

d2p

dx2
(x0) + b(x0)

dp

dx
(x0) + c(x0)p(x0) = f(x0). (4.5)In order to ensure this, we de�ne a polynomial whih is an extension of p0 in three steps.First, de�ne

p2(x) = a0 + a1(x − d) + a4(x − x0)
2(x − d)(x − e) (4.6)Plugging in and evaluating at x = x0 we get

a(x0)2a4(x0 − d)(x0 − e) + b(x0)a1 + c(x0)(a0 + a1(x0 − d)) = f(x0) (4.7)Sine a0, a1 are known we get (reall that x0 6= d and x0 6= e)
a4 =

f(x0) − c(x0)(a0 + a1(x0 − d)) − b(x0)a1

2a(x0)(x0 − d)(x0 − e)
. (4.8)Next de�ne

p3(x) = p2(x) + a3(x − x0)(x − xd)(x − xe). (4.9)Plugging in and evaluating at x = x0 we get (assuming that )
L1p3(x0) = L1p2(x0) + a(x0)a3(2(x0 − d)

+2(x0 − xe)) + b(x0)a3(x0 − d)(x0 − e) = f(x0).
(4.10)Hene, (provided that x0 6= d and x0 6= e),

a3 =
f(x0) − L1p2(x0)

a(x0)(2(x0 − d) + 2(x0 − e)) + b(x0)(x0 − d)(x0 − e)
(4.11)Finally, �nishing the �rst indutive step of reursive de�nition of the polynomial family

(qm)m∈N

p4(x) = p3(x) + a2(x − d)(x − e). (4.12)Plugging in and evaluating at x = x0 we get (assuming that )
L1p4(x0) = L1p3(x0) + 2a(x0)a2 + b(x0)((x0 − d) + (x0 − e)) = f(x0). (4.13)Hene, (reall again that x0 6= d and x0 6= e),

a2 =
f(x0) − L1p3(x0) − b(x0)((x0 − d) + (x0 − e))

2a(x0)((x0 − d) + 2(x0 − e))
(4.14)Now we an de�ne

q1(x) = p4(x) (4.15)13



Next assume that the polynomials q1, · · · , qk have been de�ned. This means that we haveomputed the polynomial oe�ients a0, a1, · · · , a2+3k. Then qk+1 is de�ned via
qk+1(x) = qk(x) + (x − d)3(x − e)3Πk

l=0(x − xl)
3zk(x), (4.16)where zk is a polynomial funtion whih will be de�ned in three substeps. First, let

qk+1,1(x) = qk(x) + a2+3(k+1)(x − xk+1)
2(x − d)3(x − e)3Πk

l=0(x − xl)
3 (4.17)Plugging in leads to

L1qk+1,1(xk+1) = L1qk(xk+1) + a(xk+1)2a2+3(k+1)(xk+1 − d)3×

(xk+1 − e)3Πk
l=0(xk+1 − xl)

3 = f(xk+1).

(4.18)Hene,
a2+3(k+1) =

f(xk+1) − L1qk(xk+1)

a(xk+1)2(xk+1 − d)3(xk+1 − e)3Πk
l=0(xk+1 − xl)3

(4.19)Next, let
qk+1,2(x) = qk+1,1(x) + a2+3k+2(x − xk+1)(x − d)3(x − e)3Πk

l=0(x − xl)
3 (4.20)We de�ne

R(x) = (x − d)3(x − e)3Πk
l=0(x − xl)

3. (4.21)Plugging in leads to
L1qk+1,2(xk+1) = L1qk+1,1(xk+1)+

a(xk+1)2a2+3k+2
d2

dx2 R(xk+1) + b(xk+1)a2+3k+2
d
dx

R(xk+1) = f(xk+1).

