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ABSTRACT 

This thesis is concerned with the problem of processing data from Wireless Sensor 

Networks (WSNs) to meet the requirements of emergency responders (e.g. Fire and 

Rescue Services). A WSN typically consists of spatially distributed sensor nodes to 

cooperatively monitor the physical or environmental conditions. Sensor data about the 

physical or environmental conditions can then be used as part of the input to predict, 

detect, and monitor emergencies. Although WSNs have demonstrated their great 

potential in facilitating Emergency Response, sensor data cannot be interpreted 

directly due to its large volume, noise, and redundancy. In addition, emergency 

responders are not interested in raw data, they are interested in the meaning it conveys. 

This thesis presents research on processing and combining data from multiple types of 

sensors, and combining sensor data with other relevant data, for the purpose of 

obtaining data of greater quality and information of greater relevance to emergency 

responders. 

The current theory and practice in Emergency Response and the existing technology 

aids were reviewed to identify the requirements from both application and technology 

perspectives (Chapter 2). The detailed process of information extraction from sensor 

data and sensor data fusion techniques were reviewed to identify what constitutes 

suitable sensor data fusion techniques and challenges presented in sensor data 

processing (Chapter 3). A study of Incident Commanders’ requirements utilised a 

goal-driven task analysis method to identify gaps in current means of obtaining 

relevant information during response to fire emergencies and a list of opportunities for 

WSN technology to fill those gaps (Chapter 4). A high-level Emergency Information 

Management System Architecture was proposed, including the main components that 

are needed, the interaction between components, and system function specification at 

different incident stages (Chapter 5). A set of state-awareness rules was proposed, and 

integrated with Kalman Filter to improve the performance of filtering. The proposed 

data pre-processing approach achieved both improved outlier removal and quick 

detection of real events (Chapter 6). A data storage mechanism was proposed to 

support timely response to queries regardless of the increase in volume of data 

(Chapter 7). What can be considered as “meaning” (e.g. events) for emergency 
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responders were identified and a generic emergency event detection model was 

proposed to identify patterns presenting in sensor data and associate patterns with 

events (Chapter 8). In conclusion, the added benefits that the technical work can 

provide to the current Emergency Response is discussed and specific contributions and 

future work are highlighted (Chapter 9). 

Keywords: sensor data processing, Data Fusion, Emergency Response, emergency 

information system, Wireless Sensor Networks 
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 1 

Chapter 1. Introduction 

1.1 Background to the Research 

Emergency Response (ER) has always been important for minimizing the damage and 

the loss of life and property as natural and man-made disasters continue to occur. 

Nowadays, the importance of ER has received increasing recognition throughout the 

world. The demand for efficient ER has been highlighted by “the responses to the 9/11, 

terrorist attack on the World Trade Centre, Hurricane Katrina in the southern U.S., and 

the July 7 London bombings” (Yang, L. et al., 2009). In recent years, especially after 

9/11, ER has become an area that has been receiving rapidly growing interest from 

researchers worldwide. Researchers from a diversity of backgrounds, including public 

administration, control engineering, and computing and communication technologies, 

have all put effort into developing means of improving the efficiency and effectiveness 

of ER.  

The prevalent problems that may affect the efficiency and effectiveness of ER can be 

classified into three categories: sociological, organizational and technological, as 

summarized by Manoj and Baker (2007). Sociological issues consist of many aspects, 

including 1) the lack of understanding on human behaviour models and the impact of 

such models on emergency response technology system design, 2) the interoperability 

issue among different responding agencies, and 3) the issue of trust both in terms of 

establishing trust among different responding groups to share and communicate 

critical information and in terms of the lack of trust from emergency responders in 

terms of adoption of new technology, etc. Organizational issues occur as an 

organisation of people different from what the responding groups commonly practise 

emerges and must be adopted during emergency response and recovery.  

A number of technological issues related to ER have been recognised and addressed 

by researchers over the recent decade, e.g. lack of communication systems within one 

responding agency and among different responding agencies, lack of decision support 
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systems, etc. Out of all the specific technological issues addressed by researchers, the 

most well recognised one is the lack of means of rapid gathering and communicating 

of critical information by the emergency responders during their responding to 

emergencies.  

The importance of the availability of information and the means of communicating 

information has been recognised in the literature for over a decade. “In the absence of 

data and information, emergency response is simply well-intended guesswork that will 

most likely result in significant loss of human life” (Erickson, 1999).  

In the modern world, successful emergency response not only demands effective 

management and command, coordination and cooperation from different responding 

crews, but also requires substantial support from technologies to provide the required 

information to the right person at the right time in the right format (Carver and Turoff, 

2007; Manoj and Baker, 2007; Prasanna et al., 2007; Turoff, 2002; Yang, 2007).  The 

people within an emergency responding agency can be classified into two categories: 

control centre staff and first responders. 

Although different technology aids to ER have been proposed, most of the existing 

research focuses mainly on providing technology support to the control centre staff. 

Examples of technology support for control centre staff include: cascading web map 

services and Geographical Information System (GIS) web services (Vasardani and 

Flewelling, 2005), and remote sensing (Hutton and Melihen, 2006). The main 

advantage of such technology aids is that they enable better understanding of the 

whole picture of view within a region regarding incidents and available resources. As 

a result, better command and coordination of the available resources within the region 

can be achieved.  

First responders are the teams offering immediate help to victims in case of an 

emergency. They are “the primary link in the chain of information exchanges that 

leads to making critical, perhaps lifesaving, decisions” (Sawyer et al., 2004).  

However, there is a lack of technology support for first responders, who are usually 

deployed to the premises as soon as an incident occurs and act as the front-line soldiers 

in responding to incidents. Examples of first responders include fire-fighters, 

paramedics and police. Yang and Fredrick (2006) revealed that “during fire incidents, 
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when the first responders arrive on site, they have very limited information about the 

building, occupants and/or the location of the hazard”. Such lack of information could 

result in a delay in making decisions about whether or not to enter the building, 

whether it is safe to enter, whether the priority is to search and rescue occupants or 

other tasks and how to most efficiently deal with the hazard. The result of wrong 

decisions due to the lack of information could be fire-fighter deaths and casualties. For 

example, the death of up to four fire-fighters (BBC news, 2007) while tackling a 

warehouse blaze in Warwickshire highlighted the dangers of having limited 

information on the building. According to the latest published fire statistics in the UK 

(Fire Statistics, 2009), there were 6 fire-fighter deaths and 268 fire-fighter casualties in 

2007, 2 fire-fighter deaths and 350 fire-fighter casualties in 2006. These numbers 

clearly demonstrate the requirement for better first responder support.  

Researchers have identified that both “outside building information” and “inside 

building information” are required to provide a full picture of view in the event of an 

emergency (Hansen, 2007). Some of the latest Emergency Response Systems (ERS), 

which are technical systems that provide support to emergency responders, have 

integrated technologies such as Global Positioning System (GPS) to help emergency 

responders arrive on site as quickly as possible. However, little information from 

inside of the building is provided by current ERS. On arrival at an incident premise, 

Incident Commanders (ICs) have to assess the situation by observing from the outside, 

asking people who have been in the building or people who know, or checking the 

facilities provided by commercial buildings such as operation panels to identify which 

zone a fire incident is in. However, very limited information is typically available and 

these ways of obtaining information about the nature of an incident inside buildings 

are often time-consuming and inaccurate.  

Wireless Sensor Network (WSN) is an emerging technology that has demonstrated its 

potential in providing the “inside building” information (Yang and Fredrick, 2006). 

They can provide increased situation awareness that is important for emergency 

responders (Yang, L. et al., 2009). WSNs typically consist of battery powered, low 

cost, resource limited sensor nodes that can be deployed across areas of varying sizes 

to autonomously form wireless networks (Tanenbaum, 2003). Sensor nodes can even 

be deployed in harsh environment where human access is difficult, and they can 

transfer real-time data about the occurrence and spread of an incident (such as a fire) 
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out of the network. The raw data collected from WSNs must be processed and 

converted into information, which is data that has meaning to an individual within a 

context of use. It is not until the raw data is converted into meaningful information 

about the environment being monitored that it can be interpreted by first responders 

and used by them to better plan their response to incidents.  

This thesis focuses on first responders. It investigates the process and techniques of 

using data from WSNs to meet the information needs of first responders to facilitate 

the overall response to incidents.  

1.2 Research Challenges 

Using data from WSNs to satisfy the information needs of first responders presents a 

number of challenges which must be addressed if they are to be at practical use.  

Although WSNs have promising and already successful applications in areas such as 

habitat monitoring, supply chain management, etc., they are known for having energy 

constraints and limited resources. Moreover, data from WSNs has different 

characteristics compared to those of traditional data. The constraints of WSNs and the 

special features of sensor data raise challenges in sensor data processing approaches, 

e.g. data storage, data cleaning and meaning extraction, because algorithms and 

approaches different from those designed for traditional data processing may be 

required.  

The on-site ER environment presents a potential challenge as well. The nature of an 

incident is dynamic and highly demanding. Real-time or near real-time data retrieval, 

processing and management is required. However, the resources for computation and 

communication may be limited at an incident site. Therefore, meeting the demanding 

performance requirements under resource constraints could be a challenge. 

In addition, this thesis aims to establish a link between technology and human factors 

perspectives, through an investigation of making sensor data ‘work’ for emergency 

response. Identifying technology capabilities of WSN that can ultimately impact on 

better situation awareness and other usability aspects of emergency responders 
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presents potential challenges and this is tackled by incorporating a user-centred design 

perspective within this thesis (Noyes and Baber, 1999).  

1.3 Motivation 

This research was driven by the motivation to make a contribution to knowledge in 

both human factors and sensor data processing. Although this research wanted to focus 

on technological development, it wanted to base this on a clear understanding of the 

relevant human factors issues, and particularly the user needs of the ICs. 

Most of the existing research in the area of Emergency Management (EM) is either 

from a pure technology perspective or from a pure human factor perspective. Taking a 

more multidisciplinary approach and establishing a clear link between the two will 

provide benefit to researchers from both a technology perspective and a human factor 

perspective. In particular, identifying the real gaps existing in information gathering in 

current ER and opportunities for technology to fill in the gaps links users’ need with 

technology capabilities. 

The motivation for this research was also driven by the potential benefits that sensor 

data processing technology can bring to ICs in facilitating the response to emergencies 

and reducing the risk of first responders being injured. As a result, a more effective ER 

may be accomplished, which can also bring benefits to the people who are under risk 

during an emergency, e.g. fire-fighters and building occupants.  

The study of how a specific technology (sensor data processing) can bring benefit to 

users (first responders) prior to, during and after the design and implementation of the 

technology itself can provide considerable benefits to both researchers and users. 

1.4 Research Questions and Objectives 

This research aims to establish a link between what WSNs can provide and what first 

responders require. It focuses on the design and implementation of sensor data 

processing approaches that are suitable for facilitating first responders during their on-

site ER. 
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The list of research questions (RQ) considered, and the specific research objectives 

associated with each research question to obtain the research aim, are described as 

follows: 

RQ1: Out of all the potential user groups existing in the ER domain, which is the user 

group that can benefit the most from the information provided by sensor data? 

Objective associated with RQ1: Investigate the existing literature available on ER 

from a human factors’ perspective to understand the generic theory and practice in ER 

as well as to choose a targeted user group in the first responders. 

RQ2: What are the goals, tasks, information requirements of the targeted user group? 

RQ3: What are the opportunities for WSN technology to address the gaps related to 

retrieving the required information? 

Objective associated with RQ2 and RQ3: Understand the goals, tasks and 

information requirements of the chosen user group through interviews and 

observations, with the purpose of identifying gaps in the current ER practice and 

analysing potential opportunities for the use of technology. 

RQ4: How can the technology capabilities of WSN be implemented in an on-site ER 

system? 

Objective associated with RQ4:  

• Research the existing literature available on information extraction from sensor 

data, and the associated process and techniques of information extraction from 

sensor data. 

• Design a suitable system architecture for a WSN-based Emergency 

Information Management System (EIMS); specify the system functions and the 

associated system components. 

RQ5: What constitutes a suitable sensor data storage mechanism for on-site ER? 

Objectives associated with RQ5: 

• Accomplish a comprehensive analysis of the features of sensor data 
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• Evaluate and propose a suitable data storage mechanism for the WSN-based 

EIMS, with an emphasis on managing and maintaining the query efficiency 

regardless of the increase of data volume. 

• Evaluate the efficiency of the proposed data storage mechanism and its cost-

effectiveness. 

RQ6: What constitutes a suitable sensor data cleaning approach for on-site ER? 

Objectives associated with RQ6: 

• Analyse and propose a suitable data cleaning approach for the WSN-based 

EIMS, with the emphasis on separating outliers from real environmental 

changes and dealing with them separately. 

• Evaluate the effectiveness of the proposed data cleaning approach in 

comparison to the existing data cleaning approaches.  

RQ7: How to extract the defined “meaning” from sensor data? 

Objectives associated with RQ7: 

• Analyse and specify what “meaning” can be in the context of WSN-based on-

site EIMS, and propose a meaning extraction approach. 

• Evaluate the performance of the proposed meaning extraction approach and 

discuss its application. 

1.5 Research Road Map 

In order to establish the link between human factors and technology, an on-going cycle 

of identifying problems with a human factor or user-centred analysis, proposing 

technical solutions and verifying the solutions was undertaken.  

The initial cycle was mainly based on a literature review. This phase focused on 

establishing the general link between human factors and technology (the selection of a 

user group and a specific technology). The initial human factors analysis identified the 

targeted user group, ICs, based on the literature review undertaken in order to 
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understand the current theory and practice in ER and to identify and analyse potential 

user groups. The literature review of existing types of technologies in ER suggested 

that WSN has great potential in providing the “inside” building information that may 

benefit the ICs. This initial proposal of using WSN to facilitate the ICs was positively 

received in interviews undertaken later. 

The cycle was continued by undertaking visits to the Derbyshire fire and rescue 

service, observations and interviews with senior officers who can act as ICs in case of 

an incident. This phase further investigated the targeted user group and the specific 

technology. The aim during this phase was ultimately to answer the question “How 

can WSN be utilised to facilitate ICs?” The information requirements of ICs were 

identified through the analysis of their goals and tasks. Gaps in retrieving relevant 

information were identified and a list of opportunities for the use of technology was 

proposed. Each proposed opportunity targets an identified gap relating to the needs of 

the IC, and feedback on the proposed technical solutions was gathered from formal 

interviews and informal email contacts. 

Further technical research was undertaken based on some of the verified technology 

opportunities. During this phase, the existing research on information extraction from 

sensor data was investigated, in order to understand the process and evaluate the 

available data fusion techniques. A system architecture was proposed and a detailed 

technique for each component of the system (sensor data storage, sensor data cleaning 

and meaning extraction) was proposed and evaluated in simulations and experiments. 

A road map of the research, which demonstrates the link between technology and 

human factors during these cycles, is shown in Figure 1-1. 
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Technical research
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To implement some
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user group
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Factor
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Investigation of the current theory and practice of ER

Identification of all the potential user groups existing in ER

Identifying the targeted user group: ICs

Investigation of the existing types of technology in ER

Proposing the idea of using WSN to
provide ICs' required information

Verifying the proposed potential solution

Investigation of the ICs' goals, tasks,
decisions and information requirements

Verifying the proposed technical
solutions for each gap

Proposing opportunities for
technology to fill in the identified gaps

Proposal of the Emergency Information
Management System Architecture

Proposal of sensor data storage mechanism

Investigation of the existing sensor data
storage techniques

Simulation/ Performance evaluation of the
proposed sensor data storage mechanism

Identifying gaps in retrieving the
required information

Investigation of the process of information
extraction from sensor data

Analysis of features of sensor data

Proposal of sensor data cleaning approach

Investigation of the existing sensor data
cleaning techniques

Simulation and field trial of the proposed sensor
data cleaning approach

Analysis of the need for a suitable sensor data
cleaning approach for on-site ER

Proposal of sensor data cleaning approach

Investigation of the existing meaning extraction
from sensor data

Simulation and field trial of the proposed sensor
data cleaning approach

Analysis of the need for a suitable sensor data
cleaning approach for on-site ER

 

Figure 1-1: Research road map 
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1.6 Contributions of the Research 

The contributions of the research detailed in this thesis are composed of five parts. 

They are summarized here as follows: 

1. A comprehensive analysis of ICs’ goals, tasks/decisions, information needs, 

and their feedback on the proposed technology opportunities.  This established 

a link between user requirements and technology capabilities, with the 

emphasis on the added benefits that the technology can provide to the users.  

2. The proposal of an emergency information management system architecture 

that addresses the dynamic nature of ER and can facilitate ER before, during 

and after incidents. The proposed architecture can also be flexibly applied to 

develop emergency detection systems, risk assessment systems, decision 

support systems, historical statistics or an integrated multi-purposes emergency 

response support system according to different contexts of use. 

3. A proposed data storage mechanism that accommodates the challenges 

presented by the features of sensor data as well as maintaining efficiency for 

the entire ER process. Simulations demonstrated that the proposed data storage 

mechanism can provide the benefit of efficient querying with neither additional 

updating cost nor the introduction of unacceptable storage costs. 

4. The proposal of a state-aware data cleaning approach for ER. This can fill in 

the gap relating to the fact that existing data cleaning approaches only produce 

a compromise between the observations and the system estimation regardless 

of the state. In comparison, the proposed data cleaning approach can not only 

reduce noise, but also remove outliers and quickly detect the real 

environmental changes. 

5. A generic model for emergency event detection. This utilises the temporal-

spatial correlations typically existed in WSNs in the form of Neighbourhood 

Support to improve the detection accuracy. The model can apply in both 

threshold-based event detection and tempo-spatial pattern-based event 

detection. Simulations demonstrated that applying this model can improve the 
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efficiency and accuracy of the existing event detection algorithms in both of 

the two categories of event detection. 

All of the contributions aim to create suitable sensor data processing approaches to 

help satisfy the information requirements for ICs, and consequently facilitate ER.  

1.7 Organization of the Thesis 

The thesis was organized as follows: 

Chapter 1 (this chapter) has introduced the background to the research and put the 

focus of the thesis into context. It has also identified the potential challenges to and the 

motivation behind the undertaking of the research. The scope of the thesis has been 

outlined, and the aims and objectives of the research have been identified. In addition, 

the road map of the thesis demonstrating the link between technology and human 

factor has been described, and the contributions of the thesis have been summarized. 

Chapter 2 was a literature review. The two main purposes of the literature review 

were to understand the theory and practice of current ER, and to identify how the 

existing types of technologies can assist the information needs of users in ER. As a 

result of the review of the current theory and practice in ER, different user groups 

were identified and ICs were selected as the targeted user group. Then the existing 

types of technologies were reviewed with the emphasis of how they can assist the 

required information needs, resulting in the selection of WSN to be further 

investigated. 

Chapter 3 investigated the existing literature on information extraction from sensor 

data, as it was identified that it still remains a challenge to make sense of the large 

amount of data collected from WSN. The process and techniques of information 

extraction from sensor data were reviewed.  Arguments on what constitute a suitable 

sensor data processing approach were summarized, and general recommendations of 

suitable sensor data processing approach were derived. 

Chapter 4 presented the study of the ICs’ requirements, with the aim of identifying 

opportunities for WSN for facilitating fire emergency response, and determining the 

focus of further technical work. A goal-driven task analysis method was adopted and 
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further extended to extract goals, tasks, information requirements and opportunities for 

technology to provide added benefits to ICs. A list of eight technology opportunities 

was identified and some of them were taken forward for further technical work. 

Chapter 5 proposed an architecture for an on-site EIMS, for incorporating WSN 

capabilities to provide Emergency Information. Its scope and characteristics were 

defined, the design requirements were summarized. The main components of the 

system and the interaction between components were discussed. In addition, system 

functions before, during, and after incidents were specified. 

Chapter 6 proposed a data storage mechanism designed for storing and managing data 

for on-site ER purposes. A comprehensive analysis of the features of sensor data was 

described, and the requirements of ER applications were evaluated. The detailed 

design of the data storage mechanism was discussed. Simulation results demonstrated 

that the proposed data storage mechanism can maintain the query efficiency as the 

real-time sensor data continues feeding into the database, and this was achieved with 

neither additional updating cost nor introduction of unacceptable storage costs. 

Chapter 7 proposed a data cleaning approach. The feature of the typical existence of 

‘noise’ in sensor data was addressed in the chapter. A set of state-awareness rules was 

proposed in order to address the issue that the existing data cleaning approaches do not 

take states into consideration and thus cannot separate outliers from real environment 

changes. The data cleaning experiments demonstrated that by integrating the state-

awareness rules with a Kalman Filter, the resulting state-aware Kalman Filter can 

reduce noise and remove outliers, as well as quickly detect real changes in the 

environment. 

Chapter 8 proposed an approach for meaning extraction from sensor data. One of the 

examples of “meaning” in the context of on-site ER can be defined as the occurrence 

and development of a fire incident. Therefore the meaning extraction problem can be 

converted into an event detection problem. The sensor state model was further 

developed and applied to two categories of event detection: threshold-based event 

detection and tempo-spatial pattern based event detection. Simulation results 

demonstrated that the proposed event detection approach can improve the detection 
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efficiency and accuracy in both categories of event detection. False alarm rate can be 

reduced to 30%. 

Chapter 9 concluded the thesis. This stated what are felt to be the most important 

contributions of the thesis, and identified future research questions that have emerged 

from the research contained in this thesis. 

The structure of the thesis is shown in Figure 1-2. The figure demonstrates the 

relationships between the existing knowledge, the research questions posed and the 

studies undertaken in each chapter to address the research questions. 

1.8 Acknowledgements 

The work reported in this thesis was entirely undertaken by the author except Chapter 

4. 

The work contained in Chapter 4 is a study of the ICs’ requirements. The data analysis 

contained in the chapter was designed, managed and completed by the author. The 

analysis and findings in the chapter were partly based on the author’s data collection 

from the visits to Derbyshire and Leicestershire Fire and Rescue Services and 2 

interviews with ICs. The analysis and discussion was also based on additional, 

interviews and data collection undertaken by Raj Prasanna in the Business School at 

Loughborough University. The pictures included in the chapter were produced by Raj 

Prasanna and are used with permission. The chapter was written in its entirety by the 

author. 
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Chapter 2. Literature Review: 
Emergency Response 

 

Research questions addressed in this chapter: 

1 
What are the theoretical perspectives and real life practices in current 
Emergency Response? 

2 
Which is the user group that can benefit the most from sensor data, out of 
all the potential user groups existing in the domain of Emergency 
Response? What are their goals, tasks and information requirements? 

3 
What technology aids are available in existing Emergency Response 
Systems? 

4 How is the existing technology meeting users’ information requirements? 

5 
What general recommendations can be made for Emergency Response 
Systems design? 

 

This chapter provides a comprehensive review of Emergency Response (ER), with a 

special emphasis on how the existing types of technologies can assist the information 

needs of users in ER. The review of the current theory and practice in ER identifies 

different potential user groups existing in ER, which leads to the subsequent selection 

of the targeted user group, verification of their information requirements, and 

evaluation of the strengths and weaknesses of the existing types of technologies in 

providing the required information. 

2.1 Emergency Response: Theory and Practice 

2.1.1 Emergency management and emergency response 

Throughout history, there have been natural and man-made hazardous events 

occurring and people putting effort in to reduce the risk they propose to human life and 
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safety. This effort laid the foundation for the discipline of Emergency Management 

(EM), which has become well known and respected in the recent 20 years. EM is 

defined as the profession and academic discipline of the management of disasters 

(prepare for, respond to, recover from disasters and mitigate their consequences to a 

certain degree) (Haddow et al., 2007). In other words, EM typically consists of four 

phases: mitigation, preparedness, response and recovery, as shown in Figure 2-1. 

Response
R

ecovery

Mitigation
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Emergency
Management

 

Figure 2-1: The process of emergency management 

An appropriate starting place for EM is before the impact of incidents occurs. 

Mitigation refers to long-term minimising of the destructive effects of disasters, by the 

means of both structural (e.g. technologies) and non-structural measures (e.g. 

legislation, planning) (Christoplos et al., 2001). It is an important component of 

disaster risk management. 

The other important component of disaster risk management is emergency 

preparedness. Its achievement takes place through a process of planning, training and 

exercising, and documenting response measures and protocols, which are generated by 

the planning process and rehearsed via training and exercises, in the written plan 

(Perry and Lindell, 2003). 

Post-event response is an execution of the plans and operational responses to the 

incidents. There is often a theoretical debate over when the response function ends and 

the recovery function begins. Haddow et al. (2007) classified the response action as 

the “immediate actions to save lives, protect property, and meet basic human needs”, 

whereas the recovery function is concerned with issues and decisions that must be 

made after immediate needs are addressed.  
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In case of emergencies, service demands escalate tremendously, and survival mainly 

depends on the effectiveness of ER. Therefore, ER is a phase of particular importance 

to EM. Nowadays ER (especially response to catastrophic disasters) is characterised 

by shared authority, dispersed responsibility, scattered resources. Therefore, 

collaborative processes are essential (Waugh and Streib, 2006). These features of the 

ER present the requirement of collaboration and coordination between different 

agencies and between people playing varied roles. 

2.1.2 Different roles and responsibilities in emergency response 

A review of literature identified four categories of people involved in ER: 

government/management based roles, first responders, volunteers and technical 

expertise. Each of them can be considered as a potential user group with unique 

characteristics.  

Government/management based roles 

“Inasmuch as disasters are geographically localized, county and municipal authorities 

are most often required to assume primary responsibility for emergency management” 

(Waugh and Hy, 1990). Citizens rely first on their local government for timely, 

coordinated, and comprehensive responses during an emergency. They expect that 

known potential hazards are included in the emergency management plans, and 

mitigation actions be taken whenever possible. McLoughlin (1985) concluded that 

every level of government in the USA is involved in emergency responses at different 

levels and different phases. Local governments’ main role is preparedness and 

response; state governments’ role is to lead, support, and coordinate; federal 

governments have extensive resource, they provide policy, guidance, technical and 

financial assistance. Handmer and Parker (1991) assessed the change of focus of 

British disaster planning and management from 1) planning for wartime emergencies 

to 2) civil emergencies prevention, planning and management. Emergency 

Management has become a central activity of public administration and an important 

function of worldwide government especially after 9/11. 

First responders 

First Responders are members of organisations and agencies such as emergency 

communications centres, emergency medical services, fire, rescue and hazardous 
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material response teams, law enforcement agencies, the Red Cross, and other disaster 

relief organisations (Sawyer et al., 2004). First responders routinely face dangerous 

environments and situations, ones ranging from fires to natural disasters to terrorist 

attacks (Betts et al., 2006). They are the teams offering immediate help to victims in 

case of an emergency, and maintaining an active link to policy makers. They are 

usually the “prime evaluators of threat and risk to homeland security”, and “the 

primary link in the chain of information exchanges that leads to making critical, 

perhaps lifesaving, decisions” (Sawyer et al., 2004). 

First Responders are characterised by the division of specialised roles and a 

hierarchical structure. There are various roles in the first responders group, each of 

which represents different responsibilities. To fulfil these responsibilities, their goals 

will be different. For example, in the same fire fighting system, “the goal of the gas 

analyser is to detect the level of toxic gas in the environment, the goal of the fire 

fighter is to determine the level of risk present in the environment and the goal of the 

Incident Commander is to decide on the appropriate response for his/her crew” 

(Stanton et al., 2006). Different first responding agencies with different expertise (e.g. 

fire and rescue service, police, ambulance) are required to collaborate together when 

emergencies become serious enough. As a result, the concept of unified command has 

been used to meet the demand of improved overall management when multiple and 

diverse agencies are involved (Irwin, 1989). The common practice in ER is to 

implement an Incident Command System (ICS), defined as “the standardized on-scene 

incident management concept designed specifically to allow responders to adopt an 

integrated organisational structure equal to the complexity and demands of any single 

incident or multiple incidents without being hindered by jurisdictional boundaries” 

(U.S. National Response Team, 2000). 

Volunteers 

Stallings and Quarantelli (1985) named the groups of private citizens carrying out 

important emergency response tasks on a volunteer basis as “emergent citizen groups”. 

They perform damage assessment tasks (e.g. search and rescue immediately after the 

impact to assess damage, and report to public officials with first information about the 

actual extent and location of damage), operational tasks (such as distributing food, 

clothing, shelter or clearing the street), and coordination tasks. They are typically 
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characterised by informal organisation, flat hierarchy, fluid boundary, emergent inner 

relations, and emergent goals and tasks. Roberts (2004) summarised the past 

experiments in direct citizen participation in all aspects (e.g. forms, challenges, 

consequences) and concluded that there is a trend of greater direct citizen involvement 

as the societies become more decentralized and networked. However, there are still 

challenges in practise related to size, expertise, risk, time consumption of direct citizen 

participation. 

Technical expertise 

A diversity of simulation and modelling systems have been proposed to assist 

emergency response practise. However, apart from the issue of interoperability among 

different systems, “typical emergency response organizations usually do not have the 

technical expertise or the time for building simulation models” (Jain and McLean, 

2003). Modern emergency response requires the involvement of technical experts, 

including developing technical systems to facilitate ER and assisting in the ER training 

process (Ford and Schmidt, 2000). In addition, during emergencies demanding high 

domain expertise, e.g. the emergencies in nuclear power industry (Crichton and Flin, 

2004), biological terrorism attacks (Rotz et al., 2002), collaboration with domain 

technical experts is essential. 

