6,077 research outputs found

    Autoencoders for strategic decision support

    Full text link
    In the majority of executive domains, a notion of normality is involved in most strategic decisions. However, few data-driven tools that support strategic decision-making are available. We introduce and extend the use of autoencoders to provide strategically relevant granular feedback. A first experiment indicates that experts are inconsistent in their decision making, highlighting the need for strategic decision support. Furthermore, using two large industry-provided human resources datasets, the proposed solution is evaluated in terms of ranking accuracy, synergy with human experts, and dimension-level feedback. This three-point scheme is validated using (a) synthetic data, (b) the perspective of data quality, (c) blind expert validation, and (d) transparent expert evaluation. Our study confirms several principal weaknesses of human decision-making and stresses the importance of synergy between a model and humans. Moreover, unsupervised learning and in particular the autoencoder are shown to be valuable tools for strategic decision-making

    Data-driven design of intelligent wireless networks: an overview and tutorial

    Get PDF
    Data science or "data-driven research" is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves

    Autonomic care platform for optimizing query performance

    Get PDF
    Background: As the amount of information in electronic health care systems increases, data operations get more complicated and time-consuming. Intensive Care platforms require a timely processing of data retrievals to guarantee the continuous display of recent data of patients. Physicians and nurses rely on this data for their decision making. Manual optimization of query executions has become difficult to handle due to the increased amount of queries across multiple sources. Hence, a more automated management is necessary to increase the performance of database queries. The autonomic computing paradigm promises an approach in which the system adapts itself and acts as self-managing entity, thereby limiting human interventions and taking actions. Despite the usage of autonomic control loops in network and software systems, this approach has not been applied so far for health information systems. Methods: We extend the COSARA architecture, an infection surveillance and antibiotic management service platform for the Intensive Care Unit (ICU), with self-managed components to increase the performance of data retrievals. We used real-life ICU COSARA queries to analyse slow performance and measure the impact of optimizations. Each day more than 2 million COSARA queries are executed. Three control loops, which monitor the executions and take action, have been proposed: reactive, deliberative and reflective control loops. We focus on improvements of the execution time of microbiology queries directly related to the visual displays of patients' data on the bedside screens. Results: The results show that autonomic control loops are beneficial for the optimizations in the data executions in the ICU. The application of reactive control loop results in a reduction of 8.61% of the average execution time of microbiology results. The combined application of the reactive and deliberative control loop results in an average query time reduction of 10.92% and the combination of reactive, deliberative and reflective control loops provides a reduction of 13.04%. Conclusions: We found that by controlled reduction of queries' executions the performance for the end-user can be improved. The implementation of autonomic control loops in an existing health platform, COSARA, has a positive effect on the timely data visualization for the physician and nurse

    Advances in Robotics, Automation and Control

    Get PDF
    The book presents an excellent overview of the recent developments in the different areas of Robotics, Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design; it also introduces new mathematical tools and techniques devoted to improve the system modeling and control. An important point is the use of rational agents and heuristic techniques to cope with the computational complexity required for controlling complex systems. Through this book, we also find navigation and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be included in the next generation of productive systems developed by man

    Wireless sensor data processing for on-site emergency response

    Get PDF
    This thesis is concerned with the problem of processing data from Wireless Sensor Networks (WSNs) to meet the requirements of emergency responders (e.g. Fire and Rescue Services). A WSN typically consists of spatially distributed sensor nodes to cooperatively monitor the physical or environmental conditions. Sensor data about the physical or environmental conditions can then be used as part of the input to predict, detect, and monitor emergencies. Although WSNs have demonstrated their great potential in facilitating Emergency Response, sensor data cannot be interpreted directly due to its large volume, noise, and redundancy. In addition, emergency responders are not interested in raw data, they are interested in the meaning it conveys. This thesis presents research on processing and combining data from multiple types of sensors, and combining sensor data with other relevant data, for the purpose of obtaining data of greater quality and information of greater relevance to emergency responders. The current theory and practice in Emergency Response and the existing technology aids were reviewed to identify the requirements from both application and technology perspectives (Chapter 2). The detailed process of information extraction from sensor data and sensor data fusion techniques were reviewed to identify what constitutes suitable sensor data fusion techniques and challenges presented in sensor data processing (Chapter 3). A study of Incident Commanders’ requirements utilised a goal-driven task analysis method to identify gaps in current means of obtaining relevant information during response to fire emergencies and a list of opportunities for WSN technology to fill those gaps (Chapter 4). A high-level Emergency Information Management System Architecture was proposed, including the main components that are needed, the interaction between components, and system function specification at different incident stages (Chapter 5). A set of state-awareness rules was proposed, and integrated with Kalman Filter to improve the performance of filtering. The proposed data pre-processing approach achieved both improved outlier removal and quick detection of real events (Chapter 6). A data storage mechanism was proposed to support timely response to queries regardless of the increase in volume of data (Chapter 7). What can be considered as “meaning” (e.g. events) for emergency responders were identified and a generic emergency event detection model was proposed to identify patterns presenting in sensor data and associate patterns with events (Chapter 8). In conclusion, the added benefits that the technical work can provide to the current Emergency Response is discussed and specific contributions and future work are highlighted (Chapter 9)

    Estimating Fire Weather Indices via Semantic Reasoning over Wireless Sensor Network Data Streams

    Full text link
    Wildfires are frequent, devastating events in Australia that regularly cause significant loss of life and widespread property damage. Fire weather indices are a widely-adopted method for measuring fire danger and they play a significant role in issuing bushfire warnings and in anticipating demand for bushfire management resources. Existing systems that calculate fire weather indices are limited due to low spatial and temporal resolution. Localized wireless sensor networks, on the other hand, gather continuous sensor data measuring variables such as air temperature, relative humidity, rainfall and wind speed at high resolutions. However, using wireless sensor networks to estimate fire weather indices is a challenge due to data quality issues, lack of standard data formats and lack of agreement on thresholds and methods for calculating fire weather indices. Within the scope of this paper, we propose a standardized approach to calculating Fire Weather Indices (a.k.a. fire danger ratings) and overcome a number of the challenges by applying Semantic Web Technologies to the processing of data streams from a wireless sensor network deployed in the Springbrook region of South East Queensland. This paper describes the underlying ontologies, the semantic reasoning and the Semantic Fire Weather Index (SFWI) system that we have developed to enable domain experts to specify and adapt rules for calculating Fire Weather Indices. We also describe the Web-based mapping interface that we have developed, that enables users to improve their understanding of how fire weather indices vary over time within a particular region.Finally, we discuss our evaluation results that indicate that the proposed system outperforms state-of-the-art techniques in terms of accuracy, precision and query performance.Comment: 20pages, 12 figure

    Some Pattern Recognition Challenges in Data-Intensive Astronomy

    Get PDF
    We review some of the recent developments and challenges posed by the data analysis in modern digital sky surveys, which are representative of the information-rich astronomy in the context of Virtual Observatory. Illustrative examples include the problems of an automated star-galaxy classification in complex and heterogeneous panoramic imaging data sets, and an automated, iterative, dynamical classification of transient events detected in synoptic sky surveys. These problems offer good opportunities for productive collaborations between astronomers and applied computer scientists and statisticians, and are representative of the kind of challenges now present in all data-intensive fields. We discuss briefly some emergent types of scalable scientific data analysis systems with a broad applicability.Comment: 8 pages, compressed pdf file, figures downgraded in quality in order to match the arXiv size limi
    • …
    corecore