(4.22)Hene,
a2+3k+2 =

f(xk+1) − L1qk+1,1(xk+1)

a(xk+1)
d2

dx2 R(xk+1) + b(xk+1)
d
dx

R(xk+1)
(4.23)Finally, let

qk+1,3(x) = qk+1,2(x) + a2+3k+1(x − d)3(x − e)3Πk
l=0(x − xl)

3

= a2+3k+1R(x)
(4.24)Plugging in leads to

L1qk+1,3(xk+1) = L1qk+1,2(xk+1) + a(xk+1)a2+3k+1
d2

dx2 R(xk+1)

+b(xk+1)a2+3k+1
d
dx

R(xk+1) + c(xk+1)a2+3k+1R(xk+1) = f(xk+1).

(4.25)Hene,
a2+3k+2 =

f(xk+1) − L1qk+1,2(xk+1)

a(xk+1)
d2

dx2 R(xk+1) + b(xk+1)
d
dx

R(xk+1) + c(xk+1)R(xk+1)
. (4.26)It is lear how to proeed indutively in order to get a family of interpolation polyno-mials whih satisfy the di�erential equation on an inreasing set of interpolation points.Note,however,that we have not used any strutural information about the oe�ients atthis point. This means that the equation may be ill-posed,and onvergene annot beguaranteed. 14



4. 2. The ase of salar linear partial di�erential equationsFor a positive integer k onsider an equation of form
Lku ≡

∑

|α|≤k

aα(x)
∂αu

∂xα
= g(x), (4.27)to be solved on the domain Ω where

u
∣

∣

∣

∂Ω
= f (4.28)What we have in mind is an ellipti equation f order k, but elliptiity is not required inorder to desribe the algorithm whih produes a family of multivariate polynomials whihsatisfy the equation on a set of interpolation points in Ω. Elliptiity beomes importantwhen we want to show that the family of polynomial onverges to the solution of theequation (assuming that there is an unique global solution). For simpliity of notation weonsider the ase k = 2, i.e. the situation of (1.9). Assume that f ∈ Ck and hoose adisrete interpolation set Θb ⊂ ∂Ω. Then we an apply the extended Newton algorithm ofSetion 3 in order to produe a polynomial pb : R

n → R suh that
pb(x) = f(x) for all x ∈ Θb

∂pb

∂xα = ∂pb

∂xα for all α with |α| ≤ l and x ∈ Θb

(4.29)We assume that Θb = {x0b, · · · , xMb} with xib = (x1
ib, · · · , xn

ib) and de�ne
Φb(x) = ΠMb

i=0bΠ
n
j=1(x

j − x
j
i )

l+1. (4.30)Next let θint ⊂ Ω \ ∂Ω be a set of interpolation points in the interior of Ω. Let
Θint = {x0, · · · , xN} . (4.31)We enumerate (ase k = 2) the q := (n+1)n

2 di�usion oe�ients aα1 , · · · , aαq (arbitraryorder), where we assume αl = (αl1, αl2) and de�ne �rst q polynomials p
di�,l
0 (x), l = 1, · · · , q.Let

p
di�,1
0 (x) = pb(x) + Φb(x)aα1(x

α11 − xα11
0 )(xα12 − xα12

0 ). (4.32)Then we have
L2p

di�,1
0 (x0) = L2pb(x0) + Φb(x0)(1 + δα11α12)aα1 = f(x0), (4.33)whih leads to

aα1 =
f(x0) − L2pb(x0)

(1 + δα11α12)Φb(x0)
(4.34)Having de�ned p

di�,1
0 (x), · · · , p

di�,l
0 (x) (and therefore omputed aα1 , · · · , aαl

) we de�ne
p
di�,l+1
0 (x) = p

di�,l
0 (x) + Φb(x)aαl+1

(xα(l+1)1 − x
α(l+1)1

0 )(xα(l+1)2 − x
α(l+1)2

0 ), (4.35)and evaluation leads to
aαl+1

=
f(x0) − L2p

di�,l
0 (p(x0)