Summary 

In summary, during the response phase, governments’ role is mainly a coordinator and 

supporter, although they have more responsibilities in policy making and command 

and control during the rest of EM process. First responders are trained to be “front-line 

soldiers” during the response phase. In case of emergencies, they have the primary 

responsibilities on-site and are presented with the most risks. Volunteers and technical 

expertise are also involved in ER activities. They can play a supporting role to first 

responders, for example by undertaking assigned tasks. 

After reviewing different roles involved in emergency response, it can be stated that 

first responders have the most important role in on-site responses to emergencies. 

Therefore, the next section reviews further into the first responders group. 
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2.1.3 Incident commander in the first responders group 

As described in section 2.1.2, specialized roles division and a hierarchical structure are 

the typical characteristics of the first responders group. The common practice of first 

responders across countries is to implement an ICS for on-site ER, under the concept 

of unified command. 

 “Incident Commander is the highest-ranking position within the ICS and the one 

functional position always filled” in the first responders’ hierarchy (Bigley and 

Roberts, 2001). The initial person occupying this position is usually a senior officer in 

the first arriving crew. When the scale of the incident expands and becomes not 

manageable for the initial Incident Commander (IC), further resources will be 

deployed. The position of IC may be occupied by a later arriving more senior officer, 

and sectors can be introduced in the incident scene.  In this case, the initial IC usually 

becomes a sector commander. No matter what the scale and complexity of the incident 

is, as shown in Figure 2.2, the IC remains at all times responsible for: the command 

and control, deployment of resources, tactical planning and co-ordination of the sector 

operations (Incident Command - 3rd edition, 2008).  
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Figure 2-2: ICS structure as the scale and complexity of the incident 
increases 

“The IC is an information intensive position, which involves coordinating the overall 

response strategy to an emergency and managing available people and resources in 

real time” (Jiang et al., 2004a). Therefore, decisions made by ICs would have great 

impact on the overall efficiency of on-site ER. Technology support providing the 

required information to ICs would likely have benefits for the overall performance of 

on-site ER. 
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Goals and priorities 

Although the terms used may be slightly different, the principles in ER are similar 

across countries. Turoff (2002) claimed that “past and future objectives remain the 

same in crises, providing relevant communities collaborative knowledge systems to 

exchange information”.  

For different types of incident, the focus of goals could be different. The primary goals 

of incident command in the Fire Service are “to ensure that all is done that can be done 

to protect people – the civilians at risk and the fire-fighters – and that everything is 

done to preserve and protect property by confining the fire and extinguishing it as 

quickly as possible” (Carter and Rausch, 2008), whereas in public health incidents, the 

primary goal would be to prevent epidemic and ensure the health and safety of the 

general public (Qureshi et al., 2006).  

Although different ER agencies have their individual responsibilities, they share 

common objectives: “save life; prevent escalation of the disaster; relieve suffering; 

safeguard the environment; protect property; facilitate investigation/inquiry; and 

restore normality as soon as possible” (Hill and Long, 2001). A similar set of ICs’ 

goals and priority were published by the U.S. Federal Emergency Management 

Agency (FEMA): “reducing the immediate hazard, saving lives and property, 

establishing situational control, and restoring normal operations. Lifesaving and 

responder safety will always be the highest priorities and the first objectives in the 

Incident Action Plan” (FEMA, 2008). Therefore, it can be summarized that ICs goals 

during emergencies (in a descending priority) are to save life, stabilize the incident, 

and protect property and environment. 

In the emergency response plan of the Department of Environmental Management 

(DEM), State of Rhode Island (RI), the key goals of the IC are defined as: “Establish 

incident response objectives and strategies; Acquire and apply the most accurate, up-

to-date assessments of the situation; Supervise an effective, safe, and efficient ICS 

organization; Deploy and monitor resources; Keep stakeholders and staff well-

informed; Demobilize Incident Command” (DEM RI U.S., 2008). Compared to the 

sets of goals described above, this set of goals focuses on the role that ICs play in an 

emergency situation, instead of the ideas they are required to keep in mind when they 
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play their roles. This is most like a sequence of common tasks that ICs are required to 

carry out from the beginning to the end of an emergency.  

Tasks/Decisions 

Perry (2003) summarized the duties of the IC throughout an incident as follows: 

• conduct initial situation evaluation and continual reassessments; 

• initiate, maintain and control communications; 

• identify incident management strategy, develop an action plan and assign 

resources; 

• call for supplemental resources, including Emergency Operation Centre 

activation; 

• develop an organizational command structure; 

• continually review, evaluate and revise incident action plan; 

• provide for continuing, transferring and terminating command. 

The initial situation evaluation and continual reassessments mentioned above are 

defined as Dynamic Risk Assessment (DRA) in the fire service guidance in the UK 

(Incident Command - 3rd edition, 2008). It is called a Dynamic Risk Assessment 

because the process of risk assessment is carried out in a changing environment, where 

what is being assessed is developing as the process itself is being undertaken. 

It is a standard operational procedure of the local emergency responders (West 

Yorkshire Fire and Rescue Service, 2007) that the IC will carry out a DRA on arrival 

at an incident. The principal elements of the DRA are termed "the operational risk 

assessment process" and include the following areas: 

• To look for and identify hazards (hazard spotting). 

• To decide who might be harmed and how. 

• To evaluate the risks (possibility and severity) arising from the hazards.  

• To decide what precautions are necessary. 
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In response to the hazard and risk evaluated, the appropriate tactical mode in any 

sector or incident which has not been sectorised can be declared to be defensive or 

offensive. Where the risk to crews is excessive, defensive mode will be declared. 

Where safe systems or work are deployed and sufficient control measures are 

implemented, the tactical mode is likely to be offensive. Defensive mode usually 

means the crews will stay outside of the premises, whereas offensive mode may 

involve deployment of the crew into the premises. Where an incident is sectorised, the 

tactical mode can vary between sectors, in this case, the incident is in transitional 

mode. The IC is required to include the tactical mode in the regular (about every 20 

minutes) communication both to the fire crew and to the control centre. 

After a tactical plan has been initiated on the basis of a DRA, it is important that this is 

reviewed and confirmed as quickly as practicable, and further reviewed and confirmed 

at regular intervals. As the incident develops, there may be dynamically generated 

risks, e.g. there may not be a staircase anymore, or part of building structure may have 

collapsed, temperature of chemical storage may rise to a critical point. Such 

dynamically generated risks must be included in the DRA. Any changes on the tactical 

mode or resource deployment, or any further request for resources as a result of the 

dynamically generated risks must be updated in the IC’s communication to the fire 

crew and to the control centre.  

Review
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Resources
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Tactical
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Figure 2-3: ICs’ tasks and decisions 

As summarized in Figure 2-3, ICs make critical decisions about tactical mode, control 

measures to minimise the risks, resource deployment, etc. based on the result of DRA. 
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In case of an incident, DRA is carried out by the first arriving IC as soon as the first 

fire crew arrives on site. It is continued by whoever is in the IC’s position during the 

incident at regular intervals, and lasts until the “stop” message is issued by the IC 

declaring the end of an emergency response. Therefore, DRA is the most important 

function and task of ICs. 

Information Requirements to achieve the tasks 

It has been recognised that good decision-making relies on the information available 

and the ability of decision makers to cope with the demands imposed upon them by the 

management of an emergency response situation (Danielsson, 1998).  

The faster the emergency responders are able to gather, analyse, share, and act on key 

information, the more effective their response will be, the better the needs will be met, 

and the greater the benefit to all affected people (Van de Walle and Turoff, 2007). 

It has been widely recognised in the emergency communities (Carver and Turoff, 

2007; Manoj and Baker, 2007; Prasanna et al., 2007; Turoff, 2002; Yang, 2007) that 

on-site dynamic information retrieving, sharing and presenting in the right format at 

the right time and to the right person will assist in improving initial key decision 

making. 

To execute DRA on-site, “upon arrival at an incident the first task of the IC must be to 

gather all available information relating to the incident” (Incident Command - 3rd 

edition, 2008). Unfortunately, in the case of fires in and around large scale structures, 

when the first responders arrive at the site of an incident they have very limited access 

to on-site real time dynamic information (Yang and Frederick, 2006). Examples of 

such information include environmental conditions within the buildings, status of the 

casualties, resource requirements and the locations of various hazards.  

There is also a lack of a comprehensive understanding about how the required 

information is gathered by ICs in real practice, and whether there are gaps in getting 

the required information at the right time in the right format. Therefore, a further 

analysis of ICs’ tasks with the aim of identifying these gaps and the underlying 

requirements for technology is needed, which is described in chapter 4. 
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Task analysis methods 

The available task analysis methods are reviewed in this section as a preliminary step 

to the further study of ICs’ requirements. The aim of this review is to understand the 

existing task analysis methods and find whether there is one that can identify the 

underlying requirements for technology. 

A wide variety of different task analysis methods exist. Embrey (2000) classified task 

analysis techniques into two categories: action oriented techniques and cognitive task 

analysis approaches. The former mainly focus on observable aspects of operator 

behaviour, whereas the later focus on the mental processes underlying observable 

behaviour. Examples of action-oriented techniques are Hierarchical Task Analysis 

(HTA), Operator Action Event Trees (OAET), and Decision/Action Flow Diagrams. 

Examples of cognitive task analysis techniques are Critical Action and Decision 

Evaluation Technique (CADET), and Influence Modelling and Assessment Systems 

(IMAS). 

A guide to task analysis (Kirwan and Ainsworth, 1992) divided task analysis methods 

into five broad categories: task data collection, task description, task simulation, task 

behaviour assessment, and task requirement evaluation, as shown in Table 2-1.  

Table 2-1: A summary of task analysis methods 

Categories of 
Task Analysis 

Methods  

Example methods 

Task data 
collection 

• Activity sampling 
• Critical incident 

technique 
• Observation 

• Questionnaire 
• Structured interview 
• Verbal protocol. 

Task description • Charting and 
networking methods 

• Decomposition methods 
• Hierarchical task 

analysis 

• Link analysis 
• Operational sequence 

diagram 
• Timeline analysis. 

Task simulation • Computer modelling 
and simulation 

• Simulator and mock-up 

• Table top analysis 
• Walk-through and talk-

through 
Task behaviour 
assessment 

• Barrier and works 
safety analysis 

• Event tree 
• Failure modes and 

• Fault tree 
• Hazard and other 

operability study 
• Influence 
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effects analysis 
• Diagram,  

• Management oversight 
and risk tree 

Task requirement 
evaluation 

• Ergonomics check-lists  • Interface surveys 

Hierarchical Task Analysis (HTA) 

HTA was introduced by Annett and Duncan (1967) to evaluate an organization’s 

training needs. The underlying technique, hierarchical decomposition (Annett et al., 

1971), analyses and represents the behavioural aspects of complex tasks such as 

planning, diagnosis and decision making (Annett and Stanton, 2000). HTA breaks 

tasks into subtasks and operations or actions. These task components are then 

graphically represented using a structure chart. HTA entails identifying tasks, 

categorizing them, identifying the subtasks, and checking the overall accuracy of the 

model. 

Although the emphasis was put more on hierarchical decomposition, HTA, in fact, 

identifies both observable tasks/behaviours and underlying goals.  

HTA is a useful analytical framework for complex tasks. However, it only represents a 

hierarchy of goals and tasks; therefore there is no link that leads from tasks to 

requirements for underlying technologies. 

Goal-Driven Task Analysis (GDTA) 

Goals have been recognised to be essential to understand the decision-making process. 

Albers (1998) argued that in the unstructured environment (meaning jobs that require 

dynamically adjusting of tasks as new information presents itself) the user’s goal is not 

just completing a specific task, but decision-making or problem-solving. As such, the 

user is goal-driven and not task-driven. Therefore, data collection and the analysis 

method for complex problem-solving processes should be goal-driven. 

The GDTA methodology presented by Albers (1998) also put emphasis on the 

information needed to achieve the goals. The methodology was designed to improve 

situation awareness for complex problem-solving by providing information to help 

solve a problem, "a goal which many systems fail to meet”. The result is a 

goal/information diagram linking the user’s goals and information needs.  
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Albert (1998) concluded that “Goal-driven analysis is not a means of identifying 

individual steps within a process or debating the relative merits of various approaches. 

Rather, it identifies the informational needs required to distinguish paths in a problem-

solving situation.”   

This method links from goals to tasks to information, which is one step closer to 

identifying the requirements for underlying technologies. 

Goal Directed Information Analysis (GDIA) 

Prasanna et al. (2009) proposed GDIA as a cognitive task analysis protocol to capture 

the information requirements of emergency first responders. It combined the 

capabilities of two existing methods, Goal Directed Cognitive Task Analysis (GDCTA) 

(Endsley et al., 2003) and Applied Cognitive Task Analysis (ACTA) (Militello and 

Hutton, 1998), so that in combination it can form a better tool to address the 

requirements-gathering in emergency domains such as fire and rescue. According to 

Prasanna et al. (2009), the comparison can be summarized in Table 2-2. 

Table 2-2: Comparison of GDCTA, ACTA and GDIA 

GDCTA ACTA GDIA 
Top-down method Bottom-up method Combined method 
Aim to design 
information system 
interfaces 

Aim to design training programs 
and instructional material 

Aim to design 
information system 
interfaces 

Data collection based on 
highly unstructured 
interviews using “why” 
and “how” as the main 
probes 

Provide guidelines on the 
appropriate data collection 
methods (e.g. simulations, 
interviews, observations) to 
implement each step of the 
method 

Provide clear guidelines 
on how to implement 
each application steps of 
the protocol 

No indication of any 
criteria of interviewee 
selection 

Interviewees of different level 
of experience (experienced and 
novice) are selected to avoid 
bias. 

Interviewees of different 
level of experience 
(experienced and 
novice) are selected to 
avoid bias. 

The GDIA method gathers data in the order of context, scenario, tasks, goals and 

information. It is a more comprehensive information gathering protocol. However, the 

aim is to gather requirements for information system interface design rather than the 

underlying technology. 
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Therefore, a method that is adapted based on GDTA and GDIA, with an extension link 

towards the underlying technology is utilised in the further study of ICs’ requirement 

analysis in Chapter 4. 

2.2 Technology Aids in Emergency Response 

Researchers have developed various new mechanisms for responding to emergencies 

using computer and communications technologies. Attention was also paid to a 

diversity of aspects in ER, including system architectures, geographical mapping and 

Geographical Information System (GIS), routing services and logistics management, 

communication services between ER personnel, hazard materials detection, etc. This 

section provides a comprehensive review of the existing research in those areas, which 

leads to subsequent evaluation of the strengths and weaknesses about the existing 

types of technologies in providing the information to facilitate ER.  

2.2.1 Architecture proposals 

Hinton et al. (2005) proposed a flexible and scalable future wireless emergency 

response system architecture, consisting of a fixed part as well as a portable part, to 

meet the requirements as the capacity and connectivity needs rise. They pointed out 

that building a global wireless infrastructure for the worst-case scenario could result in 

a waste of limited spectrums and resources, whereas a scalable and fast-deployable 

architecture is crucial. In their system architecture, the fixed part consists of base-

stations, whereas the portable part consists of portable base-stations and mobile 

gateways. This enables control of the integration of fixed and portable networks. 

Deployment procedures of the mobile gateway were also specified. Their proposed 

system architecture is hardware and infrastructure focused.  

Zlatanova (2005) summarized three possible types of system architecture for ER in 

urban areas - centralized, federated and dynamic collaboration - based on how data is 

managed. He stated that according to the dynamic nature of ER, dynamic collaboration 

is the most appropriate type. The proposed architecture provides dynamic 

collaboration through a key data middleware layer, which sits between a user layer 

(wire or wireless accessed users) and a distributed data server layer. The data 

middleware layer acts as an intelligent data fusion system, which manages data stored 

in its original representation rather than under a common schema and provides data 
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and answers to queries according to different user dynamics automatically. This 

proposal captured some important needs of ER, e.g. the dynamic nature of ER, the 

importance of data and communication of data, and the critical component 

(middleware) of the dynamic collaboration system architecture. However, it states that 

the responsibility to create such critical component lies with geospatial researchers and 

developers, no details on what may constitute the middleware and how it may be 

created were suggested. Moreover, the scenario used to describe how the system 

architecture may work indicates an initialization period of “not more than three or four 

hours” to gather information, before decisions can be made. This seems unrealistically 

long in a real ER scenario. 

2.2.2 Geographical information and mapping technologies 

Many of the national Emergency Response Systems (ERS) are based on or partly 

based on geographical information and mapping technologies, especially when the 

country itself has a large total area, for example, China Earthquake Forecast Centre 

utilizes a national Forecast and Emergency Response System based on a GIS. GIS is 

also used in local area ER services to provide the first responders with a visual view of 

the city. Centralized GIS has been widely used in emergency response centres, where 

data from various sources is collected and maintained in a central database. However, 

it has been argued that it is difficult for centralized GIS to keep all the data updated 

frequently, and it is subject to the risk of single point of failure. Research has 

suggested using the GIS Web Services and the Cascading Web Map Servers to 

optimize centralized GIS and existing mapping technologies for Emergency Response 

Management (ERM) (Vasardani and Flewelling, 2005) 

GIS has the advantage of providing a geographical representation of nation-wide 

incident distribution or risk distribution. It is widely used in national control centres to 

facilitate decision making. For example, the control centre staff, who manage and 

control all the resources available in the area, can have an intuitive whole picture of all 

the resources available and the distribution of incidents in the area, with the current 

status of the deployed resources. Abnormal situation can then be identified and 

command issued in a timely manner. Data can be stored in a geo-database and 

organized by locations. Spatial relationship and emergency situation trends of a 

specific address can be identified, therefore providing responders with an intuitive 

picture of a location of interest. Computer-generated maps can be shared between 
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different responding crews, hence potentially increasing the interoperability between 

them.  

However, applying GIS in first responders’ daily activities on-site is still a challenge. 

First, important tactical information such as the nature of the fire, hydrant locations, 

digital aerial orthography, floor plans, and construction materials cannot be provided 

by the GIS. It “only provides access to ‘outside the building’ information, such as 

street maps and public works”, therefore, first responders only have “half of the 

picture in the event of an emergency” (Hansen, 2007). In addition, in contrast to 

control centre staff who have easier access to the diverse information presented by GIS 

and less time constraints to assimilate them, on-site first responders such as a fire 

ground commander make decisions under severe time pressure while performing life-

critical tasks (Klein, 1999). Therefore accessing and assimilating such diverse of 

information is not appropriate for first responders under on-site conditions. 

2.2.3 Modelling and simulation 

A variety of modelling and simulation techniques have been employed to facilitate 

training ER personnel. Jain and McLean (2006) proposed a framework to facilitate 

application of modelling and simulation to incident management, which addresses 

incident management on three axes – incident, domain and lifecycle phase. Pimentel 

(2002) described a program called the Weapons of Mass Destruction Decision 

Analysis Center developed by Sandia National Labs as a way to simulate a war-room 

environment in the event of a terrorist attack. Its aim is to train public officials’ 

response to a bio-terror attack. Hanson (2000) reviewed a system called BioSimMER, 

which is “a prototype virtual reality (VR) system designed to train first responders to 

nuclear, biological, and chemical acts of terrorism”.   

Simulation tools are also used for the identification and early warning of disaster 

events. The Warn-on-Forecast project being undertaken by the National Severe Storms 

Laboratory (NSSL) in the U.S. proposes to use weather prediction modelling to 

explore ways to better detect tornadoes and extend the warning lead times 

(Lakshmanan et al., 2007). 

Modelling and simulations have the advantage of providing a sense of virtual reality in 

emergency situation development projections. It has the potential of identifying the 

possibility of an occurrence prior to the event, thus mitigating the event impact and 
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increasing preparedness. However, the available simulation tools are mainly for 

standalone use, and they require a considerably large amount of computing resources. 

Therefore, applying modelling and simulation tools in an on-site ER environment 

would be challenging due to the limited resources available, the high time pressure, 

and the lack of expertise in such environment. 

2.2.4 Communication based messaging services 

Communication-based messaging services focused on (1) enhancing interoperability, 

which is the communication between different emergency response agents involved in 

an incident such as police, fire brigades and ambulance, and (2) enhancing 

controllability, which is the communication between first responders and their control 

centre, and between national control centre and local control centres.   

An Electronic Message Management System for Emergency Response has been 

developed to better track the commands issued and their procession (Andersen et al., 

1998). It was claimed in the paper that keeping a consistent communications log is 

useful for coordination between ER personnel, resources management and the 

preparedness of EM areas. The system was designed for emergency personnel to 

communicate with each other. It can be considered as an email system with special 

features that were designed for multiple ER agencies including EM organizations. The 

system enables the decision makers to send tasks as an email request to the relevant 

people, and monitor the status of any task. 

However, such pure text-based communication amongst on-site first responders may 

not be appropriate due to possible low visibility, high risks and time critical hands-on 

tasks at emergency scenes. 

2.2.5 Wireless sensor networks for emergency response 

Wireless Sensor Networks (WSNs) consist of large arrays of battery-powered nodes, 

each of which can carry different types of sensors to monitor the environment and 

transmit data wirelessly. Sensor nodes are typically small-size, low-cost and low-

power consumption. WSNs have been used in emergency medical care (Welsh et al. 

2004), in-home healthcare (Stankovic et al., 2005), civil infrastructural health 

monitoring (Kottapalli et al., 2003), emergency evacuation (Barnes et al., 2007). These 

applications have proved the capabilities of WSN in improving the efficiency of ER.  



Chapter 2: Literature Review: Emergency Response 

 32 

The existing research that applies WSN in Emergency Response can be classified into 

two main categories: emergency monitoring and emergency navigation. 

Emergency monitoring 

Researchers have envisioned sensor network nodes playing a variety of emergency 

response roles. For instance, simultaneous physical environment monitoring, health 

monitoring, and location tracking. 

The FireBug project (Doolin and Sitar, 2005) designed a wildfire monitoring system. 

The system collects temperature, relative humidity and barometric pressure with an 

on-board GPS unit attached to a wireless, networked mote. Wildfire behaviour was 

analysed based on patterns identified from the data collected during burns. For 

instance, the result showed temperature increasing, and barometric pressure and 

humidity decreasing as the flame front advanced. Such fire behaviour was claimed to 

be potentially useful for advancing fire science, for helping fire-fighters, and for 

designing future generations of sensors and sensor platforms. 

CodeBlue is an on-going project intended to provide a wireless infrastructure for 

emergency medical care (Welsh et al., 2004; Gao et al., 2008). Wearable sensors are 

used to monitor vital signs (e.g. pulse oximetry, blood pressure, temperature, 

electrocardiogram) of the patients. The data collected by sensors is then relayed to 

handheld computers carried by emergency medical technicians, physicians, and 

nurses, to improve the ability of medical first responders to triage and treat patients. 

Siren is a WSN-based communication system for fire-fighters directly engaged in 

structural fires. It provides fire-fighters with contextual data, such as location and 

temperature, and alerts them about imminent dangers using tacit means, i.e. messages 

exchanged between handheld devices carried by fire-fighters (Jiang et al., 2004b). 

Civil infrastructural health monitoring (Kottapalli et al., 2003) uses wireless sensors to 

measure acceleration, linear displacement, strain, angular displacements during an 

extreme event like an earthquake in a near real-time manner. For long-term periodic 

monitoring, how the structural properties respond to environmental variables like 

temperature and humidity are also measured in order to get an accurate picture of the 

health of building structures. 
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Emergency navigation 

Emergency navigation is used to describe applications or services that provide 

navigation information to people in the building in case of emergency. 

Li et al. (2003) designed their navigation algorithms using the artificial potential fields 

concept. The exit generates an attractive potential, pulling sensors to the exit, while 

each obstacle generates a repulsive potential, pushing sensors away from it. Each 

sensor calculates its potential value and tries to find a navigation path with the least 

total potential value.  

However, Tseng et al. (2006) argued that Li et al.’s algorithm could cause message 

overhead and could lead users outside the emergency region to exit through 

emergency region. Tseng et al. (2006) proposed a protocol based on temporarily order 

routing algorithm, and applied the concept of emergency region in their navigation 

algorithm. The result of this was reduced message packets and safer navigation. 

Barnes et al. (2007) took into account predictions of hazards spread (3 Dimensional), 

such as fires, and evacuees’ movements, as opposed to a static emergency region, to 

ensure the evacuees stay safely ahead of hazards. 

The LifeNet project (Klann, 2009) proposed the concept of using sensor nodes to 

create an electronic “lifeline”, instead of the physical lifeline that is typically used in 

search and rescue practice to guide fire-fighters in complex structural buildings. The 

electronic lifeline was designed as a wearable computing system and micro display to 

compute and display navigation guidance for fire-fighters in the buildings. 

Challenges and opportunities in applying WSN in ER 

One of the well recognised in-network challenges is the limited resources that sensors 

typically have. Lorincz et al. (2004) analysed that the limited communication and 

computation capabilities available at sensor nodes leads to the following challenges: 

discovery and naming, robust routing, prioritization of critical data, security, tracking 

device locations. Limited network lifetime because of the energy constraints of sensor 

nodes is also well recognised. A variety of energy-saving methods were proposed. E.g. 

Merrett (2005) proposed a resource awareness WSN system called IDEALS, “a 

system to manage a wireless sensor network using a combination of information 
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management, energy harvesting and energy monitoring, which we label resource 

awareness”, to enhance network lifetime and maximize the information throughput. 

Although in-network challenges have been well-researched, less attention has been 

paid to challenges that sensor data presents to data processing. Research has stated that 

sensor data often contains errors (due to sensor function) and noise (due to other 

environmental interference) (Elnahrawy and Nath, 2003). Therefore, the quality of 

sensor data needs to be improved. However, there is a lack of comprehensive analysis 

about the nature of sensor data and what challenges they present to sensor data 

processing. 

2.2.6  Robots search and rescue 

Kumar et al. (2004) combined a network of Mote Sensors with mobile robots team and 

radio tags to provide an integrated view for situation awareness, guide fire-fighters to 

targets, and warn them of potential dangers. Their experiments included location 

tracking of mobile robots (Kantor and Singh, 2002), temperature gradient graph 

(Kantor et al., 2003), and direction guidance generation based on relative position 

(Kantor et al., 2003), which has demonstrated the potential that robots can interact 

with sensors, to help acquire information from inside of the building. This identified 

potential areas of risk, thus facilitated fire-fighters in Emergency Response scenarios. 

However, their research was based on an initial scenario that sensors and radio tags are 

deployed into the burning building by robots before they can be organized into 

networks, in other words, the robots have to be deployed into the building before the 

network can be setup, however, the required setup time which could cause delay in 

responding to fire emergencies was not mentioned. 

2.3 Lessons Learned 

This chapter reviewed Emergency Response from the perspectives of both the human 

factor and the technology. The lessons learned are as follows: 

Incident commanders’ decisions are vital for the result of emergency 
response.  

Out of all the phases (mitigation, preparedness, response and recovery) typically 

involved in EM, ER is of particular importance. It manifests how effective the post-
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event mitigation and planning was, and its effectiveness determines survival or death 

in case of incidents. Among all the groups of people involved in the ER phase, first 

responders are the “front-line soldiers”, therefore they have the most important 

responsibilities and the highest risk presented to them. Incident Commanders (IC) in 

the first responders’ group have ultimate responsibility on the incident ground (Bigley 

and Roberts, 2001), they are in charge of all the responding activities on the incident 

ground, hence, their decisions have a great impact on the overall performance of ER. 

Moreover, IC is an information intensive position (Jiang et al., 2004a), and ICs’ 

position on-site is usually out of the premises. In addition, their hands can usually be 

free, therefore they can have more information displayed to them to facilitate decision-

making processes. As a result, IC is selected as the targeted user for further research. 

The importance of information to ICs’ decision making had been well recognised. The 

lack of information on-site had been drawn to attention. However, there is a lack of 

comprehensive understanding about how the required information is gathered by ICs 

in real practice, whether there are gaps in getting the required information at the right 

time in the right format. Therefore, a further analysis of ICs’ tasks with the aim of 

identifying such gaps and the underlying requirements for technology is needed, which 

will be described in Chapter 4. 

Wireless sensor networks have great potential in facilitating ER 

A variety of technologies have been proposed to facilitate ER. In terms of how they 

can fulfil the information needs of the selected users, GIS can provide “outside” 

building information, whereas WSN has the potential for providing “inside” building 

information. Hence, a GIS is more suitable for the control centre staff to monitor and 

coordinate resources over a large area, whereas WSN is more suitable for an IC on-site 

to gather tactical information that can facilitate decision making. Visualization tools 

and virtual reality provide intuitive information and support during a training period, 

but it may take too long to run such virtual reality simulations during on-siteER. 

Communication-based messaging services can facilitate the communication amongst 

different responding agencies and between the control centre and the IC on-site, 

however, it may not be suitable to have messaging communication between the IC and 

front-line responders deployed at the incident scene. This is because front-line 

responders usually need their hands free to carry out rescuing tasks, or they may work 
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in conditions where they cannot see any text messages. Robot search and rescue is a 

good concept. Robots have the potential to be part of ICs’ search and rescue team on-

site. They can be deployed into places that are too dangerous for humans to enter, and 

replace the damaged sensors in the building. However, this requires an initial setup 

time which might be not acceptable in an on-site ER scenario. 

Compared to other technologies that have been applied in ERS, using WSNs to collect 

data has great potential in facilitating the ER process. This is because: 

- It is accurate, quick and can operate in harsh environments.  

Data collected by humans through human sensing is unreliable and time-consuming, 

whereas data collected from WSN is reliable and quick. Sensors can operate in tough 

environments where humans are not able to be, and they can still operate when the 

main power is cut due to emergency. Therefore, the environment inside of the 

incidents can still be observed. This data is valuable to the decision makers to make a 

better response plan.  