(1 + δα(l+1)1α(l+1)2
)Φb(x0)

. (4.36)15



Proeeding indutively we get a p
di�,q
0 (x) whih equals together with its derivatives up toorder l the funtion f and suh that the di�usion part of the operator applied to p

di�,q
0 (x)equals g at x0. It is now lear how this proedure an be extended suh that an extendedpolynomial p0(x) equals together with its derivatives up to order l the funtion f and suhthat the total operator applied to p0(x) equals g at x0. As in Setion 3 the ansatz for theinterpolation polynomial pΘ whih satis�es the linear equation on the set of interpolationpoints Θ = {x0, · · · , xN} then is

pΘ(x) =
N
∑

i=0

Πi
j=1Π

n
k=1(x

k − xk
j−1)

3pi(x), (4.37)where pi for i ≥ 2 are then onstruted as p0 above.4. 3. The ase of a linear hyperboli equationWe onsider the hyperboli equation mentioned above of the form
Lu = f in Ω, (4.38)where

Lu ≡
∑

ij

hij
∂u

∂xii∂xj
+
∑

i

∂

∂xj
+ c(x)u (4.39)and (hij) is a symmetri matrix of signature (n, 1), if dimΩ = n+1. Note that the operator

L an be transformed into the form
Lu ≡ �u + L1u, (4.40)where L1u is some �rst order di�erential operator on Ω. We assume the initial onditions

u = g and du = ω, (4.41)where g and ω (1 − form) are initial data. It is lear that the algorithm desribed inthe preeding setion an be used in the present situation. Later we shall see that energyestimates imply onvergene of the sheme.5 Further re�nements: olloation and parallelizationNumerial experiments show that the oe�ients of the reursively omputed polynomialshave to be omputed with inreasing auray in order to ontrol e�ets of the trunationerror of the oe�ients of the polynomials. In the numerial example below, where weomputed a polynomial approximation of degree 74 of the loally analyti funtion
x → 1

1 + x
(5.1)and its derivatives up to order 3 on the interval [0, 5.4] suh e�ets are not observed. How-ever, if we inrease the number of derivatives to be approximated up to order k = 10 andinrease the number of interpolation points, e�ets of trunation errors an be observed for16



polynomials of degrees larger than 200. The error inreases as |x| beomes large and trun-ation errors inrease. This error an be redued by a more preise representation of theomputational approximation of the real numbers involved in the omputation. However,as we point out in this setion, we an ompute m polynomials pΘ1
1 , · · · , pΘm

m of degree
N1, N2 · · ·Nm parallel whih interpolate a given linear system of partial di�erential equa-tions on some interpolation sets Θ1, · · · ,Θm using our basi algorithm, and then omputeone polynomial pP

Θ whih interpolates the same linear system of partial di�erential equa-tions on the set ∑Θ = Θ1,∪ · · · ,∪Θm. It turns out that this an be in suh a way thatthe trunation error of the resulting polynomial pP

Θ is muh smaller than in ase of adiret extension of one polynomial pΘi
using the basi algorithm. We all this method theolloation extension of our basi algorithm. We shall assume that the sets of interpolationpoints are mutually disjunt, i.e.

Θi ∩ Θj = ⊘ i� i 6= j. (5.2)It is lear that the omputation of the polynomials pΘ1
1 , · · · , pΘm

m an be done parallel andonly the step of synthesizing has to be done non-parallel. Next we desribe that step in aseof two polynomials for simpliit of notation. Extension to m > 2 polynomials will be learfrom that desription. So let Θ1,Θ2 ⊂ Ω ⊂ R
n be two disrete �nite sets of interpolationpoints of a linear system of partial di�erential equations Lu = f to be solved on a domain

Ω and suh that Θ1 ∩ Θ2 = ⊘. We write down the polynomial in the univariate asebeause this simpli�es the notation, and the multivariate ase is quite similar. Then wede�ne a regular polynomial interpolation formula on Θ1 ∪ Θ2 by
∑N

j=1 Πk 6=j,
(x−x

Θ1
k

)k+1

(x
Θ1
j −x

Θ1
k

)k+1
ΠM

i=1
(x−x

Θ2
i )k+1

(x
Θ1
j −x

Θ2
i )k+1

pΘ1(x)

−∑j Πp∈{1,2} l 6=j(x − x
Θp

l )k+1a
j
i,1(x − xΘ1

j )i

+
∑M

j=1 Πk 6=j
(x−x

Θ1
k

)k+1

(x
Θ1
j −x

Θ1
k

)k+1
ΠN

i=1
(x−x

Θ2
i )k+1

(x
Θ1
j −x

Θ2
i )k+1

pΘ2(x)

−∑j Πp∈{1,2} l 6=j(x − x
Θp

l )k+1a
j
i,2(x − xΘ2

j )i

=:
∑

j q
1j
Θ2,Θ1

(x)pΘ1(x) + ha
1(x)

+
∑

j q
2j
Θ1,Θ2

(x)pΘ2(x) + ha
2(x),

(5.3)
where the onstants a

j
i,p, p ∈ {1, 2} are omputed reursively as follows: For eah j we ande�ne a

j
0,p = 0. If a

j
1,p, · · · , a

j
l−1,p are determined, then ompute a

j
1,p via

∑

1≤r≤l

(

l

r

)

Dr
xq

pj
Θ1Θ2

(xj)D
l−r
x pΘp(xj) = Dl

xha
p(xj) (5.4)for eah j. Note that this 'synthesis of polynomials' improves the omputational power ofour method dramatially. In the example below, where we approximate a simple loallyanalyti funtion

x → 1

1 + x
(5.5)17



(with onvergene radius 1) and its derivatives up to the third derivative on the interval
[0, 5.4] with 19 interpolation points Θ1 = {k0.3|k = 0, · · · 18} we ompute a polynomial ofdegree 74 in half a minute on a modest laptop mahine. If we want to ompute a poly-nomial whih gives the same kind of approximation on the interval [0, 5836, 8] it will takeseveral weeks. However, using parallelization and synthesis, and using the rough estimatethat synthesis takes in average the same time as building the 1024 basis polynomials ofdegree 74 on the intervals [0, 5.4] and [k5.7, (k + 1)5.7], k = 1, · · · 1023 we need 10 steps ofparallel synthesis of pairs of polynomials of ost of a less than a minute to get a regularapproximation polynomial whih is at least of degree 75776! It is lear fromthe preedingremarks how to extend this to the multivariate ase (f. also [7℄).6 Convergene of polynomial approximations of global solu-tions of linear ellipti PDE and error estimates by a prioriestimatesUp to now we just onsidered (regular) polynomial interpolation on given sets of interpo-lation points. In this setion we onsider standard problems in the theory of linear partialdi�erential equations and derive the onvergene of our algorithm and error estimates (asthe mesh size of the sets of interpolation points onverges to zero). We start with ellip-ti equations and then onsider hyperboli problems. Similar results an be obtained forinitial-value boundary problems for paraboli equations (sine analogous error estimatesan be obtained). In this ase, however, it turns out that (at least for regular data) aWKB-expansion of the fundamental solution has better onvergene properties and errorestimates an be obtained by Safanov a priori estimates (f. [8℄ and [6℄). We shall onsiderappliation of our algorithm to this ase in the next setion. Note that Sine to get an errorfrom simple Taylor expansion in genera, beause the interpolated funtion is unknown.6. 1. Convergene for ellipti equations with regular dataWe onsider the Dirihlet problem for ellipti equations, i.e. an equation of the form

Lu =
∑

|α|≤k

aα(x)
∂u

∂xα
= f(x) (6.1)on a domain Ω ⊆ R

n. oe�ient funtions
x → aα(x), (6.2)and where u is given on the boundary, i.e.
u
∣