- It is of low cost and low energy consumption. 

Sensors are designed to be battery powered, and have a long lifetime. As the 

technology develops, sensors are becoming smaller and less energy consuming as 

well. The second generation of Berkeley Motes was only approximately 2mm by 

2.5mm in size (Pister et al., 2001). It can be predicted that such a high-integrated 

sensor node will become of low cost in the near future. 

General recommendation for system design 

- Satisfy information needs  

Good decision-making relies on the information available and the ability of decision 

makers to cope with the demands imposed upon them by the management of an 

emergency response situation (Danielsson, 1998). At an emergency scene, decision 

making is at a very high level, ICs typically handle many decision points under high 

time pressure. This requires information gathering to be quick, accurate and relevant. 

Hence, it can be recommended that an ERS should provide the right information at the 

right time to the right person in the right format. 

- Address the dynamic nature of ER 
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Emergency scenes are ever-changing environments. Working under such conditions, 

ICs are required to carry out a Dynamic Risk Assessment. Researchers have also 

suggested that flexible and scalable system architectures would be suitable for ER. 

Thus, it can be recommended that an ERS should address the dynamic nature of ER to 

accommodate different requirements presented by changing risks in the environment 

and changing conditions of the technical system. 
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Chapter 3. Literature review: 
Information Extraction from Sensor 
Data 

 

Research questions addressed in this chapter: 

1 What are the existing concepts, theory and research about information 
extraction from sensor data? 

2 What are the challenges in research and development? 

3 What has been considered as “information” in the existing research? 

4 What are the general performance requirements for sensor data 
processing? 

 

It was revealed in Chapter 2 that providing information needs of Incident Commanders 

(ICs) is important for the overall performance of on-site Emergency Response (ER), 

and Wireless Sensor Networks (WSNs) have great potential in providing critical 

information from inside of buildings for ER. WSNs can be deployed to monitor 

natural or man-made environments and detect emergencies with minimum attention 

and maintenance. During the period of monitoring, a large amount of data can be 

collected. However, “it remains a major challenge to make sense of the collected data, 

i.e., to extract the relevant knowledge from the raw data.” (Römer, 2008) This chapter 

will review the process and techniques of Information Extraction from Sensor Data 

(IESD). 

3.1 Information Extraction from Sensor Data 

Information extraction focuses on the automatic process of obtaining information, 

which can be described as “knowledge”, from raw data. Tan (2006) classified the 
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process of information extraction from sensor data into three stages: data pre-

processing, data mining, and data post-processing. 

 

Figure 3-1: The overall process of information extraction from data (Tan, 
2006) 

3.2 Sensor Data Pre-Processing 

The data quality problem in sensor networks is an issue that has been receiving 

increasing interest recently. Sensor data often contains noise (Elnahrawy and Nath, 

2003), outliers (Basu and Meckesheimer, 2007), and missing values (Davidson and 

Ravi, 2005). The causes of such data quality problems include 1) sensors’ internal 

errors, 2) the harsh environment in which sensors are deployed, and 3) damage or loss 

during wireless transmission, as shown in Figure 3-2.  

At sensor node
Low battery levels
Limited accuracy
Mechanical errors
Node failure

In local environment
Signal interferences
(e.g. mobile radio devices,
microwaves, Wi-Fi networks)
Harsh environment
(e.g. extreme heat, moist, etc)

During transmission
Wireless transmission errors
Packet loss/corruption
Routing failure

 

Figure 3-2: Possible causes of data quality problems in sensor networks 
Data pre-processing includes data cleaning, outlier detection, missing values recovery, 

data reduction, dimension reduction, and data prediction, etc. It is a crucial step in the 

process of IESD. In applications that sensor data is used to picture the real situation 
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and make crucial decisions, the noisy or miss-leading data may result in impractical or 

even harmful decisions. In addition, many traditional data mining methods do not have 

good tolerance with noisy or missing values. Therefore, data pre-processing is 

necessary for improving the quality of data before applying data mining technologies.  

In this section, three main branches of data pre-processing are reviewed in more 

details: sensor data cleaning, missing values recovery from sensor data, and sensor 

data reduction. 

3.2.1 Sensor data cleaning 
A variety of filtering methods has been proposed to implement data cleaning in sensor 

network, including Bayesian Theory (Elnahrawy and Nath, 2003), Neural-fuzzy 

Systems (Petrosino and Staiano, 2007), Wavelet Transform (Zhuang and Chen, 2006), 

Kalman Filter (Tan et al., 2005) and Weighted Moving Average (Zhuang et al., 2007). 

Jeffery et al. (2006) proposed a pipeline framework for sensor data cleaning, which 

contains five sequential processing stages: point (filter out obvious outliers from 

individual sensor readings), smooth (aggregate sensor readings within a temporal 

granule), merge (aggregate sensor readings within a spatial granule), arbitrate (remove 

conflictions or duplicates between different spatial granules) and virtualize (combine 

readings from different types of devices or data sources). This framework covered the 

possible steps involved in sensor data cleaning in general. It can be fully or partially 

implemented according to specific scenarios. However, the detailed cleaning tasks 

were proposed to be achieved by simple smoothing within temporal and spatial 

windows. 

Elnahrawy and Nath (2003) proposed a more sophisticated data cleaning method based 

on Bayesian theory. The method takes the noisy sensor data (the observation o), error 

model for a sensor (assumed to be normally distributed with zero mean and a known 

standard deviation 2(0, )N δ  and prior knowledge (true reading distribution p(t) and 

conditional probability p(o|t)) as input, and outputs the uncertainty model of sensor 

readings (the posterior probability of t given o, denoted as p(t|o)) using the Bayes’ 

Theorem ( | ) ( )( | )
( )

p o t p tp t o
p o

= . With the assumption that the reading of a specific 

sensor follows a Gaussian distribution, and using some properties of Gaussian 

distribution, it can be concluded that the posterior probability p(t|o) also follows 
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Gaussian distribution. The mean and standard deviation of p(t|o) can be calculated 

from those of p(t) and those of the error model. The result of the data cleaning in 

general was a compromise between the prior knowledge and the observed noisy sensor 

data.  

Petrosino and Staiano (2007) presented a regression based sensor network data 

cleaning method. This method proposed to model each sensor’s behaviour using a type 

of regression (Neural-fuzzy models were adopted for regression in their experiments), 

and estimate sensor reading according to the regression. If the difference between the 

estimated sensor readings ( ŷ ) and the newly-arrived sensor readings (y) are bigger 

than the estimated error, approximated by the Root Mean Square Error (RMSE), on 

the training sample, the readings are considered unreliable. Unreliable readings will be 

replaced by the model estimates plus or minus the RMSE, whereas reliable readings 

will be kept. In this way the cleaned readings will fall between [ ŷ -RMSE, 

ŷ +RMSE]. 

Wavelet transform is another method proposed to clean sensor data. Zhuang and Chen 

(2006) argued that wavelet transform can reduce noise in time series data generated by 

sensors. In addition, they stated that by transmitting wavelet coefficients rather than 

raw sensing series, data traffic can be considerably reduced. 

Tan et al. (2005) implemented Kalman Filter and Linear Regression in the sensor 

cleaning toolkit designed. Their experimental results demonstrated that Kalman Filter 

has better filtering performance as well as estimation closer to the real trend than 

Linear Regression. Although it showed promising results, Linear Regression worked 

poorly for data with high variability according to their experiments. Compared to the 

Bayesian theory based method and Neural-fuzzy method, Kalman Filter is also more 

lightly weighted, since it does not require the training process that the other two 

methods do in order to learn the model parameters before they can be used. 

Zhuang et al. (2007) proposed a smart weighted moving average based sensor data 

cleaning approach, which consists of three steps.  

• Step 1: “locate important values by range prediction” 

• Step 2: “gain confidence for important values through sensor testing and 

neighbour testing at individual sensors” 
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• Step 3: “perform weighted moving average at the sink”  

This approach used Kalman Filter and Linear Regression for range prediction. Values 

outside the predicted range would be considered as the “important” values, and their 

confidences would be calculated in Step 2. Finally, the weighted moving average at 

the sink combines the temporal average and the spatial average together. The 

simulation demonstrated a better performance than the simple moving average 

algorithm. However, in their simulation, the performance of Kalman Filter and Linear 

Regression was almost the same. 

The characteristics of the existing sensor data cleaning methods can be briefly 

summarized in Table 3-1. Kalman Filter has high flexibility with low implementation 

complexity. 

Table 3-1: The characteristics of the existing sensor data cleaning methods 

 A priori conditions Complexity Flexibility 

Bayesian theory Training process to learn 
the model parameters high high 

Neural-Fuzzy Systems Training process to learn 
the model parameters high high 

Wavelet Transform Data samples large enough 
to perform down sampling high high 

Kalman Filter Parameter tuning low high 
Weighted Moving Average Weight assignment model low low 

 

3.2.2 Missing values recovery from sensor data 

Davidson and Ravi (2005) tested the packet loss with a Berkeley mote network in an 

indoor environment. They found that approximately 3% of packets were lost over 3 

hours of testing time when the motes were only 10 feet away from the base station 

with no walls or structures in between, and the packet loss increased to 23% when the 

same experiment was conducted with motes placed in a separate room from the base 

station. Their experiments proved that missing values is a problem seriously affecting 

the quality of sensor data. 

To handle the problem of network packet loss, the traditional way is to wait for a 

predefined period of time before the receiver sends a retransmission request to the 

sender, or the sender automatically retransmits if no acknowledgement has been 

received from the receiver. However, there are two major drawbacks of applying this 
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approach in sensor networks: 1) “increased power consumptions by the sensors (they 

should listen for requests and resend data if needed)”, and 2) “increased latency of the 

produced result by the query (time spent for transmitting a request and waiting for a 

response)” (Halatchev and Gruenwald, 2005). 

Therefore, the existing research on handling missing sensor data focused on estimating 

or recovering missing values using available values from sensors related to the sensors 

of missing values. 

A variety of estimation methods were proposed, such as Expectation Maximization 

(Davidson and Ravi, 2005), Association Rules (Halatchev and Gruenwald, 2005), 

Belief Propagation (Chu et al., 2005). 

Davidson and Ravi (2005) stated that in order to estimate missing values, Expectation 

Maximization (EM) is a common approach to converge to local maxima of the 

complete data likelihood (i.e., the likelihood of both the observed and missing data). 

The E-step calculates the expectation (or possibilities) of the missing nodes values 

( ( | , )P Y X θ ), where X represents the observed data and Y represents the missing 

values. Given the expectations for the missing values, the M-step calculates the value 

for θ that maximizes the expected complete data likelihood. However, they argued that 

the typical implementation of EM parametric is not suitable for distributed deployment 

in sensor networks, mainly for two reasons:  

• sensor nodes do not have sufficient memory to implement either the E-step or 

the M-step with parametric models.  

• the M-step requires collecting and transmitting the expected values for missing 

data to the base station for aggregation, and it may take iterations to converge, 

which causes overwhelming energy consumption at sensor nodes.  

Therefore, they proposed a non-parametric EM method that minimizes power 

consumption and computation at sensor nodes. The method maps sensor nodes and its 

neighbours into an undirected graph. Then the EM method will interactively fill in the 

expected missing values and add/remove nodes in the graph to maximize the 

probability. The resulting graph contains the estimated missing sensor values. It was 

claimed that their method allows EM method to be deployed in sensor nodes. 
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Halatchev and Gruenwald (2005) addressed the energy consumption problem of 

applying traditional association rule mining in sensor networks, and proposed the 

following modifications to solve the problem: 

• “instead of generating all association rules between sensors, generate all the 

association rules between pairs of sensors only” 

• “use additional data structures to reduce the number of memory access 

operations” 

• “evaluate frequent item sets and association rules between pairs of sensors 

always with respect to a particular state of sensors” 

• “use the sliding window concept in the data structures that store the data 

arriving from the sensors and in the additional data structures”  

Simulation results showed that the proposed method requires more memory space and 

takes longer to produce an estimation than the considered alternative approaches, but it 

achieves better accuracy of the estimated value than the alternative approaches do. 

Chu et al. (2005) addressed the strong dependencies between sensor readings, and 

proposed a way to recover missing values by modelling data dependencies with 

Markov networks. Belief propagation is used to efficiently compute the marginal or 

maximum posterior probabilities, so as to infer missing values or to correct errors.  

In summary, the challenges presented to applying traditional methods in sensor data 

include limited memory, limited energy resources at individual sensor node, and 

strong dependencies between sensor nodes. 

3.2.3 Sensor data reduction 
 “Having a large amount of redundant data may slow down or confuse the knowledge 

discovery process” (Han and Kamber, 2006). In-network aggregation of redundant 

data can reduce the total data flow over the sensor network, thus it can extract the most 

representative data using the minimum resources (Akcan and Brönnimann, 2007), and 

effectively reduce power consumption (Santini and Römer, 2006). Therefore, a branch 

of sensor data pre-processing research focused on sensor data reduction in WSNs.  
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Akcan and Brönnimann (2007) proposed a weighted in-network sampling algorithm to 

obtain a deterministic (much smaller but representative) sample instead of raw 

redundant data. Compared with random sampling, the advantage of weighted sampling 

algorithm is “it can guarantee that each node’s data has the same chance to belong to 

the final sample, independent from its provenance in the network”.  The limitation of 

this algorithm is that it was designed for arbitrary network topologies. The final 

sample may lose its representativeness in the case of loss of connection in the 

aggregation tree structure, because an entire sub-tree may no longer contribute to the 

final sample due to a link or node failure.   

Instead of selectively sampling the network nodes, Santini and Römer (2006) proposed 

a prediction-based data reduction strategy. It is to have prediction methods deployed 

both at sensor-level and base station-level, so that sensors only need to send data that 

deviates from the prediction. Compared to the existing techniques under the same 

strategy, their proposed Least-Mean-Square (LMS) adaptive algorithm claimed to be 

light-weight, because it enables sensor nodes to predict expected values without a-

priori knowledge about statistical properties of the observed phenomena. Their 

experiments demonstrated the algorithm’s effectiveness on reducing communication 

cost as well as ensuring the accuracy of reconstructed original data. 

3.3 Sensor Data Mining 

Data mining aims to extract patterns from data. Traditional data mining technologies 

include Decision Trees, Rule-based Classifiers, Artificial Neural Networks, Nearest 

Neighbour, Naive Bayes, Support Vector Machines, Logistic regression, etc. Most of 

them were initially developed to be applied in central data warehouse. Based on a 

different dataset, the recent research on mining sensor data mainly focused on 

distributed in-network data mining.  

3.3.1 From traditional data mining to sensor data mining 

Researchers have applied some traditional data mining technologies in mining sensor 

data. For instance, Kulakov and Davcev (2005) demonstrated how a popular artificial 

neural networks algorithm called Adaptive Resonance Theory (ART) model can be 

adapted in the field of WSNs.  Other examples include distributed Bayes algorithm 
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(Krishnamachari and Iyengar, 2004), and Hill Climbing algorithm (Krivitski et al., 

2007). 

Researchers have demonstrated how traditional data mining technologies can be 

integrated within a sensor network structure. Bontempi and Borgne (2005) suggested 

that the architecture of a sensor network must take into account not only the energy 

and transmission issues but also criteria related to the accuracy and quality of the data 

mining task. This general recommendation means that the organization of the same 

sensor network may change according to the type of data mining task and the required 

quality precision, or the other way around, different sensor data mining tasks may 

require different sensor network structures. 

Most people suggested a form of hierarchical network topology for their proposed 

sensor data mining. Bontempi and Borgne (2005) proposed a two-level architecture for 

sensor data mining, as shown in Figure 3-3.  

Sensing Units

DATA MINER

AGGREGATOR
NODES

 

Figure 3-3: An adaptive modular architecture of sensor data mining 
(Bontempi and Borgne, 2005) 

The lower level consists of aggregator nodes (dotted circles) that perform modular 

aggregation of the neighbouring sensing units (black dots). The aggregated signals are 

then sent up to the upper level data miner, where the required sensing tasks (e.g. 

classification, regression or prediction) are performed. This architecture introduced a 

layer of aggregator nodes in the WSN topology, each of which acts as a cluster head of 

a number of sensor nodes.  
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Three network architectures were proposed by Kulakov and Davcev (2005) to 

incorporate ART1 and Fuzzy ART artificial neural network algorithms into sensor 

networks to perform auto classification tasks. ART1 was designed as an algorithm for 

unsupervised learning of binary input patterns, whereas Fuzzy ART is an analog 

version of the ART1 algorithm. The first architecture used one cluster head to collect 

all sensor data from its cluster of units. And the Fuzzy ART model is only 

implemented in the cluster head. The second architecture employed redundant cluster 

heads collecting data at different levels of details. Fuzzy ART model is implemented 

at all sensing units, each of them classifies and represents over the same data at a 

different level of detail.  The third architecture consisted of a top layer cluster head 

(ART1 implemented) to collect and classify the data after they are once classified at 

the lower level sensing units (Fuzzy ART implemented). It can be expanded into 

hierarchical cascades of neural-network classifiers implemented in units of a sensor 

network, as shown in Figure 3-4.  
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Figure 3-4: Hierarchical cascades of ART neural-network classifiers 

implemented in units of a sensor network (Kulakov and Davcev, 2005) 

Compared to Bontempi and Borgne’s architecture, Kulakov and Davcev’s architecture 

demonstrates the same idea of using a clustered network topology. The difference is 

about what data mining algorithm is implemented in each cluster head, and how many 
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levels of cluster hierarchies there are in the network. Bontempi and Borgne’s 

architecture consists of two hierarchies: the lower level performs aggregation, the 

upper level performs prediction. Kulakov and Davcev’s architecture can consist of 

cascades of hierarchies, each level performs classification. 

McConnell and Skillicorn (2005) suggested distributed prediction based on voting. In 

their framework, the sensor networks are configured in a tree structure, where the root 

is a more capable computation device and the leaves are sensors with limited resources 

and computation capability. Local predictors are deployed in each sensor node, where 

local information is combined to generate the target class prediction. Then the root 

will choose a global prediction by voting from all the received local predictions. 

Krivitski et al. (2008) demonstrated another research effort in applying existing data 

mining algorithms in a local distributed manner. They modified the traditional hill-

climbing algorithm to find a locally optimized location of k facilities in sensor 

networks. 

3.3.2 What constitutes a suitable sensor data mining algorithm 

In terms of what constitutes a suitable sensor data mining algorithm, the following 

characteristics can be extracted from the existing sensor data mining algorithms. 

• Distributed 

Kulakov and Davcev (2005) argued that sensor networks require “simple parallel 

distributed computation, distributed storage, data robustness and auto-classification of 

sensor readings”. McConnell and Skillicorn (2005) stated that as sensors become 

active devices with their own processing capability, distributed algorithms in sensor 

networks become a new possibility. Bontempi and Borgne (2005) argued that the 

rationale behind distributed in-network data mining is that in-network aggregation can 

have two benefits: saving communication cost as well as reducing data dimensionality. 

Krivitski et al. (2008) also stated that in-network local algorithms have superb 

message pruning capabilities, thus they are “better than centralized algorithm both in 

terms of message efficiency and of convergence time”.  

• Hierarchical topology based 



Chapter 3: Literature review: Information Extraction from Sensor Data 

 49 

On top of the argument that sensor data mining should be distributed in-network, the 

topology of the sensor network must be considered with data mining techniques. The 

organization of sensors into hierarchies of clusters has been widely supported. 

Kulakov and Davcev (2005) stated that limited communication band width, limited 

computing resources, limited power supply and the need for fault-tolerance are typical 

constraints for data mining in sensor networks. By organizing sensors into clusters, 

dimension reduction can be achieved, thus the communication costs of clustering-

based algorithms are significantly smaller. This idea of implementing hierarchical 

topology in sensor networks for data mining tasks has been supported by a number of 

researchers (e.g. Bontempi and Borgne, 2005; McConnell and Skillicorn, 2005; 

Krivitski et al., 2007). 

• Data-driven/event-driven/service-driven  rather than synchronization 

Kulakov and Davcev (2005) noted that “all previous work on distributed clustering 

assume tight cooperation and synchronization between the processors containing the 

data and a central processor that collects the sufficient statistics needed in each step of 

the hill-climbing heuristic”. However, they argued that such synchronization 

controlled by a central point may not be suitable in sensor networks. Instead, they 

believed that data-driven is one of the most important features which qualify an 

algorithm for sensor networks.  

Bontempi and Borgne (2005) used the Lazy Learning algorithm in the upper level 

prediction of their two-level modular adaptive architecture. They claimed that such an 

algorithm assumes no a priori knowledge on the process underlying the data, only 

driven by “available information represented by a finite set of input/output 

observations”, which makes it appealing in the sensor network context.  

Krivitski et al. (2008) also stated that the local majority voting algorithm they used has 

good performance in terms of message load and convergence time because it is event-

driven and requires no form of synchronization. 

Silberstein et al. (2007) proposed data-driven processing in sensor network. Rezgui 

and Eltoweissy (2007) introduced service-driven query routing. 

In summary, the concept of data-driven/event-driven/service-driven rather than 

synchronization has been widely supported by research in sensor data mining. 
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3.3.3 Sensor data mining applications 

Sensor data mining algorithms have been proposed to accomplish typical data mining 

tasks such as prediction (Bontempi and Borgne, 2005), classification (Kulakov and 

Davcev, 2005), and optimized location deployment (Krivitski et al., 2007). The 

patterns extracted from data for these mining tasks are for example prediction model, 

classification, and location for facilities. 

There are research efforts that use data mining algorithms for a specific application 

area, e.g. fault detection (Krishnamachari and Iyengar, 2004), anomalies detection 

(Palpanas et al., 2003; Subramaniam et al., 2006). However, they are based on 

assumed scenarios rather than real world application requirements. 

Therefore, it can be argued that there is a lack of research on how the mined patterns 

can benefit real world applications. Or in other words, there is a gap between such 

mined “information” and the information needs of real world applications. 

3.4 Sensor Data Post-processing 

Data post-processing includes pattern evaluation, model evaluation, data 

visualization/presentation, etc. This step can link the result of sensor data mining to 

specific applications, or in generic research, this step is often integrated with sensor 

data mining.  

3.4.1 Pattern evaluation 
Several works described pattern evaluation for a specific application. 

Kamphuis et al. (2008) presented the process of using sensor data patterns to classify 

abnormal and normal milk. Three categories of pattern descriptor were proposed: 

level, variability and shape, each of which includes a number of pattern descriptors 

that can be used to analyse sensor data patterns. The results have been used to classify 

abnormal milk from the normal. 

Heierman and Cook (2003) proposed a data mining technique that discovers regularly 

occurring device usage patterns from sensing human interactions with home 

appliances (e.g. light on, light off, video on, video off, etc.). They suggested the 

possibility of using such patterns to automate human interaction with home appliances. 
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The evaluation of the mined device usage patterns (candidate episodes) were analysed 

according to their significance, determined by the potential amount of compression on 

the length of sensor data sequence that a pattern provides. The most significant 

candidates would be suggested as the targeted objects for home automation. 

There is also generic research on pattern evaluation. An algorithm named FP-mine 

(FP: Frequent Pattern) was developed by Cheng and Ren (2007) to discover frequent 

moving patterns based on the idea of pattern growth (FP-growth algorithm) and 

pattern storage structure (P-tree). The pattern evaluation includes determining the 

frequencies of the mined patterns.  

3.4.2 Data visualization 
Data visualization can be based on computer graphics, statistical methods, and user 

interaction techniques.  

Koo et al. (2006) created a software in order to analyse the multi-sensor data for gas 

transmission pipeline inspection, in which heterogeneous sensor data was displayed on 

a virtual 3D pipeline generated to help users get a realistic view when performing 

pipeline inspection and facilitate rapid and precise decision.  

Pattath et al. (2006) presented an interactive visual analytic system using a PDA to 

visualize network and sensor data from Purdue’s Ross-Ade Stadium during football 

games. Attendees can be monitored by mobile devices enabling the detection of crowd 

movement and event activity and insightful information can be provided to network 

monitoring personnel, safety personnel and analysts.  

Sparchholz et al. (2005) considered laser scanners and cameras as sensors deployed in 

a castle. An approach creating a three dimensional virtual world by utilizing high 

resolution multi-sensor data was presented by them. 

3.5 Sensor Data Fusion 

Contrary to information extraction that focuses on “the organized process of 

identifying valid, novel, useful and understandable patterns from large and complex 

data sets” (Maimon and Rokach, 2010), Data Fusion focuses on the combination of 

multiple sources, the result of which can be low-level improved raw data or high-level 

information.  
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Hall and Llinas (1997) reviewed the earliest and probably most well-known model of 

data fusion, JDL data fusion process model, proposed by the Data Fusion Sub-Panel of 

the Joint Directors of Laboratories (JDL), established by US Department of Defence 

(DoD). The JDL model classified data fusion process into 4 levels: object refinement, 

situation refinement, threat refinement, and process refinement. The layout of the JDL 

framework is demonstrated in Figure 3-5. 
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interaction

 

Figure 3-5: The JDL data fusion framework 

Hall and Llinas (1997) also summarized the example techniques used in data fusion, 

which include probabilistic association, Kalman Filter, Neural Networks, Fuzzy logic, 

cluster algorithms, pattern recognition. They are similar to the example techniques 

reviewed earlier in section 3.1 for the process of information extraction from sensor 

data. Hence, there is an overlap between information extraction and Data Fusion.  

In the context of sensor data processing, information extraction from sensor data is 

typically based on combinations of data from multiple types of sensors, considered as 

multiple data sources. Therefore, the term Sensor Data Fusion is used interchangeably 

with Information Extraction from Sensor Data in this thesis. 

3.6 Summary 

This chapter reviewed the process of IESD and the techniques involved in the process.  

In summary, the process of IESD consists of three stages: data pre-processing, data 

mining and data post-processing. The aim of data pre-processing is to deal with data 

quality problems such as noise, outliers and missing values. Data mining aims to find 

patterns from data, which can be interpreted as “knowledge”. Data post-processing 
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include pattern evaluation, visualization, etc. Post-processing of sensor data can be 

bound together with data mining to find patterns by analysing the result of data mining 

algorithms, or act as a separate function module. Information extraction from sensor 

data streams usually requires integration of multiple types of sensors, or integration of 

sensor data with images or other data sources. The concept sensor data fusion is used 

to describe such integration of data from multiple data sources. The two concepts are 

used interchangeably in the context of this thesis.  

A summary of representative example techniques used in different stages of 

information extraction from sensor data is shown in Table 3-2. 

Table 3-2: Example techniques in information extraction from sensor data 

IESD process Process function Example techniques 

Stage1: Pre-processing 

Sensor data cleaning 
 

• Bayesian Theory  
(Elnahrawy and Nath, 2003) 

• Neural-fuzzy Systems  
(Petrosino and Staiano, 2007) 

• Wavelet Transform  
(Zhuang and Chen, 2006) 

• Kalman Filter  
(Tan et al., 2005)  

• Weighted Moving Average 
(Zhuang et al., 2007) 

Missing values 
recovery 
 

• Expection Maximization 
(Davidson and Ravi, 2005) 

• Association Rules  
(Halatchev and Gruenwald, 
2005) 

• Belief Propagation  
(Chu et al., 2005) 

Sensor data 
reduction 

• Deterministic sampling  
(Akcan and Brönnimann, 2007) 

• Prediction-based reduction 
(Santini and Römer, 2006) 

Stage 2: Mining 

Classification 
 

• Artificial Neural Network 
(Kulakov and Davcev, 2005)   

• Bayes algorithm 
(Krishnamachari and Iyengar, 
2004) 

Prediction 
 

• Voting algorithm  
(McConnell and Skillicorn, 
2005) 

• Lazy Learning algorithm 
(Bontempi and Borgne, 2005) 
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Solution 
optimization 

• Hill Climbing algorithm  
(Krivitski et al., 2007) 

Stage 3: Post-
processing 

Pattern evaluation • Frequent pattern mining  
(Cheng and Ren, 2007) 

• Pattern descriptors 
(Kamphuis et al., 2008) 

• Episode Discovery algorithm 
(Heierman and Cook, 2003) 

Data visualization • Computer Graphics  
(Koo et al., 2006) 

• User interaction  
(Pattath et al., 2006) 

The lessons learned from the literature review are as follows: 

Lesson 1: It remains a challenge to make sense of the collected sensor 
data. 

It has been addressed in the literature that sensor data often contains noise, outliers, 

and missing values, which presented challenges for sensor data fusion. As a result, 

sensor data pre-processing techniques are necessary to solve the data quality problems 

associated with data collected from WSNs. 

A variety of data mining techniques have also been proposed to find patterns from 

sensor data. Typical data mining tasks are such as classification, prediction, location 

optimization. The results of these data mining tasks are extracted prediction models, 

classification, or location for facilities. However, these patterns, although considered 

as “knowledge” from a technology perspective, are not the knowledge that users 

require to facilitate their tasks.  

There is some research that describes pattern evaluation for specific application areas. 

However, they are based on assumed scenarios rather than requirements generated 

from real applications. Therefore, it can be argued that there is a need to build the link 

between what has been considered as “information” in the existing research and the 

required information from a real application. 

Therefore, although WSNs can be deployed as a data collection method for many 

different applications, as Römer (2008) stated, “it remains a major challenge to make 

sense of the collected data, i.e., to extract the relevant knowledge from the raw data.”  
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Lesson 2: What constitutes suitable sensor data processing techniques? 

Interesting arguments have been found in the literature about what constitute suitable 

sensor data processing techniques.  

• Online or offline?  