∣

∂Ω
= g. (6.3)We onsider the lassial ase where k = 2 and Ω is bounded. We assume uniform elliptiity,i.e. there exists a onstant K > 0 suh that for all x ∈ Ω

n
∑

ij=1

aij(x)ξiξj ≥ K|ξ|2. (6.4)18



In the lassial ase Shauder boundary estimates are available. We ite them in theontext of a standard existene result. for a salar funtion h in Ω we introdue the norms
‖h‖bd

k =

k
∑

j=0

∑

|δ|=j

‖Dδh‖0 (6.5)where
‖h‖0 := sup

x∈Ω
|h(x)|, (6.6)and

‖h‖bd
k+α = ‖h‖bd

k +
k
∑

j=0

∑

|δ|=j

Hbd
α

(

Dδh
)

, (6.7)where Hbd
α (f) is the Hölder oe�ient of a given funtion f in Ω. We assume that theoe�ient funtions x → aij(x) (di�usion terms), x → bi(x) (drift terms), the potentialterm (x → c(x)), and the right side x → f(x) are uniformly Hölder ontinuous (exponent

α) suh that
‖aij‖bd

α ≤ C, ‖bi‖bd
α ≤ C, ‖c‖bd

α ≤ C, ‖f‖bd
α ≤ C (6.8)for some generi onstant C.Theorem 6.1 Assume that onditions (6.4) and (6.8) hold, and assume that c ≤ 0. Fur-thermore, assume that ∂Ω belongs to C2+α and that g belongs to Cb

2αd. Then the inequalities
‖u‖bd

2+α ≤ C
(

‖g‖ + ‖u‖0 + ‖f‖bd
α

)

≤ C
(

‖g‖ + sup∂Ω |g| + C supΩ |f | + ‖f‖bd
α

)

(6.9)hold. Furthermore there exist a unique solution u ∈ Cbd
2+α to the Dirihlet problem.The interpolation polynomial pΘ desribed in the preeding setion is by onstrution suhthat

L(u − pΘ) =
∑

|α|≤k

aα(x)
∂(u − pθ)

∂xα
= ∆f(x), (6.10)and

u − pΘ

∣

∣

∂Ω
= ∆g. (6.11)It follows thatTheorem 6.2 Assume the same onditions as in theorem 6.1.. Then

‖u − pΘ‖bd
2+α ≤ C

(

‖∆g‖ + sup∂Ω |∆g| + C supΩ |∆f | + ‖∆f‖bd
α

) (6.12)Note that this implies an L2-error even for the seond derivatives of the global solutionfuntion, hene essentially an estimate in H2(Ω). Even stronger results an be obtained ifadditional equations for the derivatives of u are onsidered (f. [7℄).
19



6. 2. Convergene for a hyperboli linear partial di�erential equationsequationWe onsider again the hyperboli equation mentioned above of the form
Lu = f on O ⊂ Ω, (6.13)where

Lu ≡
∑

ij

hij
∂u

∂xii∂xj
+
∑

i

∂

∂xj
+ c(x)u (6.14)and (hij) is a symmetri matrix of signature (n, 1), if dimΩ = n + 1. We assume thatsome O ⊂ Ω is bounded by two spaelike surfaesΣi and Σe and swept out by a family ofspaelike surfaes Σe(s). Reall that the initial onditions

u = g and du = ω. (6.15)Let p be the interpolation polynom desribed above suh that
L(u − p) = ∆f on O ⊂ Ω. (6.16)
u − p = ∆g and du = ∆ω. (6.17)Then we use the following energy estimateProposition 6.3 Let u solve the intial value problem (6.13), (6.15). Let

O(s) = O ∩ {t ≤ s} (6.18)(swept out by the spaelike surfaes Σe(s)). Then
∫

O(s) |u|2dV ≤
∫

Σb
i (s)

|g|2dS + C(s − s0)
∫

Σi

(

|g|2 + |ω|2
)

dS + C
∫

O(s) |f |2dV

(6.19)for s ∈ [s0, s1].This impliesTheorem 6.4 With the same assumptions as in propostion 6.2. we have
∫

O(s) |u − p|2dV ≤
∫

Σb
i (s)

|∆g|2dS + C(s − s0)
∫

Σi

(

|∆g|2 + |ω|2
)

dS + C
∫

O(s) |∆f |2dV

(6.20)for s ∈ [s0, s1].Hene the polynomial interpolation sheme desribed in Setion 4 leads to L2-onvergene.One an improve this sheme assuming regularity of solutions and onsidering systems ofequations inluding equations for derivatives of the solution u (f. [7℄).20



7 Appliations to paraboli equations (onnetion to WKB-expansions)We summarize some results onerning WKB-expansions of paraboli equations (f. [6℄ fordetails). Let us onsider the paraboli di�usion operator
∂u
∂t

− Lu ≡ ∂u
∂t

− 1
2

∑

i,j aij
∂2u

∂xi∂xj
−∑i bi

∂u
∂xi

, (7.1)where the di�usion oe�ients aij and the �rst order oe�ients bi in (7.1) depend on thespatial variable x only. In the following let δt = T − t, and let
(x, y) → d(x, y) ≥ 0, (x, y) → ck(x, y), k ≥ 0 (7.2)denote some smooth funtions on the domain R

n×R
n. Then a set of (simpli�ed) onditionssu�ient for pointwise valid WKB-representations of the form

p(δt, x, y) =
1√

2πδt
n exp

(

−d2(x, y)

2δt
+

∞
∑

k=0

ck(x, y)δtk

)

, (7.3)for the solution (t, x) → p(δt, x, y).
∂u
∂δt

− Lu = 0,with �nal value
u(0, x, y) = δ(x − y),

(7.4)is given by(A) The operator L is uniformly ellipti in R
n, i.e. the matrix norm of (aij(x)) is boundedbelow and above by 0 < λ < Λ < ∞ uniformly in x,(B) the smooth funtions x → aij(x) and x → bi(x) and all their derivatives are bounded.For more subtle (and partially weaker onditions) we refer to [6℄. We onsider the asewhere there exists a global transformation to the Laplae operator. If we add the uniformboundedness ondition(C) there exists a onstant c suh that for eah multiindex α and for all 1 ≤ i, j, k ≤ n,

∣

∣

∣

∂ajk

∂xα

∣

∣

∣
,
∣

∣

∣

∂bi

∂xα

∣

∣

∣
≤ c exp

(

c|x|2
)

, (7.5)then the funtion d2 = (x − y)2 (in the transformed oordinates and ck equals its Taylorexpansion around y ∈ R
n, i.e ck, k ≥ 0 have the power series representations

ck(x, y) =
∑

α ck,α(y)δxα, k ≥ 0. (7.6)Moreover ck, k ≥ 0 are determined by the reursive equations
−n

2
+

1

2
Ld2 +

1

2

∑

i





∑

j

(aij(x) + aji(x))
d2

xj

2





∂c0

∂xi
(x, y) = 0, (7.7)21



where the boundary ondition
c0(y, y) = −1

2
ln
√det (aij(y)) (7.8)determines c0 uniquely for eah y ∈ R

n, and for k + 1 ≥ 1 we have
(k + 1)ck+1(x, y) + 1

2

∑

ij aij(x)
(

d2
xi

2
∂ck+1

∂xj
+

d2
xj

2
∂ck+1

∂xi

)

= 1
2

∑

ij aij(x)
∑k

l=0
∂cl

∂xi

∂ck−l

∂xj
+ 1

2

∑

ij aij(x) ∂2ck

∂xi∂xj
+
∑

i bi(x)∂ck

∂xi
,

(7.9)with boundary onditions
ck+1(x, y) = Rk(y, y) if x = y, (7.10)