Online data processing means to process as data arrives. It is based on the 

understanding that sensor networks produce data streams rather than static data 

(Elnahrawy and Nath, 2003; Jeffery et al., 2006). Sensor data is streaming data, 

therefore, offline data processing, usually used by conventional data warehouses in the 

form of a separate database function, is considered not suitable for sensor data 

processing.  

• Deployment at sensor-level or base station-level?  

Some researchers believed that data processing should be performed at sensor level. 

Sensor-level processing preserves the behaviour of each sensor. Elnahrawy and Nath 

(2003) argued that “the reading of each individual sensor is important”, therefore, their 

sensor data processing functionality works on every single sensor. Sensor-level 

processing saves energy consumption on transmitting outliers. For instance, Zhuang 

and Chen (2006) argued that outlier cleaning must be done in-network to 

accommodate the limited battery power and costly data transmission in sensor 

networks. 

On the other hand, base station-level sensor data processing can include in-network 

aggregation of readings from a set of sensors to reduce the effect of noise (Yao and 

Gehrke, 2002). Yao and Gehrke (2002) argued that base-station level processing with 

in-network aggregation can save energy consumption of transmitting data from every 

individual sensor, thus increase network lifetime.  

It can be argued that sensor data processing functionality that is flexible and can be 

performed at both sensor level and base station level would be desirable. 

• Distributed or centralized?  

Some researchers argued that sensor networks require distributed data mining.  This 

argument is based on two understandings. 1) As sensors become active devices with 

their own processing capability, distributed algorithms in sensor networks become 
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possible (McConnell and Skillicorn, 2005). 2) Distributed sensor data mining can save 

communication cost as well as reduce data dimensionality (Bontempi and Borgne, 

2005; Krivitski et al., 2007). Therefore, instead of transmitting raw data to the base, 

the data is pre-processed or integrated using local models, and only the resulting 

coefficients will be transmitted. 

Others argued that “performing cleaning at the sensor, query processing at the 

database level has no advantages” (Elnahrawy and Nath, 2003), because data pre-

processing models developed for individual sensors usually require data 

communication between the sensor neighbours to generate the result, which could 

result in more data communication than only transmitting individual sensor data to the 

base station. In addition, it increases storage and computation cost at sensor level.  

Consequently, the advantages and disadvantages of distributed and centralized data 

mining of sensor data is summarized in Table 3-3. Whether to use distributed or 

centralized data mining can be chosen according to application needs. 

Table 3-3: Comparison of distributed and centralized sensor data mining 

Type of data 
mining 

Advantages Disadvantages 

Distributed 

• Reduce network 
congestion 

• Maintain certain level of 
data redundancy to 
improve reliability 

• Reduce energy cost on 
wireless transmitting 
sensor data 

• Increase individual sensor 
node cost 

• Increase sensor node 
complexity due to the need 
of complicated data 
management and 
processing under resource 
and power constraints 

• Potential processing 
overhead on sensor node 

Centralized 

• Less resource constraints 
on data mining algorithm 

• Better efficiency, 
accuracy and quality of 
data processing 

• Timely user query 
processing 

• Have to effectively 
maintain large amount of 
raw data  

• Potential performance 
bottle neck 

• Data-driven/event-driven or synchronization? 

Previous works on distributed network computing were argued to be based on 

synchronization (Kulakov and Davcev, 2005). However, synchronization controlled by 

a central point may not be suitable in sensor networks. Instead, data-driven was argued 
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to be one of the most important features which qualify an algorithm for sensor 

networks. And the concept of data-driven/event-driven/service-driven rather than 

synchronization has been widely supported by recent research in sensor data mining 

(Bontempi and Borgne, 2005; Krivitski et al., 2007; Silberstein et al., 2007). 

Lesson 3: General performance requirements for sensor data fusion 
approaches 

A number of performance evaluation metrics were used by recent research, based on 

considerations of effectiveness and cost.  

Effectiveness has been measured by absolute error such as Normalized Mean Square 

Error (NMSE) (Bontempi and Borgne, 2005; Chu et al., 2005; Zhuang et al., 2007). It 

has also been measured by relative metrics, for example, precision and recall (Chu et 

al., 2005; Elnahrawy and Nath, 2003; Zhuang and Chen, 2006), percentage 

improvement (Cubica and Moore, 2003; Zhuang and Chen, 2006). 

Cost has been measured communication-wise and time-wise. Examples of 

communication cost measurement include transmission bytes (Zhuang et al., 2007) 

and message load (Krivitski et al., 2007). Examples of time cost has been measured by 

convergence time (Krivitski et al., 2007). 

The general performance requirements for sensor data fusion approaches are high in 

effectiveness, low in cost. 
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Chapter 4. Study of Incident 
Commanders’ Requirements 

 

Research questions addressed in this chapter: 

1 What are the goals and priorities of goals of the Incident Commanders? 

2 
What are the tasks required to achieve those goals and decisions they 
need to make during the tasks? 

3 
What information is required and what information is not required by the 
Incident Commanders in order to best facilitate their decision making? 

4 What are the current means of obtaining the required information? 

5 Are there any gaps in retrieving the required information? 

6 
What technological solutions can be proposed to fill in the identified 
gaps? 

 

The literature review in Chapter 2 revealed the importance of information to Incident 

Commander’s decision making and the lack of information on-site. However, how the 

required information is gathered by Incident Commanders (ICs) in real practice, 

whether there are gaps in getting the required information at the right time in the right 

format is not clear. The literature review also revealed that Wireless Sensor Network 

(WSN) has great potential in facilitating Emergency Response (ER). However, not 

much research described how the information extracted from sensor data can 

contribute to ER. Therefore, it was necessary to conduct a study of ICs’ requirements. 

This chapter described the study of ICs’ requirements, with the aim of identifying 

opportunities for WSN to facilitate fire Emergency Response, and determining the 

focus of further technical work. The analysis and findings in this chapter were partly 

based on the author’s data collection from the visits to Derbyshire and Leicestershire 

Fire and Rescue Services and 2 interviews with ICs, and more based on interviews and 
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data collection done by Raj Prasanna at Business School in Loughborough University. 

The pictures included in the chapter were produced by and used here with the 

permission from Raj Prasanna. This chapter was based on the author’s published work 

(Yang et al., 2010b) 

4.1 Introduction 

As specified in Chapter 2, ICs play an extremely important role in responding to 

emergencies (Bigley and Roberts, 2001; Jiang et al., 2004a), thus the targeted user was 

identified to be ICs in the first responders group.  

Although different types of incidents have their unique characteristics, the responses to 

different types of incidents share common goals, phases, commanding hierarchies, etc. 

Therefore, it can be argued that lessons learned from studying the response to one type 

of incident can be applied to others. 

Fire is one of the disasters that can occur most frequently and cause serious damage 

and loss of lives, including the lives of first responders. According to the statistics 

published by the UK Home Office, every year there were more than 40,000 accidental 

house fires in England, resulting in an average of 285 deaths and 9,000 burn injuries. 

(Yang and Frederick, 2006) Therefore, studying fire ICs’ needs and opportunities to 

provide technology support to facilitate their responses to emergencies would have 

great benefits. 

The literature covered common goals of all emergency response agencies, and goals of 

ICs from the perspective of specific tasks. The procedures of incident command were 

described in detail in Incident Command System, so the role and responsibilities of IC 

could be comprehended. However, how the required information is gathered and 

utilised by ICs to achieve their operational goals was not clear in the literature. 

After the literature reviews, the plan for future technical work was initiated. Since 

emergency navigation was considered to be a helpful research topic, the initial focus 

of my research was to be on producing incident seriousness distribution in the building 

for situation awareness and fire fighting goals, and producing safe exit routes 

calculation for fire-fighters deployed in the building to better protect them during the 
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completion of their rescuing tasks. Whether this technology support would be helpful 

to ICs or not needed to be verified. 

Therefore, visits to Derbyshire Fire and Rescue Service were organized to further 

study the requirements of ICs and how technology can provide support. In this chapter, 

the requirement analysis study was described in detail and findings were analysed.  

4.2 Aims and Objectives 

The purposes of the visits were: 

• To provide a comprehensive understanding of fire ICs’ goals, tasks, and 

information needs  

• To identify the link between the information requirements and the 

opportunities for WSN for facilitating fire ER 

The objectives are:  

• To understand the current practise of fire Emergency Response in the UK 

• To confirm the goals and priorities of ICs described in the literature 

• To understand the information requirements of fire ICs 

• To understand the current technology aids available to fire ICs 

• To identify gaps/opportunities for technology to support ICs 

4.3 Methods 

A number of existing task analysis methods were analysed in literature review to find 

the most appropriate one for establishing the link between users and technology 

capabilities. As a result, the goal-driven task analysis methodology (Albers, 1998) was 

adopted to determine ICs’ goals, tasks, and information needs during first response. 

The goal-driven methodology was further expanded to study the underlying 

technology opportunities to support the information needs. The expanded goal-driven 
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methodology aimed to relate goals, tasks/decisions, information needs and technology 

opportunities. 

Visits to the Derbyshire fire and rescue service were organized, and the ICs in the fire 

crews were chosen as the subjects of the case study of ICs’ requirements. The 

expanded goal-driven methodology was applied throughout the study. 

A number of investigation methods, both formal and informal, were employed to 

understand the current practice of fire ER and determine fire ICs’ requirements. These 

included visiting the control centre, interviewing senior officers, observing fire 

exercise, analysing obtained training videos, and emailing contacts to follow up 

queries. 

The first phase of visits focused on understanding the current theory and practice of 

fire ER. Starting from visiting the control centre, where all the emergency calls are 

handled, and where the response to fire emergency begins, field visits included the 

demonstration of national FireControl project at regional fire and rescue service, and 

fire exercises at commercial buildings such as Westfield shopping centre in Derby. 

Although direct visits to training centres were not possible due to schedule and 

transport limitations, videos of the training were obtained, and the research student 

who visited the training centre was interviewed to better understand what the training 

involved.  

The second phase of visits narrowed down the focus to ICs’ requirements and potential 

opportunities for the use of technology. Two senior officers were interviewed to 

understand their roles as IC in practice. Each interview consisted of a brief 

introduction to the purposes of the interview, followed by open-ended questioning, and 

discussion of key points. The questions can be classified into 4 sections: 1) the goals 

and priorities of IC, 2) the role as an IC and current practice, 3) information needed to 

achieve ICs’ goals, 4) feedback about how technology can help ICs. Each interview 

took 1.5 hours, followed by informal contact to obtain feedback on additional 

proposals to use technological assistance and to resolve any queries that had arisen.  

The interviewees were selected for: 

• their expertise in this area of fire ER 
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• their many years of experience working in different roles (including IC) in the 

fire and rescue services, and in different regions 

This maximized the validity of the data collected.  

4.4 Analysis and Results  

Using the expanded goal-driven task analysis method, the framework of the analysis is 

shown in Figure 4-1. The analysis started from identifying the fire ICs’ goals, to 

understanding the tasks required to achieve those goals and decisions they need to 

make during the tasks, which in turn results in information needs. Then the current 

means of obtaining the information were evaluated. As a result, gaps were identified 

and technology opportunities to fill the gaps were proposed. 

Goals

Tasks/Decisions

Information & Means of retrieving information

Gaps/Opportunities for technologies
 

Figure 4-1: Framework of user requirement analysis 

 

4.4.1 Goals and priorities 

Data collection with fire ICs revealed that their most important goals are to ensure 

safety of crews, saving life (including casualties and the general public), and 

extinguishing the fire. In general, safety of crews is the highest priority of the three, 

then the safety of the public, then extinguishing the fire. The current basic principle 

that ICs work to is:  they will risk life (of crew) if there is danger to life (of the public); 

otherwise risks taken will only depend on the dangers present, and they will not 

commit their crews into hazard situations for no benefit of life. 
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Working to this guideline, the goals and priorities may vary according to the particular 

circumstances of each incident instance. When an incident occurs, an incident 

commander will perform a “Dynamic Risk Assessment (DRA)”, which identifies:  

• the risks present 

• the severity and possibility of the risks 

• people at risk 

• what control methods are necessary  

• whether the risks are worth the benefits.  

ICs review and confirm the initial risk assessment as soon as practicable and further 

review and confirm it at regular intervals throughout the incident.  

Although it was mentioned in the literature that one of the ICs’ goals was saving lives 

and protecting fire-fighters (Carter and Rausch, 2008), it was clearly apparent that 

safety of crews was put in such high priority in their practice and training: higher than 

the safety of the public, and higher than extinguishing the fire. One of the ICs 

interviewed said it was part of his responsibility to always try to make the job as safe 

as possible.  

4.4.2 Decisions required to achieve the goals 

DRA is the most important and continuous task that ICs need to do on-site. Based on 

the result of DRAs, ICs make decisions on  

• The Tactical mode (defensive or offensive). Where safe systems of work are 

deployed and adequate control measures implemented, the mode of operation 

is likely to be ‘offensive’. However, where the risk to crews is excessive, 

defensive mode will be declared. 

• Tasks to be adopted to minimize the risk (e.g. whether or not to send crews into 

the building to undertake search and rescue, fire-fighting, or ventilation). If the 

risk is worth the potential benefits, ICs may command crews into the building, 

otherwise, they will not risk crews for no benefit of life.  

• Whether additional resources are required (e.g. equipment/experts for a 

specific type of chemical hazard, additional crews to support fire-fighting, 
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other agencies). When the resources available are not sufficient to minimize 

the risks and perform the tasks, ICs will ask for additional resources. 

This analysis was in line with the tasks and responsibilities of ICs as specified in the 

literature (Incident Command - 3rd edition, 2008). 

4.4.3 Summary of information needed 

To perform the task of DRA, ICs need information about the incident, hazards, water 

resources and personnel resources. 

4.4.3.1 Nature of incident 

Magnitude of the incident 

The ICs usually perform an assessment of the incident on their arrival at the incident 

ground, to determine the potential magnitude of the incident. Properly assessing the 

potential magnitude of an incident provides a basis for implementation of their 

procedures. Examples of the information required were described by ICs: “what type 

of fire it is, whether there are chemicals involved, whether there is any chemical 

storage around that we need to be aware of, how the fire has started and developed, 

whether any actions have been taken to respond to the incident, etc. It is just like a 

forever on-going list…..”  

Whether it is life-involved 

Whether it is life-involved is vital for ICs’ decision making. As stated by one of the 

ICs interviewed, “we will not commit our crews into hazard situations for no benefit of 

life”. The follow up action plans and commands to be employed can be completely 

different (offensive or defensive mode), depending on whether there are people 

trapped in the building. If it is life-involved, the IC needs to know the number of 

people involved, their locations, and the number and location of casualties if possible. 

4.4.3.2 Hazards 

During the assessment, the IC evaluates the hazards present and the potential hazards. 

They need to identify: what type of hazard there is (structural, chemical, etc.); who are 

in danger; the severity (injuries that the hazards cause) and likelihood of the hazard, 

and location of the hazard/potential hazard. The time of this evaluation must also be 
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recorded. After assessing the hazards present and the potential impact of the incident, 

the IC will determine if additional resources and support are required. An IC described 

their DRA as “constantly asking: What do I need? What are the risks? Are the risks 

worth the benefits?” 

4.4.3.3 Water resources  

To determine whether the available water supply is adequate, the IC needs to know 

information about water resources nearby, including facilities designed for fire-

fighting purposes (e.g. water pumps, inlets/outlets, hydrants), as well as other public or 

private water resources (e.g. lakes, rivers, swimming pools). 

The information needed about fire-fighting facilities includes location and current 

condition (e.g. whether it is functioning). The information needed about other public 

or private water resources includes location and volume of water available. 

4.4.3.4 Staff deployment 

After perceiving the potential impact of the incident, ICs needs to know how many 

fire-fighters are available, their skills and equipment, and whether additional resources 

are required.  

ICs also would like to have information about people on the incident site. They 

confirmed that it would be helpful if they can track location of staff, vehicles, 

equipment, and any people from other responding agencies if present. 

4.4.4 Summary of information not needed 

During interviews, ICs pointed out that floor plans are not necessary for fire-fighters. 

The fire-fighters themselves do not use floor plans because they are difficult to obtain, 

and difficult to carry during search and rescue. Paper floor maps for some premises are 

available but even so, are not always needed. Emergency responders have usually 

conducted fire exercises at the building before an incident occurs, so would be familiar 

with the design and layout of the building. Fire-fighters find their own way entering 

and returning from the incident. 

ICs confirmed that digital floor maps integrated with essential information (e.g. 

temperature, smoke) would be useful for them (as opposed to the fire-fighters). In this 

case, ICs require only essential elements of the building structure (e.g. entrances, walls, 
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staircases, rooms, doors, windows or ventilation control points, etc.). In addition, it is 

desirable if location of hydrants and location of any storage of chemical or hazardous 

materials can be integrated on the floor map. More detailed information relating to the 

content of rooms was said to be unhelpful and confusing. Displaying the individual 

locations and readings of individual sensors were also said to be unhelpful. 

4.4.5 Current means of information acquisition 

When ICs arrive on site, their current methods for acquiring information are: direct 

observation, asking people with the appropriate knowledge, and checking the facilities 

provided by the building. An IC is usually not the first one to arrive on site. When he 

or she arrives on site, he takes his time to assess the situation before assuming control. 

He can conduct a 360˚ walk around the scene and observe the fire or smoke from the 

outside. He can obtain a brief from the senior fire-fighter (who has been acting as a 

first-arriving IC and has been in charge of initial supervision and deployment of the 

crews by the time he arrives), or the security officers of the building, or local people 

who have witnessed the incident, as and when needed. Large commercial buildings, 

industrial sites or residential home are usually split into zones, and facilities are 

provided such as the panels that identify in which zone the indicator has been activated 

and where a zone is. An IC can check these facilities and concentrate their resources 

on the zone where the indicator has been activated. 

If there is nobody present when an IC arrives, they will predict the possible risks 

present according to the time and the place, then make a decision according to their 

prediction, with worst-case scenarios. For example, if an incident was at a large 

shopping centre at 2 o’clock in the morning, most likely there would be no life-

involved; if it was a shopping centre at 2 o’clock in the afternoon on a Saturday, it 

probably would be life-involved. 

Apart from only a few available tools (such as simple facilities to identify fire zones in 

the building, CCTV images from the security offices, paper-based floor maps), the 

gathering of the information required for initial assessment is not supported by any 

technology. 

The current method of tracking staff deployment is using plastic name tags (Figure 4-

2). This enables ICs to keep a track of who is in and who is out, but once staff are 



Chapter 4. Study of Incident Commanders’ Requirements 

 

 67 

deployed into the premises, there is currently no means of obtaining their location, 

health condition, etc. The fire-fighters deployed in the premises are required to exit the 

building from where they entered, unless in extreme cases where exiting from where 

they entered is impossible. 

 

Figure 4-2: Using name tags at entry control 

In addition, the communicating of the required information is mainly based on verbal 

communications with the assistance of quick sketching (as shown in Figure 4-3). 

Currently, little technology is used – suggesting that there may be opportunities for 

supplementing existing practices with the capabilities provided by new technologies. 

 

Figure 4-3: Mean of communicating information 
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4.4.6 Opportunities for technologies 

Based on interviews with ICs, observation of fire exercises, and subsequent validation, 

a list of opportunities for technology was revealed. Each of the opportunities targets a 

gap discovered from the field study. The possible technological solution to each 

problem was proposed based on the judgment of the authors. The ‘usability aspect’ is 

an analysis of what specific end user added value is provided by the technology. 

Feedback was gathered by discussing each of these ideas with ICs, both during the 

visits and through subsequent follow up – this enabling limited validation. 

Opportunity 1 – Seeing inside of the building 

Gap Discovered: The lack of real-time information on the status of an incident.  

Problem Summary: When the IC arrives on site, he has almost no knowledge of what 

the situation is inside the building. The current ways of retrieving this information are 

by observing from outside of the building, asking someone who has been in or 

checking operation panels. However, these are time-consuming and very limited 

information can be obtained. Therefore, it is difficult for the IC to monitor the real-

time situation inside the building during the response to the incident. 

Proposed technological solution: The use of WSN deployed in the building to 

provide a colour-coded distribution of the real-time fire development in the building. 

Usability aspect: This information inside the building can provide a more complete 

view of the situation on-site (impacting ICs’ situation awareness at a perception level). 

It can also provide better understanding of risks, influencing decisions on whether it is 

safe to enter the building (impacting ICs’ situation awareness on comprehension level). 

Feedback: ICs agreed that such information from inside the building would be very 

useful. They also highlighted that this information is more useful for ICs than fire-

fighters. The ICs’ position is usually outside the building, and they can have more 

resources available; in contrast, fire-fighters often work in an environment with low 

visibility, and they usually want to keep their hands free to carry out their operational 

tasks.  
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Opportunity 2  – Transmission of information to fire crew during 
approach to the incidents 

Gap discovered: The lack of information during approach to incidents. 

Problem summary: ICs and fire-fighters usually have very little information about 

the actual incident status during the mobilisation phase (routing to the incident site). A 

brief description about the fire incidents may be obtained by the control centre staff 

answering the emergency call and passed on to the fire crews, but they mainly depend 

on information gathered on arrival. However, the current way of assessing the 

situation on site is time-consuming and the information that can be retrieved is limited. 

Proposed technological solution: Provide information (e.g. the occurrence and 

characteristics of the incident, real-time fire development inside the building) based on 

data from WSN to fire crews on their way to the incidents. 

Usability aspect: Based on this information, ICs can plan ahead and respond to 

incidents more quickly (impacting on situation awareness and the goal of 

preparedness). Precautions can be taken based on risk analysis of the information 

(impacting on the goal of ensuring fire-fighters’ safety).  

Feedback: It was confirmed to be beneficial. As stated by a fire station manager, 

“before arrival we are looking to prepare both physically and mentally ourselves for 

the job to be done, therefore it is crucial we receive some useful information which 

supports us to make a picture of what is going on at this particular incident”. 

Opportunity 3 – Routing within the premises 

Problem summary: Search and rescue team members can be almost “blind” in the 

building. Smoke, flame and moisture can affect visibility where search and rescue 

takes place. Often it can be dark due to time and lighting system shutdown. The 

protective equipment worn by search and rescue teams, for example a mask and 

breathing apparatus, also restrict vision. Thus, it is difficult to navigate by sight. 

They often work in an environment with low visibility, noise, and unknown risks. 

Therefore, equipment that is worn and searching techniques trained are designed with 

the priority of protecting fire-fighters, whereas these can reduce the efficiency of 

search and rescue.  
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Figure 4-4: Fire-fighters performing Left Hand Search 

Fire-fighters typically search by going along a wall as their reference, touch the top, 

scan the front to check for obstacles and step down to check stability of building 

structure. They walk with short, deliberate steps (as shown in Figure 4-4). This 

procedure is designed to ensure their safety; however, it is difficult and time 

consuming, and fire-fighters can miss areas or lose their reference points.  

For buildings where the structure typically consists of large storage rooms with large 

area in the middle, such as warehouses, a “guideline” is used (as shown in Figure 4-5), 

which is a rope deployed in the building with specially tied knots at critical positions 

(such as turnings). When fire-fighters enter a building, they attach themselves to the 

“guideline” and follow its direction. When they leave the building, the knots are used 

as reference points to confirm their positions and to indicate their way out.  Again, this 

is time consuming, and the guideline could be tangled or burnt, resulting in fire-

fighters losing their reference. 

Proposed technological solution: Routes can be calculated based on the integration 

of the real-time fire development information, potential hazardous areas, and the floor 

map, to direct fire-fighters into or out of the premises and avoid hazardous areas. 

Usability aspect: This information can navigate fire-fighters inside the building under 

working conditions with low visibility and audibility (impacting on search and rescue 

efficiency). This information can help fire-fighters avoid the hazardous areas inside 

the building (impacting on the goal of ensuring the safety of the crew, which is the 

highest priority of all the goals). 
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Figure 4-5: Fire-fighters using guideline (Source: Fire Service Technical 
Bulletin 1/1997: Breathing Apparatus Command and Control Procedures) 

Feedback: ICs and trainers did not think additional support for safe escaping route 

was necessary; they believed that their current training and usage of “guidelines” 

already enabled fire-fighters to find their way into and out of premises, and they were 

trained to avoid hazardous areas. The quickest possible route to the incidents would be 

helpful, but not necessary. However, fire-fighters, in contrast to the views of ICs, 

found it difficult to use “guidelines” and they were less confident about their 

effectiveness. They thought it would be helpful if they could be directed in the 

building using additional means.  

Opportunity 4 – Projecting the future 

Gap discovered: Difficult to know the history of an incident and to project the future 

development of the fire. 

Problem summary: ICs do not have a way to monitor the incident during the time 

between the incident happening and the first crew arriving. In addition, they only have 

limited information about the incident between the first crew arriving and the IC 

arriving. ICs integrate the information that they obtain on-site with their understanding 

of it, in order to project what will happen in the future.  For the same situation 

perception on arrival, different histories of incident development result in different 

projection of the future (as shown in Figure 4-6).  
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Figure 4-6: Projection of the future based on history of fire development 

Therefore, without the history of incident development, knowing only the situation on 

arrival is not sufficient to understand the fire development trends, and predict the 

future. The difficulty of projecting the future results in difficulty in assessing risks and 

deciding on appropriate plans of action. 

Proposed technological solution: Based on sensor data, a period of fire spread history 

can be kept, the trend can be calculated and the incident status in the near future can be 

forecasted. 

Usability aspect: Better risk assessment can be done based on accurate, complete 

historical data (impacting on ICs’ situation awareness). Better identification of 

potential hazards in the future (impacting on ICs’ situation awareness at projection 

level). 

Feedback: ICs confirmed that assisted prediction can save them valuable time 

collecting information, decision making and projections will be made easier and more 

accurate. 

Opportunity 5 – Track fire-fighters’ location 

Gap discovered: Difficulty in tracking fire-fighters’ location. 

Problem summary: ICs only know fire-fighters in the building by name tags at the 

entry control. There is currently no way for them to know fire-fighters’ exact location 

and status during their tasks in the premises. 
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Proposed technological solution: Use Wireless Sensor Networks to track mobile fire-

fighters in the premises, and integrate the information with real-time fire distribution 

on the floor map. 

Usability aspect: Tracking fire-fighters location can provide the IC with better control 

over his crew (impacting on the goal of ensuring the safety of the crew). 

Feedback: ICs said it would be very useful. ICs would like to have information about 

the people on site, including fire-fighters, staff from other agencies, and casualties if 

possible. They do not like ‘unknown’ people walking around on site. All participants 

confirmed it would better ensure a fire-fighter’s safety. 

Opportunity 6 – Provide real-time hazards information 

Gap discovered: Lack of efficiency in retrieving information about hazards. 

Problem summary: The current way of obtaining hazards information is time-

consuming. Moreover, there is currently no way to record dynamic hazards generated 

during the fire incident, e.g. building structure may become instable as the fire 

develops, there may not be a staircase in-situ anymore, or the temperature of the 

storage of hazardous material may change, resulting in an increased risk. 

Proposed technological solution: Any known potential hazards information (such as 

chemical storage) can be pre-stored in a database and made available as incidents 

occur, real-time hazards information as the incident develops can be updated into the 

system: building structure hazards can be updated by human input, temperature on 

hazardous storage can be monitored by sensors. All hazard information can be 

recorded. 

Usability aspect: The hazards information can provide the IC a more accurate 

incident ground DRA (impacting on ICs’ situation awareness). Correct decisions can 

be made based on the accurate risk assessment (impacting on ICs’ decision making). 

Feedback: ICs confirmed it would be very useful to have dynamic hazard information. 

ICs currently expect to get such information through briefing from Sector 

Commanders, however, Sector Commanders have struggled to provide the support to 

the level expected by the IC. Therefore, having such information provided by technical 

systems would also improve the efficiency of their team dynamics. 
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Opportunity 7 – Integration of relevant information within a unified 
system 

Gap discovered:  Difficulty in efficient integration of different categories of 

information. 

Problem summary:  ICs have to obtain different categories of information from 

different sources, which is time consuming.  

In addition, the information about incidents is not organized in an incident-site-centred 

way, thus it is difficult to access some information. For instance, information about 

nearby public and private water resources, and nearby storage of hazardous materials 

does exist. However, it is not part of the fire-fighting ‘system’, therefore ICs cannot 

easily obtain this information. 

Proposed technological solution: Organize an Incident-Site Information Space, and 

integrate information about incident, hazards, water resources, human resources, and 

other relevant information within a unified system. 

Usability aspect: The integration of information can provide a more complete picture 

of view on the incident more efficiently (impacting on ICs’ situation awareness). 

Feedback: ICs confirmed that a unified system, which can be accessed by an officer 

who is either a novice or experienced, would be one of the key characteristics for 

future system, since it improves the efficiency and accuracy of decision making.  

Opportunity 8 – Provide vertical temperature distribution across a door 

Gap discovered: Difficulty in predicting potential risks at the doorway 

Problem summary: When fire-fighters come to a door during their left/right hand 

search, they have to follow the doorway procedure (as shown in Figure 4-7). One of 

them sprays water on the door; the other touches the door, to predict the vertical 

distribution of temperature on the door. This perception will lead to the conclusion of 

whether it is likely to cause a flashover or backdraft when the door is opened. 

Necessary precautions will be taken and control methods applied to minimize the risk 

(e.g. open the door to a gap, spray water through the gap and immediately close the 

door, and repeat until it’s safer to enter). 
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Figure 4-7: Fire-fighters carrying out the doorway procedure 

Proposed technological solution: Use sensor data to provide the vertical distribution 

of actual temperature across the door. 