Rk being the right side of (7.9). In ase aij = δij we have the representations
d2(x, y) =

∑

i

(xi − yi)
2, (7.11)

c0(x, y) =
∑

i

(yi − xi)

∫ 1

0
bi(y + s(x − y))ds, (7.12)and

ck+1(x, y) =

∫ 1

0
Rk(y + s(x − y), y)skds, (7.13)

Rk being again the right-hand-side of (7.9). The integrals an be taken out if the funtions
x → bi(x) are given by multivariate power series and error estimates for the trunationerror in spae and time are obtained (f. [6, 8℄). However, even if the oe�ient funtionsare analyti, i.e. equal loally a power series, it is not possible to approximate suh afuntion globally by their Taylor polynomial. As an example onsider the equation

∂u

∂t
− 1

2
∆u −

n
∑

i

1

1 + xi

∂u

∂xi
= 0 (7.14)Here, the oe�ient funtions

xi →
1

1 + xi
= bi(x) (7.15)are univariate loally analyti funtion with onvergene radius 1. Suh type of equationsour in praxis of �nane (f. [4, 8℄). In order to obtain an approximation of the WKB-expansion say up to order 5, i.e. ompute the oe�ient funtions

x → ck(x, y), k = 0, · · · , 5, (7.16)we need a global approximation of the funtions (7.15) and their derivatives up to order 10!This is due to the reursion equations for the ck, k ≥ 1 whih involve seond derivativesof ck−1. If we have 20 interpolation points on the x-axis this implies that our regularinterpolation algorithm omputes a polynomial of order 231. We do the omputation in amore modest example in order to keep the resulting polynomial representable on one pagein the following setion. 22



8 A numerial exampleThe following polynomial is a similtaneous approximation of the funtion
f : [0, 5, 4] ⊆ R → R

f(x) = 1
1+x

(8.1)and its �rst, seond, and third derivative on the domain [0, 5, 4] with 19 interpolationpoints. Hene the degree of this univariate polynomial is 74. Note that the onvergeneradius of f is 1.
p76(x) =

75
∑

m=0

am(x − xmdiv4)mmod4Πmdiv4−1
l=0 (x − xl)

4 (8.2)Note that
dn

dxn

(

1

1 + x

)

|x=0 =
(−1)nn!

(1 + x)n+1
|x=0 = (−1)nn! (8.3)This leads to the values a0 = 1, a1 = −1, a2 = 1, and a3 = −1 for the oe�ients ofour interpolation polynomial at x0 = 0. Note that the oe�ients ai of the interpolationpolynomial tend to beome smaller for large indexes i as you would expet.
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a0 = 1.0

a1 = −1.000000000000, a2 = 1.000000000000, a3 = −1.000000000000

a4 = 0.769230765432, a5 = −0.591715921811, a6 = 0.455165657066

a7 = −0.350124490177, a8 = 0.218822618520, a9 = −0.136753442090

a10 = 0.085452696109, a11 = −0.053404312398, a12 = 0.028144617397

a13 = −0.014953338935, a14 = 0.008262188243, a15 = −0.005370784216

a16 = 0.003734873988, a17 = −0.003633027430, a18 = 0.004645502211

a19 = −0.006813570816, a20 = 0.007086610952, a21 = −0.007144432312

a22 = 0.006238342564, a23 = −0.002646146059, a24 = −0.002374282360

a25 = 0.008387675067, a26 = −0.015766978592, a27 = 0.024857498610

a28 = −0.025373687351, a29 = 0.025025735340, a30 = −0.023974098174

a31 = 0.022321168853, a32 = −0.015945627926, a33 = 0.011155207224

a34 = −0.007619506803, a35 = 0.005069120726, a36 = −0.002759684498

a37 = 0.001479716734, a38 = −0.000790172686, a39 = 0.000430223475

a40 = −0.000208511304, a41 = 0.000106279314, a42 = −0.000056281013

a43 = 0.000028862889, a44 = −0.000011153733, a45 = 0.000002201139

a46 = 0.000002233629, a47 = −0.000004202246, a48 = 0.000003699371

a49 = −0.000002870941, a50 = 0.000002068390, a51 = −0.000001402599

a52 = 0.000000753699, a53 = −0.000000375935, a54 = 0.000000159621

a55 = −0.000000037499, a56 = −0.000000015690, a57 = 0.000000032004

a58 = −0.000000031616, a59 = 0.000000023406, a60 = −0.000000010968

a61 = 0.000000001564, a62 = 0.000000005590, a63 = −0.000000011521

a64 = 0.000000012190, a65 = −0.000000012095, a66 = 0.000000011769

a67 = −0.000000011467, a68 = 0.000000008698, a69 = −0.000000006652

a70 = 0.000000005132, a71 = −0.000000003988, a72 = 0.000000002523

a73 = −0.000000001600, a74 = 0.000000001015, a75 = −0.000000000643

(8.4)
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9 ConlusionWe have designed regular polynomial interpolation algorithms and variations whih pro-due families of multivariate polynomials whih solve linear systems of partial di�erentialequations on arbitrary sets of interpolation points. In our basi algorithm the members ofthe family of polynomials are de�ned reursively eah being an extension of the preedingmember in the sense that the preeding member agrees with a given member on the set ofinterpolation points on whih the preeding member satis�es the linear system of partialdi�erential equations. We have shown that the family of multivariate polynomials has theglobal solution as its natural limit if some a priori information on the system of partialdi�erential equations is available. The information needed an variate from ase to ase.In any ase a solution should exist. We have shown how to use a priori estimates of elliptiequations and of hyperboli systems of equations in order to obtain error estimates adaptedto the regularity of the solution. Similar is true for paraboli equations. All this makesour approah ompatible with new tehniques like sparse grids or weighted Monte-Carloalgorithms developed in order to treat systems of higher dimension. In ase of paraboliequations we showed how regular polynomial interpolation of known funtions an be usedin order to ompute higher order approximations of WKB-expansions of fundamental so-lutions. We also onstruted extensions where the algorithm is parallelized on di�erentset of interpolation points an showed how these partial polynomial approximations an bepathed together to one multivariate polynom whih �ts the given system of linear partialdi�erential equations on the union of sets of interpolation points.Referenes[1℄ de Boor, C. , Ron, A., On multivariate polynomial interpolation, Constr. Approx., 1990.[2℄ Dinh-Düng, Calvi, J.P., Trung, N.T., Polynomial Projetors preserving homo-geous partial di�erential equations, Journal of Approximation Theory, 2005.[3℄ Frazer, R. A., Jones, W.P., San, S. W., Approximations to funtions and tosolutions of di�erential equations, Gr. Br. Aero. Res. Counel. Rep. Memo 1799 , 1937.[4℄ Fries, C., Kampen, J., Proxy Simulation Shemes for generi robust Monte Carlosensitivities, proess oriented importane sampling and high auray drift approxi-mation (with appliations to the LIBOR market model), Journal of ComputationalFinane, Vol. 10, Nr. 2, 2007.[5℄ Gasa,M., Sauer, Th., On the history of multivariate polynomial interpolation, J.Comput. Appl. Math. 122 (2000), S. 23-35.[6℄ Kampen, J., The WKB-Expansion of the fundamental solution of linear paraboliequations and its appliations .book, submitted to Memoirs of the Amerian Mathe-matial Soiety, (eletronially published at SSRN ,2006).[7℄ Kampen, J., Regular polynomial interpolation and linear systems of partial di�er-ential equations II: re�ned error estimates, appliations and numerial examples (inpreperation). 25
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