Feedback: ICs thought this information would be helpful to the fire-fighters. However, 

they were concerned about the way to present this information to fire-fighters. As 

mentioned before, fire-fighters worked in environment with visibility and audibility 

limitations.   

4.4 Conclusions 

The study of fire ICs’ requirements provided a comprehensive understanding of their 

goals, tasks/decisions, information needs, and their feedback on the proposed 

technology opportunities.  This chapter established link between user requirements and 

technology capabilities, and provided an expanded goal-driven method to establish 

these links. This relates goals, tasks/decisions, information needs and opportunities for 

technology. 

Some interesting differences between literature and practice were also discovered. 

Although it was mentioned in the literature that one of ICs’ goals is to save lives and 

protect fire-fighters, it was found in their practice and training that safety of crews was 

given highest priority, higher than safety of the public, and higher than extinguishing 

the fire. Although it was recognised in the literature that ICs’ decisions are important 

for the outcomes of ER (Bigley and Roberts, 2001), and information is important for 
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ICs’ decisions (Van de Walle and Turoff, 2007), what information is required to 

achieve ICs’ goals was not clear. The study identified four categories of information 

needed (nature of incident, hazards, water resources, staff deployment), and detailed 

information under each category was provided to form a comprehensive picture of 

information required to achieve ICs’ goals. 

The study confirmed ICs’ lack of real-time information on incident identified in 

literature, and also discovered other gaps such as search and rescue difficulties. The 

findings confirmed that sensor data could contribute significantly to fire ER, and 

suggested how it could address the opportunities discovered.  

The findings of the study lead to the change of the initial focus of the further technical 

work. ICs did not approve that using sensor data to find safe escaping routes for fire-

fighters was necessary, instead the study revealed that it was not part of the 

information that ICs require to make decisions. Therefore, more technology 

opportunities that can provide the required information and help ICs better achieve 

their goals were explored. Out of all the technology opportunities discovered, sensor 

data can contribute to most of them. However, based on sensor data, ICs would benefit 

the most from the opportunities of seeing inside the building and getting this 

information on their way to the premises. Therefore, these two opportunities were 

taken as the targeted opportunities to my further technical work. 

Some human issues were also revealed during the visits and interviews.  ICs do not 

trust technology. In fact, they try very hard to avoid relying on technology in order to 

accomplish their tasks. They are also very concerned about the cost of technology. 

This presents a challenge to support systems based on any technology. In addition, 

having only an easy-to-use interface is not enough. A successful system must 

demonstrate the added value the technology can provide for user outcomes, and must 

have high reliability, require low maintenance, and be cost efficient, in order to be able 

to convince ICs to use them. 
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Chapter 5. On-site Emergency 
Information Management System 
Architecture 

Research questions addressed in this chapter: 

1 
What are the features of an on-site Emergency Information Management 
System (EIMS) based on WSN? 

2 
What main components are necessary for the on-site EIMS architecture, 
and how do the system components interact with each other? 

3 How can the dynamic nature of Emergency Response be addressed? 

4 
What are the benefits and trade-offs associated with the proposed EIMS 
design? 

 

The study of Incident Commanders (ICs)’ requirements in Chapter 4 identified a 

comprehensive set of information needed and information not needed, as well as a list 

of opportunities for WSN technology. Out of all the technology opportunities 

discovered, ICs would benefit the most from the opportunities of seeing inside the 

building and transmitting this information to the fire crew on their way to the premises. 

Therefore, these two opportunities were further investigated in the technical work 

contained in this thesis. 

The information required to facilitate Emergency Response (ER) is referred to as 

Emergency Information. Providing Emergency Information can enhance the situation 

awareness of ICs (Yang, L. et al., 2009), and thus facilitate their decision making. 

Having extracted the opportunities for WSN technology, the next step was to design a 

system architecture suitable for incorporating WSN capabilities to provide Emergency 

Information. A system that collects and processes data, extracts information and 

manages the extracted information is referred to as Emergency Information 

Management System (EIMS). This chapter describes the proposed on-site EIMS 

architecture. Its scope and characteristics are defined and the enhanced goal-driven 
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architecture design is demonstrated. The resulting on-site EIMS architecture is further 

analysed. The main components of the system and the interaction between components 

are discussed. In addition, system functions before, during and after incidents are 

specified. This chapter was based on the author’s published work (Yang et al., 2007). 

5.1 The Scope of On-site EIMS  

A typical Emergency Response System (ERS) contains three layers from the bottom to 

the top: a data collection layer, an emergency information management layer, and a 

command and control layer, as shown in Figure 5-1. 

Data Collection Layer

Emergency Information Management Layer

Command and Control Layer

 

Figure 5-1:  Typical ERS framework 

The importance of information to decision making has been highlighted in the 

literature review. And the requirement of addressing the dynamic nature of ER was 

recommended. Kyng (2006) stated one of the challenges in designing interactive 

systems for ER is that “systems change with every situation and even with specific 

situations unfold”. Therefore, without quick and reliable real-time data retrieval, the 

decisions made by emergency responders are likely to be neither timely nor optimum. 

Based on all the collected data, the Emergency Information Management Layer, i.e. 

EIMS, could analyse the situation, extract the information summary, generate risk 

assessments, and project what is likely to happen in the near future. This information 

can be shared within the emergency response management team, and provide decision 

support to improve the efficiency and accuracy of their decision making. Finally, an 

efficient command and control system is required to execute the response plans. My 

research mainly focuses on the requirements and design of EIMS in the middle layer, 

although system interactions with the information source layer and the command and 

control layer are also considered. 
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According to the targeted users, EIMS can be classified in two types: on-site EIMS 

and off-site EIMS.  

The targeted users of on-site EIMS are the IC and his command support team, whose 

position will be at the scene of emergency sites in the case of an emergency. On-site 

EIMS manages information in the case of an emergency, and organizes the 

information centred by the location of emergency throughout the duration of the 

emergency. Therefore, on-site EIMS are typically characterized by event-driven 

operation mode, real-time performance and adaptability to the dynamic nature of 

emergencies. 

The targeted users of off-site EIMS are the staff in command and control centres. 

Contrary to the IC and his crew, the position of control centre staff is not at the scene 

of emergencies. They will stay in the control centre, monitor the entire region, stay in 

communication with the ICs on-site, and coordinate and provide additional support if 

it’s required. Off-site EIMS manages information within a larger region, where 

multiple incidents are possible, and associates the information in the region with its 

distributed location. Off-site EIMS are typically characterized by constant monitoring, 

and analysing and synthesizing capabilities. 

Not enough attention has been paid to system design to support frontline first 

responders. Some system architectures designed for emergency response management 

have been suggested by researchers (e.g., Turoff et al., 2006; Zlatanova, 2005). 

However, they emphasized the requirements for coordination among responding 

agencies and communication of commands, and focused on systems for emergency 

centres. In other words, they are off-site EIMS. Although there has been an attempt to 

study system design for ICs (Jiang et al., 2004a), the prototypes proposed focused on 

interface design rather than underlying technology capabilities. 

Hence, this chapter focus on the system architecture for on-site EIMS. 

5.2 Goal-Driven Architecture Design 

It has been recognised in the literature that “tailorability, adaptability, composability 

are critical for large information systems” because the demands from the stakeholders 

are ever-changing, and needs from the end users vary (Meertens et al., 2010). 
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Motivated by such demands, Meertens et al. (2010) proposed a goal and model-driven 

architecture design method and demonstrated how the goals of the stakeholders can be 

captured in goal models and then incorporated into the design of a care service 

platform. This method presented in detail the Model-Driven Architecture Stack 

(MDAS), consisted of Computation Independent Model (CIM), Platform Independent 

Model (PIM), Platform Specific Model (PSM), and application code. The activities 

required and languages available at each level within the MDAS were also described.  

The method has the advantages of 1) providing a link between users’ goal space and 

design space by incorporating user goals in the service architecture design and 2) 

architecture modelling at different levels of abstraction. It demonstrated how a single 

goal of the targeted users (e.g. elderly patients who need a reminder service) can be 

incorporated in a single service design under the scenario of patient care service. 

However, it did not consider the scenario where users are responsible for tasks with 

high complexity, such as Incident Commanders making critical decisions under time 

constraints. In this type of scenario, the goals of the users are better modelled as 

correlated hierarchies rather than individuals. In addition, the specific requirements in 

the problem and solution domain should be integrated. Therefore, the following two 

improvements are proposed to enhance the goal and model-driven architecture design 

method for the scenarios with complex user tasks: 

• Capture goals in goal-action diagrams 

Goal-action diagrams represent the result of goal modelling in a hierarchical way. It 

starts with a major goal, which can be broken into sub-goals, each of which requires 

information. Each needed piece of information would in turns require a system action, 

which can be interpreted as a service.  

• The integration of requirements in the problem and solution domain 

It is argued that the domain-specific requirements must be considered in the 

implementation of the enhanced goal-driven architecture design method in EIMS 

architecture design. Fouad et al. (2010) demonstrated the importance of including 

requirements engineering paradigm within Model Driven Architecture (MDA) design, 

and suggested a way of extending the MDA framework by adding a link from CIM to 

PIM that integrates the problem and solution domains. However, there is no extensive 
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study on how such a link can be built and how the domain-specific requirements can 

be included in the architecture design for a particular domain. This chapter will 

demonstrate how the requirements in ER can be integrated in the architecture design.  

The enhanced goal-driven architecture design method was implemented in this chapter 

for the system architecture design for on-site EIMS. 

5.3 The Enhanced Goal-Driven Architecture Design 

The literature review on ER revealed two general recommendations for any emergency 

response system design (Chapter 2), satisfying information needs and addressing the 

dynamic nature of ER. The literature review on Information Extraction from Sensor 

Data (IESD) revealed that sensor data fusion is important to make sense of large 

amounts of collected sensor data, in order to benefit from WSN technology (Chapter 

3). As a result, it can be argued that a good EIMS requires the following features: 

• adaptive to different incident stages 

• fusion of multiple data sources. 

This section will discuss the two aspects of domain-specific requirements and the 

goal-actions capturing in different incident stages in more details. 

5.3.1 Adaptive to different incident stages 
The existing architectures suggested by researchers (Turoff et al., 2006; Zlatanova, 

2005) showed little consideration of the different actions the system should take at 

different incident stages.  

The life cycle of an incident consists of three stages: before, during and after an 

incident. Therefore, a successful EIMS must take this into account and enable different 

actions to be taken at different incident stages. “Successful emergency management 

requires comprehensive emergency planning and preparedness before an effective 

response to the inevitable disaster can be implemented” (Tufekci and Wallace, 1998). 

During the incident, effective response means: (1) immediate warnings generated at 

the early stage, followed by (2) quick actions taken to control the development of the 

incident. Emergency Management (EM) does not end when the incident ends, post-

event analysis and recovery is important as well. As Cutter (2003) said, an emergency 
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response cycle includes rescue and relief actions immediately following an event, and 

long-term stages of recovery and preparedness for the next unexpected event. Since 

emergency responses may well differ during these three stages, EIMS which aims to 

provide support to emergency responders may perform different actions throughout 

different phases of an incident. 

Irrespective of pre-event planning, on-event response or post-event analysis, data and 

information are important throughout all the 3 incident stages. “In the absence of data 

and information, emergency response is simply well-intended guesswork that will 

most likely result in significant loss of human life” (Erickson, 1999). Therefore, good 

information management can facilitate effective ER. The most crucial requirement of 

an EIMS is to provide the right information in the right format at the right time. This 

would typically mean providing this capability to the ICs since they would be in 

overall command of incidents. Typical goals of the ICs (in descending priority) would 

be to: “save life; prevent escalation of the disaster; relieve suffering; safeguard the 

environment; protect property; facilitate investigation/inquiry; and restore normality as 

soon as possible” (Hill and Long, 2001).  

The goal-action diagrams were used to capture the goals and analyse what information 

and system actions are needed before, during and after an incident. 

Before incident 

The main goal before an incident is to prepare for incidents and as far as possible to 

prevent them occurring. The major goal can be broken into sub-goals, for example, to 

predict potential incidents, which need information about any abnormalities that can 

be monitored – this therefore requires EIMS to generate reports on faulty parts and 

abnormal phenomena detected during diagnosis. The full hierarchical breakdown of 

the goal-action diagram before an incident is shown in Figure 5-2. 
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Major Goal
Preparedness
and preventing

Sub-goal
Predict possible

incidents

Sub-goal
Ensure the system

runs smoothly

Sub-goal
Ensure the knowledge

base is up-to-date

Information needed
Up-to-date e-map of premises,
resources information, previous

knowledge on incident actions, etc.

Information needed
System running status

Information needed
Abnormal

phenomenon in the
monitoring area

Actions required
Generate warning of

abnormal phenomenon
detected

Actions required
Run regular tests and
generate reports on

faulty parts

Actions required
Prompt users to update the

information and store the most
up-to-date information  

Figure 5-2: Goal-action diagram before an incident 

 

During incident 

The major goal during an incident is a quick and effective response, including 

situation assessment and efficient use of the available resources. Situation assessment 

can be further broken down into incident identification and forward projection, which 

require different decisions to be made. For example the incident commander will have 

to identify the nature of the incident, which demands information about incident 

occurrence and spread, and in turn requires data such as temperature, smoke, etc. at 

specific locations and also requirements about data accuracy and collecting frequency. 

As a result, actions that the system should take consist of alarm generation, real-time 

monitoring of the incident, and making historical trend diagrams available on request. 

The full breakdown of the goal-action diagram is shown in Figure 5-3. 
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Major Goal
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Sub-goal
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Data requirements
Water and personnel
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Sub-goal
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Sub-goal
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Sub-goal
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Real-time distribution of
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incident
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Road map to the

incident, floor plans,
zones in the premise, etc
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Integrate location map/floor
plan with real-time incident

development

Information
needed

Dynamic risks

Data requirements
Chemical storage,
structure stability,
high temperature

zone, poisonous gas
concentration, etc.

Information needed
Trends of incident and

risk development

Actions required
Calculate historical trends

and projection, and
display them on request

Data requirements
History of incident
occurrence and

development, history of
risk development, history
of responding activities

Actions required
Integrate dynamic

risks with floor plan
 

Figure 5-3: Requirements breakdown during an incident 

After incident 

The major goal after an incident is to collate and deliver statistical information on the 

incident. Post-incident recovery may require long-term work and the involvement of 

multiple agencies. However, only the goal of the immediate analysis after an incident 

is discussed here as shown in Figure 5-4 due to the focus on the goals and 

requirements relevant to an EIMS. 

Major Goal
Analysis and statistics

Information needed
Size, duration, loss, fatalities,

injuries, causes of an incident,
risks identified and actions taken

Actions required
Store the statistical

information of the incident
 

Figure 5-4: Requirements breakdown after an incident 

In summary, the requirement analysis demonstrated that:  

• In order to prepare for emergency incidents, the system should maintain up-to-

date information and run regular diagnostics to ensure the system works 

normally. 
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• To ensure efficient response to incidents, the system should attempt to predict 

possible incidents and generate warnings on detection of abnormal 

phenomenon. 

• To assist response to incidents that are occurring, the system should monitor 

real-time hazard conditions, dynamic risk information and track responder 

location during incidents. 

• To help post-event analysis, the system should record the incident’s nature, 

size, duration, loss, fatalities, injuries, causes, risks present and actions taken 

after incidents for future reference and response optimisation. 

5.3.2 Fusion of multiple data sources 

The importance of data fusion has been well addressed in the literature. It is generally 

recognised that combining multiple data resources to gather information can achieve 

better efficiency and potentially better accuracy than using single resource (Llinas and 

Hall, 1998; Foresti, 2002). However, fusion of multiple data sources in the context of 

on-site EIMS has not been studied before according to the author’s best knowledge. In 

this section, fusion of multiple data sources for on-site EIMS is studied and three types 

of data sources are identified. 

Data source 1: Wireless Sensor Networks 

Capabilities: WSNs have demonstrated their capability of collecting data about the 

environment being monitored in a wide variety of applications. Wireless sensor nodes 

are designed to be light-weight, cheap, and energy-efficient, so that they are easy to be 

deployed. In case of an emergency such as a fire incident, CCTV cameras may not be 

functioning since the main power is often switched off to prevent risks. However, the 

battery-powered sensor nodes will not be affected and they can form a vital part of 

data sources in case of an emergency. Sensor networks deployed in large commercial 

buildings, where higher risk to people would be present in case of fire emergencies, 

have the potential of providing valuable inside-building information about incident 

occurrence and its real-time development. Multiple types of sensors can be used to 

improve system performance in identification, detection, and tracking of a 

phenomenon, and improve the situation awareness of the targeted user group ICs. 
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Challenges: Sensor data often contains noise, outliers and missing values. In statistics, 

an outlier is an observation that is numerically distant from the rest of the data (Barnett 

and Lewis, 1994). In the scenario of ER applications, an outlier is considered as an 

extreme sensor reading that is not caused by a real environmental change. These data 

quality problems may affect the accuracy of identification, detection, and tracking of 

emergencies. 

System actions required: In order to incorporate the capabilities of WSN and 

overcome the challenges, data cleaning must be performed to reduce noise and outliers. 

Missing values can indicate the seriousness of a fire emergency; or an anomaly in the 

network, therefore it may not be appropriate to recover the missing values which 

existing research proposed to do. 

Data source 2: Static pre-stored data. 

Capabilities: Static pre-stored data includes electronic floor plans, hydrant locations 

and properties, construction materials, chemical storage, resources nearby, etc. This 

static information provides an important context for the data from WSN.  

Challenges: How to organize different types of data and keep all the pre-stored data 

updated and valid. 

System actions required: It is proposed to generate such information on separate 

layers, and integrate them with the layer of information from WSN data. Such 

information can be stored in a central database, and downloaded in case of a fire 

emergency. During and after the incident, any invalid or out-of-date information can 

be updated. The updated information can be uploaded when the crew deployed to the 

incident site return. 

Data source 3: Human input of dynamic risks. 

Capabilities: The importance of information on dynamic risks was strongly 

emphasized from interviews with ICs. Examples of dynamic risks include damaged 

stairs or other parts of the building structure during an incident, temperature rise on 

chemical storage, etc. Temperature can be monitored by sensors; however, risks such 

as building structure instability or damage cannot be so easily monitored by 
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technological means. Human input, for example, from a fire-fighter who has just been 

in the premises, has the capability of covering and updating this type of data.  

Challenges: Keeping the updating task simple and efficiently sharing this information. 

System actions required:  Enabling quick update and sharing of dynamic risk 

information, and generating such information on a separate layer so that it can be 

integrated with other layers. 

In summary, the EIMS should consist of two levels of fusion, fusion within the WSN, 

and fusion among different types of data sources. 

5.4 EIMS Architecture 

Each system action, which can be interpreted as a service, is modelled in an enterprise 

modelling language ArchiMate (The Open Group, 2009). Then the models of 

individual services (Appendix II) are integrated into one system architecture. The 

integration of separate services consists of redundancy removing, elements grouping 

and optimization. The integration is necessary to understand the fundamental technical 

components needed for a system, which lead to the research in the following chapters 

on how to better provide technical capabilities required in each component. 

The resulting abstract level architecture of on-site EIMS is proposed as shown in 

Figure 5-5.  

On-site Emergency Information Management System

Data Storage
WSN

Sensor
Data

Cleaning

Meaning Extraction

Real-time
database

Knowledge
base

Load Data Mining Integration
IC and his crewHuman

Computer
Interaction

Interface 1
Data Collection

Interface 2
Emergency Response  

Figure 5-5: Diagram of emergency information system architecture 

The system consists of four fundamental technical components:  

• Sensor data cleaning 
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The sensor data cleaning component is the bridge between WSN, located in the lower 

layer of information source layer, and the middle layer of the emergency information 

management system. The sensor data cleaning component is necessary to reduce noise 

and outliers typically existing in sensor data. The processed sensor data with improved 

data quality can then be stored in the real-time database, ready to be used by other 

system components. The detailed implementation of the sensor data cleaning 

component will be described in Chapter 6. 

• Data storage 

The data storage component consists of two types of database. The real-time database 

stores data on dynamic occurrence and real-time development of an incident 

generating from sensor networks, whereas the knowledge base contains pre-stored 

static information about the incident premise, resources nearby, and relevant 

knowledge. The details of the proposed data storage mechanism are provided in 

Chapter 7. 

• Meaning Extraction 

The meaning extraction component is responsible for loading and processing the real-

time sensor data, integrating the result with other types of data sources. More 

specifically, it can be integrated with pre-stored data such as a road map or floor plan 

to generate interactive incident monitoring, or integrated with the dynamic risk 

information to provide better support for ICs’ dynamic risk analysis. The research on 

meaning extraction is described in more details in Chapter 8. 

• Human Computer Interaction 

The human computer interaction component is the interface between the targeted users 

(ICs and his crew) and the system. This displays the required information in the right 

format at the suggested level of detail, as well as providing the users the freedom to 

choose the desired level of detail and the information combination. Dynamic risks 

information during an incident is updated through the HCI component. This 

component is important for the ultimate benefits the system can provide to the targeted 

users. However, interface design is not the main focus of this thesis.  
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Interaction with lower Data Collection Layer 

In the proposed architecture, the on-site EIMS interacts with the lower data collection 

layer in two ways. One communication link is between the system and WSN, the other 

communication link is between the system and ICs and his crew. 

Interaction with upper Command and Control Layer 

The interaction with upper Command and Control Layer is mainly through the existing 

communication network of the fire and rescue teams and according to their operation 

procedure. The information sharing can be proposed in two directions, one is from the 

IC to his crew on-site, and the other is from the IC to the control centre. 

5.5 Function Specification of EIMS 

The EIMS can operate in two modes, event-driven mode and demand-driven mode. 

The event-driven mode is a bottom-up process that is initiated by sensors reporting a 

detected anomaly. In this mode, the sensors are configured to be in sleep mode by 

default, and a “wake up” mechanism is activated when one or more sensors detect a 

possible abnormal situation about a phenomenon. On the other hand, the demand-

driven mode is a top-down process initiated by the users of the system, either regularly 

or in case a system check is necessary or a particular interest has been generated.  

The functions of the on-site EIMS are specified in terms of different stages in the life 

cycle of an incident. 

5.5.1 Before incident - System diagnosis and early detection 
• System diagnoses in demand-driven mode 

System diagnosis before an incident serves the purpose of ensuring the system 

functions properly. 

The system diagnosis regularly checks the EIMS together with WSN in the data 

collection layer. It receives actual data from wireless sensor nodes as input, and checks 

the system output against the expected output to identify any abnormal situations, e.g. 

non-responding sensor nodes, faulty sensors that generate invalid values, 

communication link error, system function error, etc. Further actions - ignoring, 

checking or response - can be decided by users based on the system report. Note that 
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the IC is a role being filled when an incident occurs, therefore, at this stage, the users 

of the system could be a local security officer or control centre staff. Using the EIMS 

system during emergency responders’ training can also be considered as a system 

diagnosis; in this case the IC would be the user. The flowchart of the demand-driven 

system diagnosis is shown in Figure 5-6. 
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Figure 5-6: System diagnoses flowchart 

• Early detection in event-driven mode 

In order to enable event-driven detection, the sensor nodes are required to be 

configured in beacon-enabled mode. In large networks, sensor nodes are organized as 

a cluster of clusters. The cluster heads send periodical beacons to the nodes in the 

cluster to confirm their presence and put them on duty for a fraction of time, while 

sensor nodes may sleep between beacons. Sensor nodes in the same cluster can be 

rotated to be on duty, and the sensed value will be checked against rules. Data 

transmission between a sensor node and the cluster head only commences when the 

sensed value becomes suspicious. A suspicious data received from sensor node will 
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trigger the wake up mechanism. The warning generated can be filtered either by 

automatic procedures implemented in the system or by the user. The system utilizes 

the automatic filtering schema to check whether it is likely to be a false alarm or real 

alarm. It also allows the user to access the information with the desired level of detail 

to double check the judgement if they want. If an incident is confirmed, the system 

will switch to monitoring mode. The process of event-driven early detection of 

possible incidents is depicted in Figure 5-7. 
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Figure 5-7: Early detection of possible incidents flowchart 

5.5.2 During incident - Monitoring the incident 
Once an incident is confirmed, the system is switched to monitoring mode. All the 

sensors will wake up and start transmitting data. At the same time, the system mounted 

on the vehicle, which carries the deployed responding team, is switched on. It 

downloads the pre-stored information about the specific incident, and receives the 

real-time data from the WSN during their mobilisation phase (approach to the 

incident). The data from WSN is integrated with pre-stored information such as floor 

plans and location of facilities, to enable monitoring of the incident development. To 

assist risk assessment, sensor data can be integrated with pre-defined risk levels, and 

output the location and levels of risks. 
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On arrival at the incident premise, the IC will carry out dynamic risk analysis and 

make decisions on the tactical mode and action plan accordingly. The result of 

dynamic risk analysis during the incident can be updated into the system, and 

integrated with other layers of information. 

The detailed behaviour is demonstrated in Figure 5-8. 
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Figure 5-8: Real-time data monitoring flowchart 

5.5.3 After incident – Update and upload knowledge base 
The task of EIMS in this stage is a simple but important database interaction with 

incident commanders. The incident commander fills in a post-event analysis form after 

an incident has been dealt with. The content should include the following information: 

Extent, Duration, Loss, Fatalities, Injuries, Causes, Emergency level, Actions taken, 

and any suggestions on amending the existing emergency plan. Some information such 

as duration of the incident could be filled in automatically by the system, whilst the 

rest has to be entered manually. This information will be added to the knowledge base 

for future statistics and integration purposes. The updated knowledge base will be 

uploaded to the central storage when the responding team has returned from an 

incident. 

Post-event analysis form Knowledge base
store

 

Figure 5-9: Update and upload knowledge base flowchart 
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5.6 Discussion and Conclusions 

This chapter proposed an EIMS architecture which facilitates responding to 

emergencies before, during and after an incident. Requirements analysis and overall 

system structure design have been discussed, potential benefits and design trade-offs 

of the system have been highlighted. The findings demonstrated that: (1) in order to 

prepare for emergency incidents, the system should run regular diagnoses to ensure the 

system works normally; (2) to ensure efficient response to incidents, the system should 

attempt to predict possible incidents and generate warnings on detection of abnormal 

phenomenon; (3) to assist responses to incidents that are occurring, the system should 

monitor real-time hazard conditions, dynamic risk information and track responder 

location during incidents; (4) to help post-event analysis, the system should record the 

incident’s nature, extent, duration, damage, fatalities, injuries, causes, risks present and 

actions taken after incidents for future reference. 

The benefits and trade-offs associated with the proposed EIMS design are discussed 

below. 

Benefits 

• Quicker and better Emergency Response 

The nature of emergency response is that there is often very limited information during 

the early stages of the incident, especially the information about the inside of 

buildings. Traditional ways of getting information are by direct observation, verbal 

communication with personnel on the incident ground, or checking operational panels. 

However, these methods are not efficient and the ways information can be gathered 

are very limited. The proposed EIMS enables event-driven early detection of possible 

incidents, and provides real-time information on incident development during the 

mobilisation phase. As a result, quicker ER can be achieved and the first responders 

can be better prepared. In addition, the real-time incident development can be 

monitored throughout the response to the incident, and risk assessment is facilitated by 

integrating human updates on dynamic risks into the system. Thus, the proposed EIMS 

facilitates information gathering, and addresses the dynamic nature of incidents. 

• Flexible application 
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Although the specified system behaviours are mainly based on requirements gathered 

from fire ICs, the proposed system architecture can be flexibly applied to a variety of 

applications. Based on this architecture, depending on different definitions of 

“meaning” according to the context, the architecture can be used to develop 

emergency detection systems, risk assessment systems, decision support systems, 

historical statistics or an integrated multi-purposes emergency response support 

system. Depending on different contexts of use, it could be located in the local security 

office, an emergency control centre, or as a vehicle mounted system as described in 

this chapter, or a web-based service which allows access from mobile devices. 

Trade-offs 

There are some trade-offs which should be taken into consideration when designing 

such an EIMS. 

• Diagnoses frequency/system cost trade-off 

The research has demonstrated that the system should run regular diagnostics before 

the incident, but running diagnostics too often could be a waste of time and system 

resources. In the case of running synthesized diagnoses with a wireless sensor network 

as bottom layer, too frequent diagnostics might cause the sensors to run out of battery 

power, thus causing them to be inoperative. 

• Quicker response/reducing false alarms trade-off 

The EIMS aims to facilitate a quicker response to emergencies; however, higher 

sensitivity may cause a higher rate of false alarms. The quickest way is to generate the 

alarm on receiving any data out of normal expectation without filtering, but these 

alarms might not be the symbol of a real incident. To filter and reduce the false alarms 

requires extra time and system resources consumption, for example the activation of 

more sensor nodes in the wake up mechanism before an alarm condition is notified. 

This is a trade-off to be taken into account during the early stage of an incident. 

• Historical trend/running cost trade-off 

Another consideration is that during an incident, a historical trend diagram showing 

the situation from the beginning of an incident could help operators to understand the 

incident situation and project what would happen in the near future. However, if the 

incident situation changes rapidly over time, to maintain a trend diagram could result 
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in an overwhelming request for the amount of data storage space and data analysis 

time.  

• Automatic suggestion/manual decision trade-off 

Computer-assisted risk analysis and decision support based on reliable data sources 

and efficient data mining could help the IC judge the situation and quickly issue the 

control commands. As described by Danielsson (1998), the key to incident command 

is the quick implementation of a fast strategic response. However, the suggestions 

made by the system may not be appropriate to the specific situation. Therefore, such a 

system should not over-automate its response: the original information that is used to 

generate risk analysis/decision support results should be available to enable the 

incident commanders to make their own decisions if they so wish.  

On the basis of the abstract level system architecture proposal, the detailed sensor data 

fusion methodology required for each main component of the system will be studied in 

the following chapters. 
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Chapter 6. Data storage Mechanism 

 

Research questions addressed in this chapter: 

1 
What constitute a suitable data storage mechanism for WSN-based on-
site EIMS? 

2 
What impacts do the features of sensor data have on data storage 
mechanism? 

3 What requirements do ER applications have on data storage mechanism? 

4 What is the detailed design of the proposed data storage mechanism? 

5 How does the proposed data storage mechanism perform in experiments? 

 

As proposed in the on-site Emergency Information Management System (EIMS) 

architecture (see Section 5.4), data storage is one of the necessary system components. 

Data Storage Mechanism (DSM) is the way that data is stored and managed in the data 

storage component. It has a major impact on the efficiency of further data processing 

for the purpose of meaning extraction. Consequently, what constitute a DSM for 

WSN-based on-site EIMS should be analysed first.  

It can be argued that what constitute a DSM for WSN-based on-site EIMS largely 

depend on the features of sensor data and the requirements of Emergency Response 

(ER) applications. Using WSN as the data collection layer, the EIMS will pre-process, 

save, analyse and present the information to the targeted user: the Incident 

Commander (IC) and his command support team. Considering the EIMS as a whole, it 

has two interfaces. The data collection interface communicates with the WSN to 

retrieve sensor data streams, the Emergency Response interface communicates with 

the IC and his command support team to dynamically update risks and monitor the 

incident development during ER (as shown in Figure 5-5). Therefore, the features of 

sensor data and the features of ER decide the requirements for the design of data 

storage mechanism and data processing.  
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The objective of this chapter is to 1) provide a comprehensive analysis of the features 

of sensor data, 2) evaluate the requirements of ER application, and 3) propose a DSM 

that accommodates the challenges presented by the features of sensor data as well as 

maintains efficiency for the entire ER process. The work presented in this chapter was 

based on the author’s published work (Yang, Y. et al., 2009) 

6.1 The Need for a Different Data Storage Mechanism 

The majority of the existing research on sensor data storage focused on purely 

technical issues such as storage placement (Ganesan et al., 2003) or energy 

consumption (Mathur et al., 2006). Distributed storage placement in the network has 

been argued to provide benefits such as shared storage load and collaboration among 

sensor nodes, as well as reduced impacts of single node failure. Some researchers 

declared that distributed storage at random locations is not suitable for sensor data as 

sensor data is location-specific, it should be stored at its origin instead. However, 

Ledlie et al. (2005) argued that sensor data generated at one location could have uses 

at a variety of sites elsewhere in the network, therefore sensor data should be stored 

near where it is primary used, together with its provenance (the history of how and 

when it came to be). Based on the understanding of the limited energy resources 

typically existing in WSNs, Mathur et al. (2006) evaluated a variety of flash-based 

storage options for sensor platforms, and concluded that surface-mount parallel 

Negated AND (NAND) flash can achieve 100-fold decrease in per-byte energy 

consumption in comparison with the MicaZ on-board serial flash.  

Although the existing research addressed some important issues introduced by WSN, 

such as the ad hoc nature of WSN and energy constraints in WSN, not enough 

attention has been paid to the impact that the nature of sensor data has on DSM. A data 

storage mechanism that addresses the features of sensor data can benefit sensor data 

storage regardless of where data is stored. In addition, on-site ER presented different 

information retrieval and storage requirements compared to other WSN applications. 

WSN applications such as habitat monitoring or patient health monitoring typically 

require the full storage of all the data generated. Such applications can be 

characterized by constant monitoring with a lower data sampling rate, and offline 

statistics and analysis. On contrary to such constant monitoring applications, on-site 
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ER applications mainly focused on the period that covers an emergency. The sensor 

data generated consists of real-time sensor data streams during a comparably intensive 

period of time. Consequently, a different DSM is required for on-site ER applications.  

6.2 Features of Sensor Data 

In comparison with traditional data, the data from WSN has special features, which 

bring a list of challenges in the management and processing of sensor data. The 

features of sensor data are analysed as follows: 

The streaming nature of data 

Sensor data is best modelled as continuously arriving data streams rather than 

persistent relations (Arasu et al., 2004). Data streams differ from traditional data in the 

following ways: 

• Sensor data is automatically generated and arrives in a multiple, continuous, 

time-varying manner. Therefore, the volume of sensor data increases along 

time, and the total volume of data is potentially unlimited. In contrast to this, 

traditional data typically consists of entries input by human, permanently or 

persistently stored in databases. The volume of traditional data is relatively 

stable. 

• “Data stream is time ordered data, either explicit with time-stamp or implicit 

based on arrival order.” (Kim et al., 2005) However, traditional data usually is 

not time-ordered unless explicitly specified. 

As a result, the streaming feature of sensor data presents challenges in sensor data 

processing such as storing data with unboundedly increasing volume, continuous 

loading and continuous queries. 

Existence of high tempo-spatial correlations 

Sensors are usually deployed at a certain density so that they can cover the entire 

monitoring field. As a result, “most sensor-nets likely exhibit temporal and spatial 

correlations among node readings” (Silberstein et al., 2007). More specifically, the 

high temporal and spatial correlations existing in sensor data exhibits in this way: “the 
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readings observed at one time instant are highly indicative of the readings observed at 

the next time instant, as are readings at nearby devices” (Jeffery et al., 2006).  

The high tempo-spatial correlation provides potential benefits. They can be 

incorporated to estimate missing or corrupted data (Chok and Gruenwald, 2009), 

detect outliers and improve the quality of sensor data, data suppression (Silberstein et 

al., 2007), reduce data transmission in network, thus reduce energy consumption 

(Yoon and Shahabi, 2007). However, challenges exist in identifying correlations and 

modelling correlations, and keeping correlation information updated, etc.  

Generation of redundant data 

Significant data redundancy in a database can result from the strong spatial and 

temporal correlations typically present in sensor data. However redundancy can be 

used to predict missing values and to detect outliers, and a certain level of redundancy 

can improve the accuracy of database query results. Resolving redundancy in sensor 

data is not simply a case of removing redundant data, but rather maintaining it at a 

level that provides confidence in the data without producing unnecessary storage 

demands. 

Sensor data contains ‘noise’ 

Sensors are designed to have low power consumption and to have low cost. However, 

this design focus can result in the accuracy of sensors being limited. As well as design 

issues, sensors are normally deployed in harsh environments with the possibility of 

background interference, and consequently sensors can experience internal faults or 

damage during emergencies such as fires. Research has shown that sensor data often 

contains errors (due to sensor function) and noise (due to other environmental 

interference) (Elnahrawy and Nath, 2003). These characteristics indicate that sensor 

data should be cleaned before being stored in any database. 

Sensor data is meaningless unless associated with time and 
location 

Sensor readings are meaningless if they are not associated with time. E.g. knowing 

that there is a temperature of 25°C means nothing unless it is associated with time, 

such as it is 25°C now or it was 25°C an hour ago. Similarly, sensor data has meanings 

only if it is associated with location information. Therefore, the data storage 

mechanism should provide support to associate data with the time and location.  
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6.3 Features of Emergency Response Applications 

As mentioned in Section 2.1, modern emergency response typically requires 

collaboration and coordination between different ER agencies. Apart from the 

requirement from the management side’s perspective, ER also requires the efficient 

and accurate supply and communication of information during the dynamic 

development of incidents. 

The need for timeliness despite the dynamic nature of ER 

Due to the nature of emergency response, although dynamic risks will develop, and 

situation will be ever-changing, timely and efficient response to incidents is always 

required, because any delay may result in the loss of life and property. Van de Walle 

and Turoff (2007) state that: ‘In the practitioner community, emergency managers 

have learned and stated that accurate and timely information is as crucial as is rapid 

and coherent coordination among the responding organizations’. It is essential 

therefore that WSN-based ER applications be resilient, real-time systems, and that 

they can support swift queries.  

Sufficient accuracy to support decision making 

The accuracy of the sensor data may influence the correctness of any decisions made 

by incident commanders. Therefore sufficient (but not excessive) accuracy of sensor 

data is essential for ER applications. For example, if alarms generated by noises or 

outliers are not filtered, response to the resulting false alarms will result in a 

significant waste of time and personnel resource. However, if a real emergency is 

filtered by mistake, the result could be the loss of life or property. The decisions made 

based on sensor data can be a matter of life or death, hence it is important to maximise 

the quality of sensor data. 

6.4 The Proposed Sensor Data Storage Mechanism 

As a result of the analysis of the features of sensor data and ER applications, the 

designed sensor DSM for ER applications aims to 
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• Store and manage sensor readings, time-related information and location-

related information (impacted by the importance of associating time and 

location with sensor data); 

• Support timely response to queries in spite of the increase in the volume of 

data (impacted by the streaming feature of sensor data); 

• Be dynamic and flexible to accommodate different needs at different incident 

stages (impacted by the ER application requirements). 

6.4.1 Database schema for building fire safety 

The data that needs to be stored in WSN based EIMS can be classified into three 

categories: sensor information, time-related information and location-related 

information. Sensor information includes sensor identifiers and real-time streams of 

sensor readings. Considering the scenario that WSNs are deployed to detect structural 

fire emergencies in premises, the time-related information would be timestamps 

associated with each sensor reading. The location-related information in this case 

would include the position where each sensor is deployed in the premises, and the 

location of the premises. 

The design of the overall database schema is as shown in Figure 6-1. The 

SensorReading table stores and manages the streaming data received from the WSN 

and the associated timestamps. The SensorDeployment table stores and manages the 

relative sensor location in a building. Building information is stored in two tables, 

Building and FloorMap. 
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Building

PK BuildingID*
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*

*
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Attribute 1
......
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SensorDeployment

PK,FK

FK

SensorNodeID*
x*
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Figure 6-1: Overall database schema 

Each tuple in the SensorReading table specifies the source of the sensor data 

(SensorNodeID), the time instance that the sensor data is generated (Timestamp), and 

readings from each type of sensor carried on a sensor node (denoted as Attributes 1 to 

n without losing generality). Each sensor node in a WSN can carry a number of 

sensors, each of which is considered to generate an attribute of the sensor node and 

assigned an attribute name, such as temperature, smoke, flame, etc. Atrribute1 to n 

will be replaced by attribute names in real applications. A sensor node ID and 

timestamp uniquely determine its readings, denoted as [SensorNodeID, Timestamp] → 

[A1, A2…An]. SensorNodeID is the foreign key that links to the primary key on the 

SensorDeployment table.  

Each tuple in the SensorDeployment table specifies a sensor node (SensorNodeID), 

where it is deployed (MapID), and its relative coordinates on the map (x, y). A sensor 

node ID uniquely determines where it’s deployed, denoted as [SensorNodeID] → 

[MapID, x, y].  

Building information is organized as a table containing entries for each building 

address, and a table of floor maps. Each tuple in the Building table specifies a building 

(BuildingID), and its address (HouseNumber, Street, Town, Postcode, Country). A 

building ID uniquely determines its address, written as [BuildingID] → 

[HouseNumber, Street, Town, Postcode, Country]. Each tuple in the FloorMap table 
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specifies what a map describes (BuildingID, Floor) and where the map is stored 

(MapID). A building and floor pair uniquely determines its map, denoted as 

[BuildingID, Floor] → [MapID]. 

In the case of an emergency, the building data can be retrieved by searching according 

to address and postcode. The required floor map can be retrieved and displayed, on 

which sensor data can be integrated. Temporal correlations of sensor data are 

maintained in the SensorReading table. Spatial correlations are maintained by 

associating real-time sensor readings with its location on the floor map through the 

bridge of the SensorDeployment table.  

6.4.2 Time-driven sensor data management  
The streaming feature of sensor data means that, the volume of sensor data increases 

along time, and the total volume of data is potentially unlimited. Consequently, the 

query efficiency may drop as the incident develops. However, to provide support for 

ER personnel to make quicker decision, information need to be presented to them in a 

real-time manner, which requires the data storage to support efficient response to data 

queries throughout the incident. Therefore, a time-driven sensor data management is 

proposed to maintain the query efficiency. 

First of all, the real-time sensor data can be modelled in a three dimensional space, 

with the dimensions representing time, area of location and range of sensor readings, 

as shown in Figure 6-2. Each cell of this three dimensional space represents the data 

volume in the range of time, area of location and range of sensor readings, denoted as 

v: (t,l,r). 
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Figure 6-2: The real-time sensor data volume space 
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A typical data management method to improve the query efficiency is by partitioning. 

Partitioning is the division of a database or its element into smaller, more manageable 

parts, according to the partition key, so that only the partitions that contain the answer 

to the query will be scanned rather than the whole dataset. Partitioning provides 

benefits such as manageability, performance and scalability. However, different 

partitioning schemes can result in different performance. Therefore, a suitable 

partitioning scheme has to be decided according to different application requirements. 

Within the ER scenarios of concern, typical queries during the incident are tempo-

spatial range based queries such as:  

 

 

Therefore, possible choices of partitioning scheme are:  

• partitioning by range of sensor readings, where the complete dataset D is 

partitioned in r number of partitions 1 2, , , rp p pL  

• location range partitioning, where the complete dataset D is partitioned in l 

number of partitions 1 2, , , lp p pL  

• time range partitioning, where the complete dataset D is partitioned in t number 

of partitions 1 2, , , tp p pL  

Partitioning by the range of sensor readings is not suitable. The distribution of sensor 

readings covers the whole range of sensor reading, thus, all partitions (e.g. 

1 2, , , rp p pL  as shown in Figure 6-3 (a)) are required to be scanned to answer the 

query even after partitioning by the range of sensor readings. No reduction on the 

amount of data that has to be scanned can be achieved from this type of partitioning, 

therefore, the query efficiency may still drop as the incident develops. 

Location range partitioning can achieve some reduction on the amount of data that has 

to be scanned to answer the query. In case the interested area S in the query is a region 

smaller than the whole network coverage (e.g. when users zoom in), only partitions 

that consist of S (e.g. 2 1, , lp p −L  as shown in Figure 6-3 (b)) are required to be 

scanned to answer the query. However, in case the interested area S is the whole 

‘What is the distribution of sensor readings in the area S between time A and time B?’ 
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network coverage, no reduction would be achieved. In addition, the size of the location 

range partitions will grow as the time duration grows. Therefore, the amount of data 

that needs to be scanned will still increase as the incident develops, although not as 

much as that without partitioning. 
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Figure 6-3: Different partitioning scheme on the real-time sensor data space 

In comparison, partitioning the real-time sensor data space by time range achieves the 

most reduction on the query work load. The number of partitions will increase as the 

size of the dataset grows. Nevertheless the number of rows that need to be scanned for 

any query will be kept relatively stable, since only partitions that contain answers to 

queries ( 2p ) will be scanned instead of the whole dataset, as demonstrated in Figure 6-

3 (c). Therefore, the database can still maintain query efficiency as the volume of data 

increases as the incident develops. 

6.4.3 Adaptive support for different incident stages  

It has been recognised in the context-aware computing literature that adaptive data 

management can address the challenge of computing for a changing environment 

(Haghighi et al., 2007). Adaptive behaviour aims to automatically and dynamically 

adjust data retrieving parameters according to changes in context or the availability of 

resources. In order to address the dynamic nature of ER, the author proposed to 

provide adaptive support for different incident stages. The proposed adaptive support 

included adaptive data sampling and adaptive data aging and data compression.  
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To accommodate different needs at different incident stages, the adaptive sampling to 

support different incident stages is designed in association with the overall database 

schema. Before an incident, data collection can be configured at a low frequency. 

Sensors can be in sleep mode most of the time and only wake up once in a while to 

monitor the environment. When a suspicious state is detected, data collection 

frequency can be increased. During incidents, sensor readings will be saved in real-

time. Finally, the data collection frequency can be set back to normal after the 

incident.  

The benefits of the adaptive behaviour are twofold: 

• It reduces the energy consumption of the sensor network. 

• It reduces the amount of data storage space that is required (as demonstrated in 

Figure 6-4). 

timeData volume with adaptive sampling

Sampling
Frequency

Data volume with non-adaptive sampling  

Figure 6-4: Adaptive data sampling 

More specifically, the adaptive data sampling behaviour can be controlled by the Level 

of Severity (LoS). LoS can be defined in different ways. For simplicity, LoS is 

introduced under the scenario of WSN with single type of sensor in this section. LoS 

can be defined as the magnitude of sensor reading, mapped to a warning level. 

(Definitions of LoS under other scenarios can be found in Chapter 8.) The detailed 

adaptive data sampling algorithm (pseudo code) is shown in Table 6-1. 
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Table 6-1: Adaptive data sampling algorithm (Pseudo code) 

f : the current sampling frequency           fL: the lowest acceptable sampling frequency 

fU: the highest acceptable sampling frequency 

n: the total number of warning levels      W: represents the Level of Severity 

Initialization: 
 f = fL;  

Adaptive data sampling: 
for each acquired sensor reading r; 

1.       Map r to a warning level W; 

2.       if   f < fU 

3.            f = fL × 2W  //increase the current sampling frequency 

4.       else 

5.            f = fU ÷ 2n-W  //decrease the current sampling frequency 

end 

In the case that the available data storage space is running low during the incident, an 

adaptive data aging and data compression mechanism is triggered to free the space. 

Data aging typically means the removal of data from the media that has aged. 

However, sensor data reflecting incidents has both real-time value and historical value. 

After incident, the sensor data collected about an incident may still be useful for the 

purpose of post-event analysis of what happened during the incident, and for training 

purposes. Only the summary of sensor data up to the level of detail that can enable 

post-event playback is required, rather than the complete dataset. Consequently, it can 

be argued that data compression rather than removal would be more suitable for the 

aged data in ER.  

It is proposed to age and compress the sensor data partition by partition. A First-In-

First-Out rule is utilised, which means the oldest partition is always aged first.  

Aging Rule 1: A partition becomes “aged” when its time range is outside the user-

specified retaining range.  

Aging Rule 2: The oldest partition becomes “aged” when the available storage space 

is lower than a predefined limit.  
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The aged partitions can be compressed due to the significant data redundancy typically 

existing in sensor data. Compression reduces the amount of storage space required by 

losing the redundant data. However, a summary of the original data is still kept to 

enable post-event playback. For example, a fire occurred in a room on the ground floor 

of a multi-story building; the rooms on the second floor were not affected by the 

incident. Therefore, sensor readings from the second floor rooms would be similar to 

each other and similar along time (redundancy). Hence, keeping only the aggregated 

sensor reading, including its the time and region, would be sufficient to enable post-

event playback, while data storage required would be significantly reduced. The aged 

partitions would be compressed according to the pre-defined granularity. The 

granularity defines the size of the data cube in the partitions that need to be 

compressed. The sensor readings within a data cube would be aggregated. The detailed 

adaptive data compression algorithm is presented in Table 6-2.  

Table 6-2. Adaptive data compression algorithm (Pseudo code) 

Pw: The working partition              Pc: The compressed partition  

Qb: A data cell in the working partition      Qa: The compressed data cell  

g: the pre-defined compression granularity 

for each Pw that satisfies the aging rules 

1.       Pc = compress (Pw, g); 

2.       store(Pc, summary); //store the compressed partition in the summary table 

3.       delete (Pw); 

end 

function compress (Pw, g) 

1.        for each data cell Qb in Pw 

2.                Qa = aggregate (Qb); 

3.               Add Qa to Pc; 

4.        end 

5.        return Pc; 

end 

After the aged partitions are compressed up to the desired granularity, they are stored 

in a summary table. The structure of the summary table is as shown in Table 6-3.  

Table 6-3: Summary 

Columns Description 
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ID Identification 
Aggregation Qa  
Region Spatial granularity 
Valid from This is the time that the aggregation is valid from. 
Valid until This is the time that the aggregation is valid until. 

6.5 Performance Evaluation of the Proposed Data Storage 
Mechanism 

A small scale experiment was carried out mainly in the aim of evaluating the query 

efficiency of the proposed data storage mechanism whilst real-time data continues 

feeding into the database. The hypotheses are as follows: 

1) As a result of the proposed time range partitioning, the query efficiency was 

expected to remain the same regardless of how large the database was 

becoming.  

2) Partitioning may introduce extra storage cost and extra maintenance 

complexity.  

Therefore, whether the proposed DSM can maintain good query efficiency and 

whether any additional storage and updating costs would be introduced to achieve 

better query efficiency were studied in the experiment.  

6.5.1 Experiment setup 
A data generator, two databases and a query engine were implemented for the 

experiment, as shown in Figure 6-5. The data generator simulated the data streams 

generated by temperature sensors in a 5×5 WSN. It generated random data at certain 

time intervals, assembled the random data with the timestamp and its sensor ID. The 

real-time assembled data was then stored in both the database partitioned by range of 

timestamp and a comparison database without partitioning. The commands (in Java 

statements) used to create the databases are shown in Table 6-4. Both of the two 

databases were implemented using MySQL server 5.1.45 in a PC with Intel Pentium 4 

CPU (3.20GHz) and 2GB of RAM. The query engine was implemented in Java with 

MySQL connector/J 5.1.1.3. The same tempo-spatial range queries were executed on 

both databases, and their performance was compared. 
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Figure 6-5: Database storage mechanism experiment design 

 

Table 6-4: Create Table Commands 

Create table with partitions: 
String sqlquery = "CREATE TABLE IF NOT EXISTS partitionedtable(\n" 

+"sensorid SMALLINT(3) UNSIGNED NOT NULL,\n" 

+"datetime TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE 
CURRENT_TIMESTAMP, \n" 

+"PRIMARY KEY (sensorid,datetime),\n"+ "temperature SMALLINT(3)) \n" 

+"PARTITION BY RANGE (UNIX_TIMESTAMP(datetime)) \n("; 

Date tr = new Date(); 

for (int i = 0; i < 29; i++)//for one hour simulation time 

{ 

 tr = new Date(tr.getTime() + 120000);//2 minutes per partition 

 DateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); 

 String itr = dateFormat.format(tr); 

 sqlquery = sqlquery + "PARTITION p" + i + " VALUES LESS THAN 
(UNIX_TIMESTAMP('" + itr + "')),\n"; 

} 

sqlquery = sqlquery + "PARTITION p29 VALUES LESS THAN MAXVALUE);"; 

Create table without partitions: 
String sqlquery="CREATE TABLE IF NOT EXISTS unpartitionedtable(" 

+ "sensorid SMALLINT(3) UNSIGNED NOT NULL," 

+ "PRIMARY KEY (sensorid,datetime)," 

+ "datetime TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE 
CURRENT_TIMESTAMP, temperature SMALLINT(3))"; 

The data generator and the query engine were implemented as two independent 

threads running in parallel. The data generator generated data at the rate of one data 

per sensor per second and repeated it for 3600 times, the result of which was a 

simulation of the data stream generated by the 5×5 WSN in one hour. The query 
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engine performed a set of queries to the databases at the end of every alternative 

minute for 30 times across the one hour simulation period, and returned the resulting 

performance metrics at each point.  

6.5.2 Performance metrics 

The performance of the databases was evaluated on three aspects: query efficiency, 

updating efficiency and storage cost.  

• Query efficiency was measured by the time duration it took to execute the 

tempo-spatial range query in each database, recorded in the built-in SQL 

diagnostic facility MySQL profiler. 

• Updating efficiency was measured by the time duration it took to insert the 

real-time generated data into each database, recorded in the MySQL profiler. 

• Storage cost of a database table (in KB) was calculated by the length of data 

file plus the length of index file, and then divided by 1024. 

An example set of queries to retrieve the desired performance metrics is shown in 

Table 6-5.  

Table 6-5: An example set of queries 

Query the efficiency of time range queries: 
SET profiling = 1; 

SELECT * FROM test.partitionedtable WHERE datetime < B AND datetime > A; 

SELECT * FROM test.unpatitionedtable WHERE datetime < B AND datetime > A; 

SHOW PROFILES; 
Query the updating efficiency: 
SET profiling = 1; 

INSERT INTO partitionedtable (sensorid, datetime, temperature) VALUES (sid, ‘datetime’, 
temperature ); 

INSERT INTO unpartitionedtable (sensorid, datetime, temperature) VALUES (sid, ‘datetime’, 
temperature ); 

SHOW PROFILES; 
Query the storage cost: 

SELECT table_name, table_rows, ROUND((data_length + index_length)/1024,2) 'KB' FROM 

information_schema.tables WHERE table_schema='test'; 
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6.5.3 Performance evaluation 

The experimental result of query efficiency is as shown in Table 6-6. It demonstrates 

that as the size of the databases becomes larger with time, the database with 

partitioning maintains the query efficiency, whereas the query efficiency of the 

database without partitioning drops very quickly. To execute the same time range 

query, more rows have to be scanned in the database without partitioning, whereas the 

number of rows needs to be scanned in the partitioned database remains stable. To find 

the answer to the same query, only the partition(s) that contains the answer to the 

query is scanned in the database with partitioning, whereas the whole dataset has to be 

scanned in the comparison database without partitioning. The time needed to find the 

answer to the query in the partitioned database decreased from approximately 10% to 

around 1% of the time needed for the same query in the database without partitioning. 

This demonstrates that the proposed DSM can achieve a query efficiency that is up to 

100 times faster than the database without partitioning as the duration of the incident 

increases. 

Table 6-6: Database query efficiency experimental result 

Query Efficiency 

Size of 
database 

(rows) 

Database without partitioning Database with partitioning 

Rows 
scanned 

Partitions 
scanned 

Time 
needed 

Rows 
scanned 

Partitions 
scanned 

Time 
needed 

5078 5078 all 0.31s 1342 P3 0.03s 

61024 61024 all 3.86s 1500 P20 0.04s 

70139 70139 all 5.97s 3000 P24, P25 0.08s 

The experimental result of updating efficiency is shown in Figure 6-6. It can be 

observed that both databases can maintain the updating efficiency as the time duration 

increases, although the database without partitioning demonstrated a slightly bigger 

variation on its updating query duration. The average duration of executing updating 

queries on the partitioned database was calculated to be approximately 0.0367 second, 

and its standard deviation was approximately 0.0010 second. Very similar to that, the 

average duration of executing updating queries on the database without partitioning 

was approximated to be 0.0507 second, with standard deviation approximates 0.0009. 

The difference of the average query duration between the two databases was only 0.02 

second. As a result of the analysis, it can be concluded that the partitioned database 
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does not require extra processing time to perform updating queries. In fact, it can be 

slightly quicker than the database without partitioning.  
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Figure 6-6: The comparison of updating efficiency 

The experimental result of storage cost is shown in Figure 6-7. When the databases 

were empty, the partitioned database did require more storage space (512KB) than 

what the database without partitioning required (48KB). However, as the time duration 

increased, the database without partitioning quickly ran out of the initially allocated 

storage space and had to acquire extra space. As a result of the extra storage space 

acquisition, the storage space required by the database without partitioning became 

bigger than what the partitioned database required for the same amount of data. For 

example, at the end of 22 minutes in the experiment time scale, 1552KB was required 

by the database without partitioning, which was 432KB more than the 1120KB storage 

space required by the partitioned database. Another example is at the end of 42 

minutes, where the database without partitioning required 752KB more than the 

partitioned database. In addition, if we denote the storage cost of the partitioned 

database at each minute t as fA(t), and the storage cost of the database without 

partitioning as fB(t), it can be calculated that the definite integral of fB(t) over the one 

hour simulation interval is 743KB more than that of  fA(t), denoted as 
60 60

0 0
( ) ( ) 743B Af t f t− =∫ ∫ . This demonstrates that although the partitioned database 

requires more initial storage space, the overall storage space across time is less than 

what is required by the database without partitioning. Consequently, it can be 

concluded that the partitioning does not introduce unacceptable extra storage cost. 
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Figure 6-7: The comparison of storage cost 

6.6 Conclusions 

In this chapter, a DSM for WSN-based on-site EIMS has been proposed based on the 

understanding that a suitable DSM should address both the features of sensor data and 

ER application requirements. The features of sensor data include the streaming nature, 

the existence of high tempo-spatial correlations, redundancy, noises, and the 

importance of time and location related information. The general requirements of ER 

applications are accuracy and efficiency despite of its dynamic nature. The findings 

demonstrate that a suitable DSM for WSN-based on-site EIMS should 1) store and 

manage sensor readings, time-related information and location-related information; 2) 

support timely response to queries in spite of the increase in the volume of data; and 3) 

be dynamic and flexible to accommodate different needs at different incident stages.  

The design of the proposed storage mechanism includes a database schema that 

maintains the tempo-spatial correlations typically existing in sensor data, a time-driven 

sensor data management, and adaptive support for different incident stages. It is 

designed to be efficient, flexible and suitable for the data flow, data collection and ER 

application requirements. 

The performance evaluation demonstrated that the proposed data storage mechanism 

can support timely response to queries (up to 100 times faster than a database without 

partitioning) in spite of the increase in the volume of data. Since efficient querying can 

lead to an efficient response to emergencies, this data storage mechanism could be 

fA(t)

fB(t)
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advantageous in Emergency Response Systems. Apart from the benefit of efficient 

querying, there is neither additional updating cost nor unacceptable storage cost 

introduced. This suggests that the proposed data storage mechanism would be 

particularly suitable for on-site ERS, where the resources are limited but high 

efficiency is required. 
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Chapter 7. Sensor Data Cleaning 

 

Research questions addressed in this chapter: 

1 
What constitute a suitable data cleaning approach for WSN-based on-site 
Emergency Information Management System (EIMS)? 

2 
What is the detailed design and characteristics of the proposed sensor 
data cleaning approach? 

3 
How does the proposed sensor data cleaning approach perform in 
experiments? 

 

One of the features of sensor data is that it usually contains ‘noise’, as analysed in 

Section 6.2. Many traditional data mining methods do not have good tolerance with 

data that contains noise and uncertainty. In addition, under the scenario of using sensor 

data to assist the decision making of the Incident Commander (IC) and his command 

support team, the noisy sensor data can be misleading. Using the raw sensor data 

without dealing with the data quality issues can result in impractical or even harmful 

decisions, which in turns has negative impacts on the overall performance of 

Emergency Response (ER). Hence, data cleaning is necessary for improving the 

quality of data before applying data mining technologies.  

Sensor data cleaning mainly deals with two data quality problems: noise and outliers. 

In statistics, an outlier is an observation that is numerically distant from the rest of the 

data (Barnett and Lewis, 1994). In the scenario of ER applications, an outlier is 

considered as an extreme sensor reading that is not caused by a real environmental 

change. Such outliers differ from regular system noise in the way that they tend to 

appear as strong peaks at a random frequency, whereas regular noise occurs at all 

frequencies with small intensities. Outliers might have an overwhelming effect on the 

total measurement and an overwhelming effect on smoothing methods. Although there 

has been some research effort on cleaning and querying noisy sensor data (e.g. 

Elnahrawy and Nath, 2003), it did not separate outliers from real environmental 
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changes. The result of that was a compromise between the prior knowledge and the 

observed noisy sensor data, or in other words, simple smoothing.  

In the scenario of ER applications, it is important to separate outliers from real 

environmental changes, and treat them differently. Therefore, a sensor data cleaning 

approach suitable for on-site EIMS should aim to not only reduce noises and remove 

outliers in the sensor data, but also quickly detect any real environmental changes. 

This chapter describes the proposed sensor data cleaning approach, namely, state-

aware Kalman Filter. The work presented in this chapter was based on the author’s 

published paper (Yang, Y. et al., 2010a). 

7.1 The Need for a Suitable Sensor Data Cleaning Approach 
for on-site ER 

Apart from the discussed requirement of separating outliers from real environmental 

changes and treating them differently, it is also important to seek an efficient and light-

weight data cleaning approach. Efficiency means low time cost, light-weight means 

low resource consumption. These two characteristics are important due to the 

requirement of timeliness for ER applications and the limited resources on-site. This 

section reviews the available data cleaning approaches in terms of their suitability for 

on-site ER. 

Researchers have used approaches such as Bayesian Theory (Elnahrawy and Nath, 

2003), Neural Network (Petrosino and Staiano, 2007), Wavelets (Zhuang and Chen, 

2006), Kalman Filter and Weighted Moving Average (Zhuang, Y. et al., 2007) for 

sensor data cleaning. However, using probability-based theory to predict the most 

likely range that sensor sampling falls in has its limitation in application to ER, 

because emergencies are unpredictable events, and using probabilities learned from 

data collected from one environment to predict sensor samplings in another 

environment may not be appropriate. Approaches based on Neural Networks are 

usually based on theories and simulations, but the possibility of implementing such a 

complex system in practical situations has not been seen. Wavelet transformation 

based methods require an initial dataset large enough to be able to separate noise from 

real data, and is therefore more suitable for analysis of historical data than real time 
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data. Compared to the above approaches, Weighted Moving Average is easy to 

implement, but its flexibility is limited and the neighbour tests phase might be an issue 

because it may result in neighbours checking each other, causing overflowed checking 

requests. Kalman Filter demonstrated both good performance in filtering data and 

light-weight implementation, consequently, it was chosen for further research. 

7.2 The Proposed State-Aware Kalman Filter 

Kalman Filter was chosen as the benchmark because it is the most efficient, flexible 

and light-weight compared to other types of existing data cleaning approaches. 

Nevertheless, whether it is a satisfactory fit for on-site ER is not clear. Therefore, an 

initial performance evaluation of Kalman Filter was carried out first. Based on the 

result of the initial performance evaluation, a set of state-awareness rules is proposed. 

It is proposed to integrate the state-awareness rules with Kalman filter, and the 

integrated result is named state-aware Kalman Filter.  

7.2.1 Kalman Filter 

This section briefly summarizes the iterative cycle of Kalman Filter. Kalman Filter 

addresses the problem of estimating the state x of a system represented by the model 

1 1 1k k k kx Ax Bu w− − −= + + , which calculates the state kx  from its previous state 1kx − and 

control input 1ku − , with a measurement model k k kz Hx v= + .The random variables 

1kw − and kv represent the process and measurement noise respectively. They are 

assumed to be independent of each other, white, and with normal probability 

distributions, denoted as: ( ) ~ (0, )P w N Q , ( ) ~ (0, )P v N R . In a high-level overview, 

the iterative Kalman Filter cycle is as shown in Figure 7-1:  

Time Update

(7.1)

(7.2)

Measurement Update

(7.3)

(7.4)

(7.5)

ˆ ˆ( )k k k k kx x G z Hx= + −
1ˆ ˆ( )T T

k k kG P H HP H R −= +
ˆ( )k k kP I G H P= −

1 1ˆk k kx Ax Bu− −= +

1
ˆ T
k kP AP A Q−= +

 

Figure 7-1: The Kalman Filter cycle 
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Step 1: Time Update. At each time instance, the estimated state ˆkx  is calculated from 

the previous state of the system using equation (7.1), and the error covariance of the 

estimation k̂P  is calculated by equation (7.2). 

Step 2: Measurement Update. The current state of the system kx  is then calculated 

by updating kx  using the current measurement kz  and Kalman Gain kG , as shown in 

equation (7.3), where kG  is calculated by equation (7.4). The updated error covariance 

kP  is calculated using equation (7.5). 

The time update step predicts the next coming measurement, the measurement update 

step corrects the prediction using the actual measurement. The updated kx  and kP  at 

the current time instance will then be taken as feedback to calculate the estimation ˆkx  

and k̂P  for the next time instance. 

More about Kalman Filters can be found in the reference (Welch and Bishop, 1995). 

7.2.2 The initial simulation of Kalman Filter 

Process model 

The initial simulation of Kalman Filter considered the scenario of a thermal sensor 

network that measures the temperature of an indoor environment. The coefficients of 

the Kalman Filter process model were selected as follows:  

The room temperature can be considered stable, which means the temperature at one 

time instance k should be the same as the temperature at the previous time instance k-1, 

therefore coefficient A = 1. There is no control input, therefore u = 0. As a result, the 

system model can be rewritten as 1 1ˆk k kx x w− −= + . Sensors directly measure the actual 

temperature in the environment, therefore coefficient H = 1. Hence, the measurement 

model can be rewritten as k k kz x v= + . The process noise 1kw −  and measurement noise 

kv  were assumed to be white Gaussian noise, and with normal probability 

distributions ( ) ~ (0, )P w N Q , ( ) ~ (0, )P v N R . 

Substituting coefficients A = 1, H = 1 into the filter equations, the resulting equations 

are: 
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Time update: 

1ˆ kx x −=                     (7.6) 

1k̂ kP P Q−= +                     (7.7) 

Measurement update: 

ˆ ˆ( )k k k k kx x G z x= + −                                (7.8) 

1ˆ ˆ( )k k kG P P R −= +                     (7.9) 

ˆ( )k k kP I G P= −                  (7.10) 

Data simulation 

The Kalman Filter was implemented and applied on data simulated in Matlab. The 

simulated data represents sensor data streams from a 5×5 thermal sensor network for a 

period of 300 seconds. Gaussian white noise (0 mean, standard deviation 1.5°C) was 

applied to the pre-set normal room temperature (20°C) throughout the simulation time. 

The random outliers were simulated as spikes occurring at random locations at random 

time. The scenario of fire occurrence and development was simulated by a sudden rise 

of sensor value from normal room temperature to abnormal conditions at a random 

time, a random location, spreading to the nearby area, and lasting for a random 

duration. An example plot of the simulated data is shown in Figure 7-2.  
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Figure 7-2: An example plot of the simulated data 
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Performance evaluation 

The initial temperature x0 was set to 20°C, the initial error covariance P0 was set to 10. 

Q and R were tuned to achieve the best filter performance, i.e. the best balance 

between smoothing noises and detecting real changes. 

0.5773 0.5413 0.5585 0.5471 0.6222
0.5313 0.5407 0.6249 0.5311 0.5038
0.6510 0.6665 0.6891 0.5358 0.5370
0.5110 0.5682 0.5979 0.5894 0.6122
0.6185 0.5701 0.5669 0.5250 0.6000

Q

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

1.9857 1.9057 2.1727 2.1957 2.2284
2.2085 2.4619 2.4967 2.0198 2.1613
2.0618 2.0046 2.1913 2.4201 2.1583
2.2221 2.2478 2.2643 2.6023 2.5113
1.9209 2.2334 2.4676 2.3931 2.1422

R

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

The result of the initial simulation of the Kalman Filter is as shown in Figure 7-3. 

The initial simulation demonstrated that the Kalman Filter is efficient and has a good 

smoothing effect. However, the outlier (at 38 seconds in the simulation time scale) was 

only reduced but not effectively removed. In addition, it took time (20 seconds) to 

detect the real change in the environment (at 53 seconds in the simulation time scale).  

Thus, it can be concluded that although the efficiency of Kalman Filter has been 

proved, using only Kalman Filter is not a satisfactory solution, because it does not 

separate outliers from real environmental changes to be dealt with differently.  

Therefore, a set of state-awareness rules was proposed and integrated with Kalman 

Filter to overcome these issues. 
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Figure 7-3: The result of the initial simulation of Kalman Filter 

 

7.2.3 State-awareness rules 

The fact that most data cleaning algorithms, including Kalman Filter, usually produce 

a simple compromise between the observed raw data and system estimation (prior 

knowledge), is because they do not take the state of the system into consideration. In 

other words, they are not state-aware. In this section, a set of state-awareness rules is 

proposed to address this issue. 

The system can be in normal, outlier or abnormal state. The aim of the proposed data 

cleaning approach is to reduce noise, remove outliers and quickly detect the abnormal 

state. Assumptions were made that sensor nodes are organized as clusters in the WSN. 

Rule (i): If the incoming observation z  of a sensor node is within a pre-defined range 

<Ol, Ou>, and its rising rate r  is within a pre-defined range <Rl, Ru>, then the sensor 

node is considered to be in a normal state.       

Rule (ii): If either the current observation z  or the rising rate r of a sensor node is 

beyond its pre-defined range, then the sensor node reports to be suspicious. 
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Rule (iii): If both the sensor node and one of the sensor nodes in the same cluster 

report to be suspicious, then the sensor node is considered to be in an abnormal state. 

Rule (iv): If the sensor node reports to be suspicious, but none of the other sensor 

nodes in the same cluster report to be suspicious, then the sensor node is considered to 

be in an outlier state.                    

7.2.4 State-awareness rules integrated with the Kalman Filter 

It is proposed to integrate the set of state-awareness rules with the Kalman Filter. The 

integrated Kalman Filter adjusts the projected estimation differently according to the 

state of the sensor, thus can remove outliers as well as quickly detect the 

environmental changes. As a result, it has been termed a state-aware Kalman Filter. 

The on-going cycle of the state-aware Kalman Filter as shown in Figure 7-4 can be 

described as follows:  

Step 1: Time Update/Suspicious Detection At each time instance, the estimated state 

ˆkx  and the error covariance of the estimation k̂P  are estimated using equation (7.1) 

and (7.2) respectively, at the same time detecting for any occurrence of a suspicious 

state using rule (ii). 

Step 2: Measurement Update On detection of a suspicious state, the sensor nodes in 

the same cluster are checked to confirm it as an abnormal state or classify it as an 

outlier. If it is an abnormal state, measurement kz  is used as kx , and kP  is increased α  

times to quickly detect the change; If it is an outlier state, the last normal data 1kx −  is 

used as kx . If a normal state is found, the normal measurement update step of Kalman 

Filter is used.  

The time update/suspicious detection step estimates the next coming measurement and 

detects any occurrence of a suspicious state, the measurement update step corrects the 

estimation differently according to the given state. The updated kx  and kP  at the 

current time instance will then be taken as feedback to calculate the estimation ˆkx  and 

k̂P  for the next time instance. 
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Figure 7-4: The iterative cycle of the state-aware Kalman Filter 

7.3 Performance Evaluation 

The performance evaluation experiments of the proposed sensor data cleaning 

approach, known as state-aware Kalman Filter, in comparison with Kalman Filter, 

were implemented on both simulated sensor network data and sensor data collected 

from field trails. The experiments aimed to evaluate the performance of the proposed 

data cleaning approach in comparison with Kalman Filter on the following three 

aspects:  

• Reducing noise  

• Removing outliers  

• Detecting real changes in the environment. 

The hypothesis was that the proposed data cleaning algorithm can reduce noise, 

remove outliers as well as quickly detect any real change in the environment that 

indicates a potential fire. 

7.3.1 Simulation implementation and results 

The simulation of the data cleaning approaches was implemented under the scenario 

that multiple types of sensors (temperature, smoke, CO and flame) are deployed in an 
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indoor environment to monitor fire emergencies. The block diagram of the simulation 

system is shown in Figure 7-5.  

Data Simulation

Plot and
Comparison

State-aware
Kalman Filter

Kalman Filter

Temp | Smoke
CO     | Flame

 

Figure 7-5: The block diagram of the simulation system 

Data Simulation 

In comparison with the initial simulation of Kalman Filter where only temperature 

sensor data was simulated, the performance evaluation of the proposed data cleaning 

approach simulated a WSN that consists of multiple types of sensors.  

Data streams from a 5×5 sensor network for a period of 300 seconds were simulated 

using MatLab. Each node in the network consisted of four types of sensors 

(temperature, smoke, CO, flame). According to the domain knowledge, the 

observations of different types of sensors under normal room conditions were assumed 

to be: 

• temperature:  20  

• smoke:  0.5% obs/m (obscuration per meter) 

• CO:  2.5ppm  

• flame:  350nm.  

Gaussian white noise with zero mean was simulated for each type of sensors, with 

standard deviations set as: 

• temperature:  0.5  

• smoke:  0.04% obs/m 



Chapter 7: Sensor Data Cleaning 

 126 

• CO:   0.2 ppm  

• flame:   1.5nm.  

1% random outliers (spikes) were added to each type of sensor data at random 

locations at random time. The scenario of fire occurrence was represented by a sudden 

change of sensor value from room conditions to abnormal conditions at a random time, 

a random location, and spreading to the nearby area.  

An example plot of the data simulation with multiple sensors is shown in Figure 7-6. 
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Figure 7-6: An example plot of data simulation with multiple sensors 

Parameters selection 

The proposed data cleaning approach and Kalman Filter were individually applied on 

each type of sensor data. The same initial filter parameters were chosen for both of 

them:  

• The initial measurement 0x was chosen as 20   for  temperature  sensor, 0.5% 

obs/m for smoke sensor, 2.5ppm for CO sensor and 350nm for flame sensor. 

• The initial error covariance 0P  was set to be 10 for all types of sensors.  
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• Filter parameters Q and R were tuned to achieve the best performance.  

Performance evaluation 

The performance evaluation of data cleaning approaches on temperature sensors are 

shown in Figure 7-7. Both data cleaning approaches demonstrated good noise 

reduction performance. The proposed state-aware Kalman Filter effectively removed 

the outliers (e.g. at the 40th second), whereas Kalman Filter only reduced them. In 

addition, there was a delay in detecting the fire occurring (10 seconds from the time 

the event occurred to the time it was detected) by Kalman Filter, whereas the proposed 

state-aware Kalman Filter reduced this delay to 1 second. 

 

Figure 7-7: Performance evaluation of data cleaning approaches on 
temperature sensors 

The performance evaluation of data cleaning approaches on smoke (Figure 7-8), CO 

(Figure 7-9) and flame (Figure 7-10) sensors demonstrated similar results to 

temperature sensors. Noises in all the types of sensor data were reduced by the Kalman 

Filter, but there was a delay in detecting the fire occurring (12s delay of detecting the 

fire occurring in flame, 2s delay of detecting it in smoke and CO). These delays were 

reduced to 1s by the state-aware Kalman Filter. In other words, the state-aware 

Kalman Filter can reduce the delay of detecting environmental changes on sensors by 
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50% to 90%. Using Kalman Filter only reduced outliers (at 204 seconds in smoke, at 

147 seconds in CO, at 57 seconds in flame), whereas outliers existing in the raw data 

were effectively removed by the proposed state-aware Kalman Filter.  

 

Figure 7-8: Performance evaluation of data cleaning approaches on smoke 
sensors 

 

Figure 7-9: Performance evaluation of data cleaning approaches on smoke 
sensors 
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Figure 7-10: Performance evaluation of data cleaning approaches on flame 
sensors 

Consequently, it can be concluded that the state-aware Kalman Filter demonstrated a 

better performance than using Kalman Filter alone. It can effectively remove outliers 

as well as efficiently detect real changes in the environment.  

7.3.2 Performance evaluation based on data collected from the field 
trial 

To verify the performance evaluation result based on simulation, the two data cleaning 

approaches were also applied on the sensor data collected from a field trial.  

The field trial was carried out in the training centre of a local fire and rescue service 

station on 17/03/2010, between 11:21 and 11:50 am. Twenty sensor nodes were 

randomly deployed in each room and on the stairs. Each node consists of four types of 

sensors: temperature, smoke, CO and flame. A controlled gas fire was switched on 

during the field trial, and the sensor data collected before, during and after the fire was 

recorded in MySQL database.  
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A MySQL database connector was implemented in Matlab, to retrieve the sensor data 

and feed it into the data cleaning approaches. The block diagram of the test system is 

shown in Figure 7-11. 

Data from the
field trial

ComparisonMySQL
connector

state-aware
Kalman Filter

Kalman Filter
 

Figure 7-11: The block diagram of testing system based on field trial data 

An example plot of the collected raw sensor data of a node is shown in Figure 7-12. 

Data from node 3 is used as an example since it was the closest node to the gas fire 

and its data is the most representative of the whole picture of the fire. Each time slice 

represents 4 seconds of time. 
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Figure 7-12: An example plot of raw sensor data (NodeID: 3) 

It can be observed from the collected data stream that outliers did exist in a real 

situation. They occurred to all types of sensors. Smoke and CO sensors are more 

subject to the effects of noise and outliers, whereas data from flame and temperature 

sensors is relatively “cleaner”. 
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Some characteristics of a fire can also be observed from the raw sensor data collected 

from the field trial. Different types of sensors have different levels of sensitivity. The 

smoke sensor was the first to detect the fire, immediately followed by the flame 

sensor, then followed by the temperature sensor. The CO sensor didn’t detect the fire, 

possibly because the fire was a controlled flaming gas fire rather than a smouldering 

fire. There was enough oxygen, hence not much CO was generated from the burning 

gas. 

The result of temperature sensor data cleaning is shown in Figure 7-13. Using Kalman 

Filter only reduced the outlier at the 318th time slice, whereas the state-aware Kalman 

Filter removed the outlier. There was an 8 time slice (32 seconds) delay in detecting 

the fire occurrence using only Kalman Filter, whereas the time delay was reduced to 4 

seconds using the state-aware Kalman Filter. 
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Figure 7-13: Temperature sensor data cleaning 

The result of flame sensor data cleaning is shown in Figure 7-14. Both data cleaning 

approaches smoothed the noise existing in the raw data. The delay of detecting the fire 

was 13 time slice (52 seconds) using only Kalman Filter, whereas the delay was 

reduced to 4 seconds using the state-aware Kalman Filter. 
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Figure 7-14: Flame sensor data cleaning 
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Figure 7-15: Smoke sensor data cleaning 
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The result of smoke sensor data cleaning is shown in Figure 7-15. It can be observed 

that smoke sensor data is more subject to noise, despite its efficiency in detecting the 

fire at its early stage.  Due to this feature, tuning the filters to reduce the noise will 

introduce longer delay in detecting the real change in the environment that represents a 

possible fire. In this situation, the advantage of the proposed state-aware Kalman Filter 

in terms of maintaining the balance between noise reduction and quick detection of 

real environmental changes is more obvious.  

The result of CO data cleaning is shown in Figure 7-16. It can be observed that the 

same noise reduction performance was achieved by the two data cleaning approaches. 

The controlled gas fire was not detected in the data from the CO sensor. Nevertheless, 

using the two data cleaning approaches still demonstrated benefits of smoothing out 

the noise.  
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Figure 7-16: CO sensor data cleaning 
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7.4 Conclusions 

This chapter proposed a sensor data cleaning approach for ER applications that not 

only reduces noise, but also removes outliers and quickly detects the real 

environmental changes.  

The design of the proposed data cleaning approach addressed the noisy feature of 

sensor data analysed in section 6.2. It also addressed the different states that sensor 

data can be in, and utilised spatial correlations between sensor nodes to check and 

confirm whether a suspicious sensor data is an outlier or a real environmental change.  

The data cleaning experiments demonstrated that by introducing the state-awareness 

rules and integrating it with Kalman Filter, the resulting state-aware Kalman Filter can 

separate outliers and real environmental changes and deal with them differently. It can 

be argued that being state-aware is a new advantage in addition to those inherited from 

Kalman Filter: e.g. effectively smoothing of noise and being light-weight. As a result 

of such advantages, it can be concluded that the proposed state-aware Kalman Filter 

would be a satisfactory fit for on-site ER applications. 

In addition, lessons have been learned from this study that can provide benefits to 

future research. Interesting characteristics of fire have been discovered from the data 

collected from the field trial, e.g. the order of the detection of fire in different sensors. 

These observed characteristics of a real fire can be incorporated into future data 

simulation.  
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Chapter 8. Meaning Extraction from 
Sensor Data 

 

Research questions addressed in this chapter: 

1 What can be defined as “meaning” in the context of on-site ER? 

2 
What is the detailed design and characteristics of the meaning extraction 
approach? 

3 
How does the proposed meaning extraction approach perform in 
experiments? 

 

Meaning extraction is an important component in the proposed Emergency 

Information Management System (EIMS) architecture, as well as a necessary step to 

make sensor data work for Emergency Response (ER). On one hand, as the analysis of 

the features of sensor data demonstrated in Section 6.2, sensor data is meaningless 

unless associated with time and location. On the other hand, individual sensor 

readings, even if they have been cleaned, are not what Incident Commanders (ICs) 

expected to see (Chapter 4). Requirements from both the features of sensor data and 

ER applications have demonstrated the necessity of extracting meanings and semantics 

of sensor data in order to provide support for ICs. 

It can be argued that the process of making sensor data work for ER does not complete 

until all three steps are accomplished: (1) it needs to be properly pre-processed, (2) it 

must be stored and managed efficiently, and (3) meaning must be extracted from the 

data prior to its presentation to the emergency responders. A data storage mechanism 

design has been proposed for the storage and management of real-time sensor data 

streams and their associated time and location information (Chapter 6). A sensor data 

cleaning method has been proposed to reduce noise and data outliers and quickly 

detect real environmental changes (Chapter 7). These works have laid a promising 
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basis in the process of making sensor data work for emergency response. This chapter 

aims to investigate the next step in the process, which is meaning extraction from 

sensor data.  

Meaning extraction is an emerging technology that identifies elements of information 

contained in datasets that imply meaning in the context of application and can be 

interpreted by the users to facilitate their tasks. This chapter described a 

comprehensive analysis on what can be defined as meaning in the context of ER, and 

the study undertaken for extracting an example of the possible meanings: the 

occurrence and characteristics of an incident. Focusing on the extraction of the 

occurrence and characteristics of an incident from sensor data converts the meaning 

extraction problem into an event detection problem. A generic model for event 

detection from sensor data is proposed and simulation results are discussed.  

8.1 The Need for a Meaning Extraction Method for on-site ER 

Meaning extraction has been applied in a wide variety of domains, e.g. natural 

language processing, web semantics analysis, as well as text mining. In the context of 

natural language processing, “meaning” has been defined as the part of sentence, e.g. 

Subject part, verb part, object part, and adverb part (Bajwa, 2010). In the context of 

web semantics analysis, “meaning” has been defined as the similarity distances of 

literal objects (Cilibrasi and Vitanyi, 2006). In the context of text mining, “meaning” 

has been defined as acronyms and their meanings (Kempe, 2006). According to the 

various contexts of applications, different information from data has been considered 

as “meaning”. This demonstrated that meaning extraction is highly domain-specific. 

As a result, the meaning extraction methods utilised are highly related to the specific 

meaning extraction problems. 

In the context of meaning extraction on sensor data streams, the typical way of 

defining “meaning” is to represent it in the form of meta-data, features or frequently 

occurred patterns. Kariya and Kiyoki (2005) used output from taste sensors to compute 

meta-data of taste impression, which implies the relations between different food and 

preferences. Hunter and Colley (2007) proposed an online unsupervised learning 

method to analyse human behaviour in real-time by extracting features that can 
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represent places visited and routes taken between places from sensor streams. Dong 

and Calvo (2009) addressed the problem of the interestingness of the automatically-

extracted patterns (association rules) and proposed to integrate user-specified interests 

to filter the large amount of statistically significant association rules. 

Despite the wide applications of meaning extraction, there is very limited research on 

meaning extraction in the context of ER, even less research on meaning extraction 

from sensor data for ER. Wickler and Potter (2009) proposed to derive features from 

given sensor data which will be or be very close to information to fire-fighters, e.g. the 

height of smoke layer in a room, as a necessary step to provide decision support. 

However, there is a lack of a comprehensive analysis of what can be defined as 

“meaning” that applies to ER in general and the detailed technology proposal to 

extract the defined meaning. Hu et al. (2007) focused on extracting flood area for 

emergency response of flood disaster. However, the proposed method is based on 

radar data, which has different features from sensor data, therefore it is not suitable. 

There is no other research in this category according to the author’s best knowledge 

The existing meaning extraction methods typically utilised statistical methods, 

including Markov Logic (Bajwa, 2010), Bayesian networks, decision trees, logistic 

regression, neural network etc. However, statistically significant patterns may not be 

of significance in the context of ER because emergencies such as fires are usually 

events of low probability. There is also a lack of research on meaning extraction for 

on-site ER. 

8.2 Ways of Conveying Meaning in the Context of ER 

Chapter 4 identified a list of opportunities for technology that can provide the required 

information and help ICs and their command support team better achieve their goals. 

Although sensor data can contribute to most of the discovered opportunities for 

technology, ICs and their command support team would benefit the most from the 

ability of seeing inside the building and getting this information during the 

mobilisation phase (on their way to the premises). Therefore, these two opportunities 

were further analysed to extract what information can be considered as “meaning” in 

terms of extracting it from sensor data.  
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It is proposed the following pieces of information can be considered as “meaning” in 

the context of ER: 

• The occurrence and characteristics of an incident 

The issue of the availability of information immediately after an incident has been 

revealed both in the literature and in interviews with ICs. “There is a significant lack 

of information about the scale of a disaster in the immediate aftermath” (Manoj and 

Baker, 2007). Therefore, extracting the occurrence and characteristics of an incident 

based on sensor data and providing them to the emergency responding crew during the 

mobilisation phase can fill in the gap of the lack of information about an incident in 

the immediate aftermath. It can also help them see inside the building and facilitate 

early planning and preparation. 

More specifically, it is proposed that the occurrence of an incident can be represented 

by an alarm associated with confidence, whereas the characteristics of an incident can 

be represented by the time, the affected area, the type and the severity of the incident. 

• Real-time development of an incident 

The lack of available information about an incident in the immediate aftermath is 

followed by large amounts of imprecise information (Manoj and Baker, 2007). The 

interviews with ICs revealed that the imprecise information is due to lack of ability to 

retrieve the required information via reliable technology means. Hence, providing the 

real-time development of an incident can enable ICs to see inside the building, and 

facilitate their dynamic risk analysis. 

More specifically, it is proposed that the real-time development of incident can be 

represented in three levels, perception level (multiple resolution of the distribution of 

sensor readings in real-time), comprehension level (the distribution of level of 

seriousness in real-time), projection level (the direction, speed of incident 

development; the projected distribution of level of seriousness; the projected potential 

risks). 

Meaning can be conveyed by a number of ways. However, this chapter mainly 

concentrates on the first one: the size and characteristics of an incident. By defining 



Chapter 8: Meaning Extraction from Sensor Data 

 139 

the occurrence, size and characteristics of an incident as meaning, the meaning 

extraction problem is converted to event detection problem. 

8.3 Event Detection 

The problem of event detection can be introduced more formally as follows: 

Given a set of measured data arriving over time, denoted as { | 1, 2,3, }tD z t n= = K , 

event detection is to find the time t  when an event of interest occurs (where the data is 

different from normal pattern of behaviour). 

Therefore, the common goals of event detection are: 

• To identify whether an event of interest has occurred 

• To characterize the event (e.g., the time, the affected area, the type and the 

severity of the event)  

• Accurate and early detection 

Kerman et al. (2009) stated that the most common challenges in event detection are: 

situational dependence, criticality of application, numerous and diverse data sources, 

and network topology. They suggested that event detection algorithms should 

overcome those challenges as well as meet the main requirements: timeliness, a high 

true detection rate, and a low false alarm rate. In the case of emergency event detection 

from multi-sensory data, the requirements on detection timeliness and accuracy still 

apply, in addition, special challenges (e.g., temporal spatial information incorporation, 

information integration from multiple sensor streams, computational complexity) 

presented by sensor data should be taken into consideration. 

Two categories of event detection approaches have been identified in sensor network 

applications: threshold-based event detection and tempo-spatial pattern based event 

detection. 

8.3.1 Threshold-based event detection 

Threshold-based event detection method is based on the underlying intuition that an 

event occurring will result in changes in the sensor readings, e.g., an object moving 
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will result in an increased acceleration reading, a fire will result in an increased 

temperature reading. Therefore, normal behaviour can be defined as a threshold (e.g., 

maximum values, rates of increase and combination thereof from multiple sensors) 

based on statistics of historical data (or domain knowledge), and alarms can be raised 

if the predefined threshold is exceeded. Examples in this category include Abadi et al. 

(2005), Chen et al. (2007), Gehrke and Madden (2004), etc.  

The advantage of threshold-based event detection is its simplicity of implementation 

and low computation complexity. However, tuning the threshold is highly dependable 

on the specific detection problem and the environment that sensors are monitoring, and 

some events cannot be fully captured by discrete threshold values. The accuracy of 

detection is limited.                                                                                                                                    

8.3.2 Tempo-spatial pattern based event detection 

In contrast to threshold-based event detection, the underlying intuition of tempo-

spatial pattern based event detection is that an event occurring in the monitoring field 

usually results in some tempo-spatial patterns in the sensor readings of networked 

nodes. For instance, a gas leakage event can be characterized as a spatial distribution 

of sensor readings following a gradual decreasing trend from the source to the 

surrounding area nearby. The event of interest can be defined as temporal (Mukherji et 

al., 2008), spatial (Xue et al., 2006), or tempo-spatial patterns, then the event detection 

problem is converted into a pattern-matching problem.  

The intuition of an example spatial pattern-matching is shown in Figure 8-1. The 

pattern extracted from live sensor data in the left column is compared with the pre-

defined pattern for an event in the middle column. If it doesn’t match, the detection 

result is normal; otherwise, an event has been detected. 
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Figure 8-1: The intuition of spatial based event detection 

The advantage of tempo-spatial pattern based event detection is that it takes context 

information into account, and incorporates tempo-spatial correlations typically existing 

in sensor data to improve the accuracy of event detection. 

However, the disadvantages are:  

• Increased complexity, because it incorporates data from the whole network to 

do pattern matching. 

• Difficulty in defining suitable patterns to represent the events of interest. If a 

static pattern is defined, its flexibility is low; if the pattern is defined with user-

specified factors, tuning the factors results in similar difficulties as tuning 

thresholds. 

8.4 A Generic State Model for Emergency Event Detection 

Various methods have been proposed for event detection using sensor networks. 

However, they have been proposed in accordance with specific event detection 

scenarios. In this section, a generic state model for emergency event detection is 

proposed, which can model the behaviour of any sensor network based emergency 

event detection systems. 

It can be argued that the key requirements of emergency event detection based on 

sensor network are: 
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• Event-driven operational mode in contrast to constant monitoring 

Due to the energy-constraints in WSNs, constant data transmission for monitoring is 

not suitable. Event-driven operational mode means that sensor nodes are configured to 

be in sleeping mode most of the time, and wake up when a suspicious event occurs. A 

sensor node consists of a sensing unit, a computation unit and a communication unit. 

The communication unit is the most energy consuming of the three. Sleeping mode 

means that the communication unit of a sensor is asleep, whereas the sensing unit is 

still functioning. Once an event is detected, the communication unit will be woken up. 

The detection of events starts from the bottom level up. 

• Improvement of reliability 

Sensor data typically consists of errors (due to sensor malfunction) and noise (due to 

other environmental interference) (Elnahrawy and Nath, 2003), therefore, a 

mechanism to improve the detection reliability is necessary. 

• Integration of temporal spatial correlations typically existing in sensor network 

Sensor nodes are usually deployed at a certain density so that they can cover the entire 

monitoring field. As a result, “the readings observed at one time instant are highly 

indicative of the readings observed at the next time instant, as are readings at nearby 

devices” (Jeffery et al., 2006). The high temporal spatial correlations can be 

incorporated to improve the reliability of event detection. 

• Maintain the trade-off between early detection and detection reliability 

In emergency event detection, early detection is highly demanded. Therefore, there is a 

need for minimizing the detection time delay. Early detection requires high 

sensitiveness of sensors. However, this may cause detection reliability issues. 

Therefore, the trade-off between early detection and detection reliability must be 

maintained. 

The proposed generic event detection model addresses the above requirements. It 

consists of three parts: sensor level state model, neighbourhood support and network 

level fusion. 
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8.4.1 Sensor level state model 

The proposed Sensor State Model addressed that for each sensor node being 

monitored, there are four states: normal, suspicious/checking, abnormal, and false 

alarm, as shown in Figure 8-2.  
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Figure 8-2: Sensor level state model 

S1 (Normal): A state s is considered to be normal when the pattern extracted from live 

sensor data LP  matches the predefined normal pattern of behaviour NP , denoted as 

     ~
1 L Ns S P P∈ ⇔ =                           (8-1) 

S2 (Suspicious/Checking): A suspicious state appears when LP  does not match the 

normal pattern of behaviour NP , denoted as 

    ~
2 L Ns S P P∈ ⇔ ≠                           (8-2) 

When a suspicious state occurs, the system will enter into a checking state, to check 

the level of support from its temporal or spatial correlations, to improve the detection 

precision. 

S3 (Abnormal): If the level of support sl is above a threshold th , it indicates that an 

incident is detected, denoted as 

     3 2 ss S s S l th∈ ⇔ ∈ ∧ >               (8-3) 

S4 (False alarm): If the level of support is not big enough, it is considered to be a 

false alarm, denoted as  
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    4 2 ss S s S l th∈ ⇔ ∈ ∧ <               (8-4) 

False alarms will be logged, and the sensor reading will go back to its previous state. 

8.4.2 Neighbourhood support 

The proposed sensor state model introduces a suspicious/checking state to improve the 

reliability of event detection.  

There are different ways of implementing the checking process in an application, e.g. 

checking different types of sensors at the same location or checking the same type of 

sensor at different locations, checking limited nodes or checking all the nodes in the 

network, checking the temporal support or checking the spatial support. 

When a sensor node detects a suspicious/checking state, some event detection 

approaches check the temporal support to confirm whether it is a real event or outlier. 

An example of temporal support checking would be to check whether the suspicious 

state lasts for a consecutive time of T . Although this method can filter out short 

temporary outliers, it improves detection reliability at the cost of detection time, and it 

does not filter out the case when a sensor node is generating out of range value all the 

time due to malfunctioning.  

The concept of Neighbourhood Support is more formally defined here as an example 

of spatial support checking. 

Neighbourhood: In an area where a density of sensor nodes are deployed, the 

neighbourhood of sensor node is consists of all the sensor nodes that are deployed 

within the radius r from is , denoted as { | ( , ) }
is j j iN s dis s s r= ≤ , where ( , )j idis s s is 

the distance from sensor node js  to is , assuming that sensor nodes know their 

geographical location information, either during the deployment stage or through RF-

based beacons. 

Neighbourhood Support is defined as the level of support a sensor node gets from its 

neighbourhood region on its detected suspicious state, denoted as NS . 

Intuitively, sensor nodes in the neighbourhood behave as witnesses to confirm or deny 

the suspicious state that a sensor node detects. It can be implemented in the format of 

thresholds or in the format of contour map. 
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8.4.3 Network level fusion 

In the context of sensor networks, voting algorithms have been recommended as the 

mechanism for fusing decisions of multi-sensors (Parhami, 1994; Klein, 1993), e.g., 

majority voting, m out of n voting. However, voting over the network could reject an 

event that affects a small region but with high severity, or an earlier stage of a big 

event. It can be argued that in the context of emergency event detection, any local-

level abnormal state confirmed by Neighbourhood Support should be alarmed. The 

role of network level fusion is to characterize the event (e.g., the affected area, the type 

and the severity of the event) rather than to vote to agree or disagree on a detection of 

an event. The proposed alarm generation mechanism is as follows: 

At neighbourhood level, if the state of a sensor node becomes abnormal at time t , an 

alarm ( )d t  is set to 1, and t  is the time of event detection, denoted as 

3( ) ( ) 1s t S d t∈ ⇒ = , with associated confidence cf NS= .  

At network level, for a N N× network, alarm ( )D t is set if one or more sensor nodes 

become abnormal at time t , denoted as 21 2( ) ( ) ( ) ( )
N

D t d t d t d t= ∨ ∨ ∨L , with an 

associated confidence CF  representing the level of severity of the abnormal state. 

8.5 Application of State Model with NS to Threshold-based 
Event Detection 

In the scenario of threshold based event detection, LP  and NP  in the generic state 

model shown in equation (8-1) and (8-2) are presented in the format of thresholds.  

8.5.1 Single node system with multiple types of sensors 

Taking the fire detection algorithm using smoke and gas sensor proposed by Chen et 

al. (2007) as a typical example in this category, the proposed algorithm can be 

presented in the form of sensor state model as follows: 

S1 (Normal): A state s  is considered to be normal when the rising rate of smoke 

sensor smokeRR  is within a preset threshold smokeTH , denoted as   

    1 smoke smokes S RR TH∈ ⇔ ≤                (8-5) 
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S2 (Suspicious/Checking): A suspicious state appears when smokeRR  exceeds smokeTH , 

denoted as 

    2 smoke smokes S RR TH∈ ⇔ >                 (8-6) 

When a suspicious state occurs, the system will check the rising rate of CO sensor and 

CO2 sensor, denoted as CORR  and 
2CORR respectively. 

S3 (Abnormal): If the rising rate of any of the two gas sensors is above the predefined 

threshold, COTH and 
2COTH respectively, it indicates that an incident is detected, 

denoted as 

  
2 23 2 ( )CO CO CO COs S s S RR TH RR TH∈ ⇔ ∈ ∧ > ∨ >             (8-7) 

S4 (False Alarm): If none of the rising rates of gas sensors exceed the thresholds, it is 

considered to be a false alarm, denoted as  

  
2 24 2 CO CO CO COs S s S RR TH RR TH∈ ⇔ ∈ ∧ ≤ ∧ ≤                (8-8) 

This method was intended for fire detection in aircraft cargo compartments, which can 

be considered as a single node system with multiple types of sensors. The rising rates 

of gas sensors behaved as the level of support to any suspicious rising rate of smoke 

sensor. In the scenario of fire detection in commercial high-rise buildings where a 

network of sensor nodes with multiple types of sensors is deployed, our proposed 

concept of Neighbourhood Support and network level fusion can be applied on top of 

the node level detection.  

8.5.2 A network of sensor nodes 

The general threshold based event detection in sensor networks using the proposed 

state model with NS is presented as follows: 

S1 (Normal): At each node with m types of sensors, the state of each sensor iz  is 

normal when its rising rate iRR  is within its threshold iTH , denoted as 

1 , 1,2, ,i i iz S RR TH i m∈ ⇔ ≤ = L . The overall state of a node s  is considered to be 

normal when all m  types of sensors are normal, denoted as 

   1 1 1 2 1 1ms S z S z S z S∈ ⇔ ∈ ∧ ∈ ∧ ∧ ∈L              (8-9) 
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S2 (Suspicious/Checking): The state of each sensor is suspicious when its rising rate 

exceeds its threshold iTH , 1 , 1,2, ,i i iz S RR TH i m∈ ⇔ > = L A suspicious state of a 

node appears when the state of any of the m  types of sensors is suspicious, denoted as 

               2 1 2 2 2 2ms S z S z S z S∈ ⇔ ∈ ∨ ∈ ∨ ∨ ∈L            (8-10) 

When a suspicious state occurs, the system will check the Neighbourhood Support. 

Neighbourhood Support can be defined as the ratio of the number of neighbours who 

are in suspicious state 
2SN  to the total number of neighbours nN , denoted as 

2S

n

N
NNS = . 

S3 (Abnormal): If the Neighbourhood Support is above a threshold th, it indicates 

that an incident is detected, denoted as   

    3 2s S s S NS th∈ ⇔ ∈ ∧ >                        (8-11) 

S4 (False alarm): If the Neighbourhood Support is not big enough, it is considered to 

be a false alarm. False alarms will be logged, and the sensor will go back to its 

previous state, denoted as  

    4 2s S s S NS th∈ ⇔ ∈ ∧ <                         (8-12) 

Any neighbourhood level abnormal state confirmed by Neighbourhood Support will 

be alarmed, an alarm ( )d t  is set to 1, as described in section 8.4.3. At network level, 

for a N N× network, the level of severity associated with alarm ( )D t can be defined 

as the ratio of the number of local alarms over the total number of sensor nodes in the 

network, denoted as 

2

1
2

( )
N

i
i

d t
CF

N
==
∑

, with the assumption that the data sources are 

mutually exclusive. 

8.6 Application of state model with NS to tempo-spatial pattern 
based event detection 

In the scenario of temporal pattern based event detection, LP  and NP  in the generic 

state model shown in equation (8-1) and (8-2) are presented in the format of a 
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sequence of sensor readings. In the scenario of spatial pattern based event detection, 

LP  and NP  in the model are presented in the format of contour map, which is the 

distribution of sensor readings over the network. 

Using contour map matching based event detection (Xue et al., 2006) as a typical 

example in this category, the idea can be presented in the form of sensor state model in 

the following way: 

S1 (Normal): A state s  is considered to be normal when the contour map extracted 

from the live sensor reading LC  does not match any of the predefined contour map 

event patterns EC , denoted as 

    ~
1 L Es S C C∈ ⇔ ≠                         (8-13) 

S2 (Suspicious/Checking): A suspicious state appears when LC  matches the contour 

map event pattern EC , denoted as 

    ~
2 L Es S C C∈ ⇔ =                         (8-14) 

When a suspicious state occurs, the system will check whether the match continues for 

a consecutive time of T . 

S3 (Abnormal): If the suspicious state lasts for a consecutive time of T , an incident is 

detected, denoted as 

    3 2( ) ( 1, , )s t S s t T t S∈ ⇔ − + ∈L                       (8-15) 

where t  is the detection time. 

S4 (False Alarm): If the suspicious state does not last for a consecutive time of T, it is 

considered to be a false alarm, denoted as  

 4 2 1( ) ( 1, , ) ( 1,..., ) , 1s t S s t T t a S s t a t S a T∈ ⇔ − + − ∈ ∧ − − ∈ ≤ −L         (8-16) 

This method integrated the feature of spatial correlations in sensor network. However, 

there are two drawbacks: 
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Although the proposed in-network construction of contour map is energy efficient 

compared to transmitting all the raw data out of the network, constantly constructing 

contour maps from the live sensor data over the network results in too much 

unnecessary usage of network resources. 

Checking temporal support improves the detection reliability at the cost of delay in 

detection. 

Therefore, the following improvements are suggested: 

• To use event-driven operation mode instead of constant monitoring over the 

network 

• On-event construction of Neighbourhood Support 

The improved contour map based event detection is presented as follows: 

Sensor nodes are configured to be in sleep mode by default. Sleep mode means that 

sensor nodes in the same cluster can be configured to wake up in turns for a time slice 

each to check whether a suspicious state occurs, but they do not transmit data out 

(sleep) unless there is a demand or there is a suspicious state detected (wake up). 

Equations (8-9) and (8-10) can be used to detect S1 (Normal) and S2 

(Suspicious/checking) respectively, to avoid the unnecessary usage of network 

resources caused by constantly constructing contour maps from the live sensor data 

over the network.  

When a suspicious state is detected by a sensor node, it will wake up its 

neighbourhood. The system will construct the Neighbourhood Support in the format of 

contour map centred from the suspicious node, and check whether it matches the 

predefined spatial pattern.  

S3 (Abnormal): If the constructed Neighbourhood Support matches the predefined 

spatial pattern CE, it indicates an incident is detected, denoted as 

    ~
3 2 Es S s S NS C∈ ⇔ ∈ ∧ =                            (8-19) 

S4 (False Alarm): If the constructed Neighbourhood Support does not match the 

predefined spatial pattern, it is considered to be a false alarm, denoted as  
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       ~
4 2 Es S s S NS C∈ ⇔ ∈ ∧ ≠                   (8-20) 

False alarms will be logged, and the sensor will go back to its previous state. 

8.7 Performance Analysis 

For each identified category of event detection, the chosen example event detection 

method and the method using our proposed generic state model with NS were 

implemented in Matlab environment, and their performances were compared. 

8.7.1 Performance metrics 

Computation efficiency, reliability, robustness and detection time of the event 

detection methods were used as the metrics of performance evaluation.  

• Computation efficiency measures the computation costs of the event detection 

methods.  

• Reliability measures the effectiveness of the event detection methods. A 

traditionally used metric for detection reliability is accuracy, defined as the 

fraction of all the detection results that are correctly reported as “event” and 

“non-event”. However, in emergency event detection scenarios, the event 

frequency is typically very low, which means there are many more non-events 

than events. Because of this imbalance, predicting “non-event” all the time 

results in good accuracy, therefore it is not suitable to measure reliability by 

detection accuracy for “event” and “non-event”. Two sub metrics: precision 

and recall were adopted to measure the reliability of emergency event 

detection. “Precision is the fraction of reported events that are actual (true) 

events. Recall is the fraction of all events that are reported correctly.” (Kerman 

et al., 2009) More formally, “ TPprecision
TP FP

=
+

, TPrecall
TP FN

=
+

” (Olson 

and Delen, 2008), where TP is the number of correctly detected events, FP is 

the number of detected events which are not actual (true) events, FN  is the 

number of actual (true) events that are not detected. In ideal situations, 

precision and recall would be 1. 
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• Robustness measures the reliability when the uncertainty in the data (outlier 

rate) increases. 

• Detection time measures the time that is required from the occurring of an 

event to the detection of it. 

8.7.2 Parameters considered 

Network size ( N ), which is the length of the square N N× grid. It was varied from 5 

to 20, to evaluate the computation efficiency of the selected event detection methods. 

Outlier rate ( o ), which simulates temporary errors caused by signal conflictions in the 

network or sensor malfunctioning over the quality of the sensor data. The outlier rate 

was varied from 1% to 20%, to evaluate how robust the event detection methods can 

be when processing data with low to high uncertainty.  

Fire spread model (F), which simulates the characteristics of an occurrence of fire. 

Two fire spread models were used, to evaluate the detection time required under 

different fire scenarios. Fire spread model A represents fire spreading that reflects in 

all types of sensors at the same time, whereas fire spread model B represents fire 

spreading that reflects in different types of sensors at different time. 

8.7.3 Simulation setup 

The simulation system considers the scenario of detecting fire emergency events from 

a N N× network of wireless sensor nodes. Each node has four types of sensors 

(temperature, smoke, CO, flame). The block diagram of the simulation system is 

shown in Figure 8-3. 
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Figure 8-3: The block diagram of the simulation system 

Data stream from the network for a time duration of t  was simulated. For each type of 

sensor, its reading z  is generated according to the formula z NE O F= + + , where: 

NE  is the estimation of the sensor reading under normal conditions, generated by 

adding a random noise ( w ) to the mean ( μ ) of normal readings according to the 

domain knowledge, denoted as NE wμ= + . For example, a normal room temperature 

tempμ can be set to 20 , a normal smoke level smokeμ  can be set to 0.5% obs/m 

(obscuration per meter), a normal CO level COμ  is set to 2.5ppm, and a normal flame 

value flameμ  is set to 350nm.  

O  represents random outliers added at random places, the number of which is decided 

by outlier rate ( o ) multiplied by  the simulation time duration ( t ). 

F  represents fire spread model, simulated as a sharp linear increase of sensed value 

occurring at a random location, random time, and spreading for a random duration. 

The increase of sensed value occurs in data from all types of sensors at the same time 

in fire spread model A, whereas in Fire spread model B the values increased in the 

order of flame, smoke, CO then temperature. 

An example plot of simulated data from one sensor node (including temperature, 

smoke, CO and flame readings) in a 5 5×  network for the time duration of 300s is 

shown in Figure 8-4. 



Chapter 8: Meaning Extraction from Sensor Data 

 153 

0 100 200 300
0

100

200

300

Time(s)

Te
m

pe
ra

tu
re

(°
C

)

0 100 200 300
0

2

4

6

8

Time(s)

Sm
ok

e(
%

 o
bs

/m
)

0 100 200 300
0

5

10

15

Time(s)

C
O

(p
pm

)

0 100 200 300
260

280

300

320

340

360

Time(s)
Fl

am
e(

nm
)

 

Figure 8-4: An example simulated data for a sensor node in a 5×5 network 
for the duration of 300s 

8.7.4 Performance evaluation 

Simulation 1: Threshold-based event detection 

The first set of performance evaluation was in the category of Threshold-based Event 

Detection (TED). The example TED (Chen et al., 2007) was chosen as the bench mark 

in this category because it utilised data fusion from different types of sensors to 

improve detection reliability. Its performance was the best in the field. The chosen 

example and the proposed State Model with NS (SM/NS) TED were compared in the 

following aspects. 

• Computation efficiency 

In this simulation, the network size was varied from 5 5×  (5m in length) to 

20 20× (20m in length), while the outlier rate was fixed to 1% and the simulation time 

was fixed to 300s, to investigate the computation efficiency of the two approaches and 

the effect of network size on their computation efficiency.  

As shown in Figure 8-5 (a), SM/NS TED required lower computation efficiency than 

the example TED in all cases. The efficiency of both approaches was affected as the 

network size increased. However, the computation efficiency of the example TED 

increased to 14 times as high as the value for the 5 5× network, whereas the 
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computation efficiency of SM/NS TED only increased to 6 times as high. This 

demonstrated that the network size has less effect on the running cost of SM/NS TED 

than that of the Example TED. Therefore, SM/NS TED is more efficient and it has the 

scalability to better accommodate different network sizes, compared to the example 

TED. 

• Reliability 

To evaluate the reliability of the two approaches, they were tuned respectively to the 

best performance (generating the highest precision while still maintaining recall=1). 

The precision of them was calculated as the simulation time varied from 5 minutes to 

30 minutes, whilst the network size was fixed to 5 5× and the outlier rate was fixed to 

1%. The same dataset and the same thresholds were used by both of the approaches. 

As shown in Figure 8-5 (b), the precision of the example TED was approximately 70-

80%, whereas the precision of the SM/NS TED was approximately 80-90%. SM/NS 

TED improved the precision of the existing example by about 10%. 

• Detection Time 

As shown in Figure 8-5 (c), under the conditions of fire spread model A, fixed network 

size ( 5 5× ), fixed outlier rate (1%), fixed sampling frequency (once per 5 seconds), 

statistics over the simulation time of 250 minutes did not show a significant difference 

on the detection time of the two approaches. The average detection time of the 

Example TED was 4.75s, the average detection time of SM/NS TED was 4.72s.  

However, under the same conditions as above except using fire spread model B, the 

detection time required by the example TED increased 5 times whilst the detection 

time required by SM/NS TED almost remained the same. The Example TED required 

30s to detect a fire incident, whereas the SM/NS TED only required 5s. In fact, fire 

spread model B is closer to a real fire scenario, where the detection of change by flame 

and smoke sensors will be quicker, whereas the detection of change by temperature 

sensor will be slow as it takes time to heat the air. This demonstrated the advantage of 

using Neighbourhood Support for suspicious checking over using other types of 

sensors. 

• Robustness 
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In this simulation, the outlier rate was varied from 1% to 20%, whilst the network size 

was fixed to 5 5× . Statistics over 30 minutes simulation time showed that although 

the difference on the precision of both approaches was not significant when the outlier 

rate was low, the precision of the example TED dropped quickly when the outlier rate 

increased (as shown in Figure 8-5 (d)). This demonstrated that SM/NS TED has better 

robustness than the example TED.  
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Figure 8-5: Performance comparison 1 

Simulation 2: Contour-map-based event detection 

The other set of performance simulation used Contour-map-based Event Detection 

(CED) as an example in the category of tempo-spatial pattern based event detection. 

The example CED (Xue et al., 2006) was chosen as the benchmark in this category 

because it is the best in the field and the most cited. The performance of the proposed 

SM/NS CED was compared to that of the example CED.  
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• Computation efficiency 

In this simulation, the network size was varied from 5 5×  (5m in length) to 

20 20× (20m in length), while the outlier rate was fixed to 1% and the simulation time 

was fixed to 300s, to investigate the computation efficiency of the two approaches and 

the effect of network size on their computation efficiency.  

The result demonstrated that SM/NS CED was approximately 10 times faster than the 

example CED, as shown in Figure 8-6 (a). The computation efficiency of both 

approaches increased around 3 times comparing to their own values in a 5 5× network. 

However, comparing with each other, the increase of the example CED was 

approximately 10 times as big as the increase of SM/NS CED, as the network size 

varied.  

• Reliability 

The reliability test was carried out under the conditions of fixed network size ( 5 5× ), 

fixed outlier rate (1%), and both approaches tuned to their best performance 

(generating the highest precision while still maintaining recall=1).  

As simulation time varied from 5 minutes to 30 minutes, statistics of precision of both 

approaches (Figure 8-6 (b)) showed that their precision was very close to each other, 

although on average the example CED was slightly better (around 0.1%). 

• Robustness 

In the robustness test, the network size was fixed to 5 5× , whilst the outlier rate 

varied from 1% to 20%. The simulation was run for 30 minutes. 

As shown in Figure 8-6 (c), the precision of both approaches were around 90% when 

the outlier rate was 1%. However, the precision of the example CED dropped as the 

outlier rate increased and quickly became unacceptable (<50%), whereas the precision 

of SM/NS CED was maintained above 70%. Therefore, the SM/NS CED demonstrated 

a better robustness than the example CED. 

• Detection time 
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Since the example CED uses temporal support check, it checks whether the suspicious 

state lasts for a consecutive time of T before an alarm is generated, the detection time 

of the example CED will be the duration of T  sampling intervals, whilst simulation 

results demonstrated that the detection time of SM/NS CED was approximately 1 

sampling interval. Therefore, the detection time required by the example CED is 

approximately T times of what is required by SM/NS CED. 
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Figure 8-6: Performance comparison 2 

8.8 Conclusions  

This chapter analysed that “meaning” in the context of ER can be defined as the 

occurrence and characteristics of an incident, and real-time development of an incident. 

Taking the occurrence and characteristics of an incident as an example of meaning, the 

problem of meaning extraction was converted to a problem of event detection. A 
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generic state model of emergency event detection in Wireless Sensor Networks was 

proposed, which addresses the key requirements of emergency event detection based 

on sensor network. 

The model operates in an event-driven mode, in contrast to constant monitoring. 

Therefore, it can save the unnecessary usage of network resources and storage space 

caused by constant monitoring. The bottom-up event-driven detection process involves 

1) sensor node level state model for suspicious behaviour detection, 2) Neighbourhood 

Support checking to confirm or deny the event, and 3) network level fusion to 

characterize the event (e.g. the affected area, the type and the severity of the event).  

The concept of Neighbourhood Support integrated the high temporal spatial 

correlations typically existing in sensor data to separate real alarms from outliers, thus 

improving the reliability of emergency event detection.  

The model is also designed to be light-weight, and maintain the trade-off between 

early detection and detection reliability. 

Such characteristics as being event-driven, reliability-improving and light-weight 

make the model suitable for on-site emergency response system where the requirement 

of computation efficiency and reliability is high whilst resources are limited. 

The model was applied to both threshold based event detection and tempo-spatial 

pattern based event detection. In each category of event detection, an example 

approach was chosen, and the performance of the State Model with Neighbourhood 

Support event detection was compared with the chosen example. Their performance in 

terms of efficiency, reliability, robustness and detection time was analysed. The results 

demonstrated that applying the proposed model in event detection improved detection 

reliability of the example threshold-based event detection, and computation efficiency 

of the tempo-spatial pattern based event detection. It also improved scalability over 

network size and robustness over data quality in both event detection categories. 

The simulation result demonstrated that applying the proposed model in event 

detection can reduce false alarm rate to 30% (precision 70%). The reduction of false 

alarms can improve the reliability of WSN-based emergency event detection systems. 

The improvement in emergency event detection reliability can save the unnecessary 

waste of resources responding to false alarms, and reduce the risk of not having 
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sufficient resources for deployment in real incidents – thereby enabling more effective 

use of emergency response resources. The improvement in emergency event detection 

reliability should also improve emergency responders’ trust in technical systems, 

meaning that they are more confident and better prepared when responding to 

incidents. 

The research so far is based on simulated data, although characteristics of real fire 

incidents are incorporated to ensure the simulated data is as realistic as possible. 

Therefore, to overcome this limitation, future work will study the performance using 

sensor data collected from field trails.  

The research so far only considered one example of meaning in the context of on-site 

emergency response, which is the occurrence and characteristics of an incident. Due to 

time constraints, the extraction of the real-time development of incident from sensor 

data, which will also improve ICs’ situation awareness, was not included in the thesis. 

However, the research undertaken and sensor data meaning extraction methods 

developed in this thesis provide a promising basis for future work in the field of sensor 

data processing to provide real benefits for on-site ER.  
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Chapter 9. Conclusions and Future 
Work 

9.1 Summary 

The effectiveness of Emergency Response (ER) depends significantly on the 

availability of accurate and reliable information about an incident and the efficient 

gathering and communication of such critical information in real-time. Wireless 

Sensor Networks (WSNs) have demonstrated potential for addressing the information 

gap in existing ER - the lack of information to support first responders. Data collected 

from WSNs deployed inside premises can provide Incident Commanders (ICs) with a 

‘view’ of an incident from inside the building. Hence they can improve the overall 

effectiveness of ER. However, although large amounts of data can be collected from 

WSNs and be made available to emergency responders, the meaningfulness of the raw 

sensor data stream is low, due to the features of sensor data, e.g. its data quality issues, 

streaming feature, existence of tempo-spatial correlations, etc. The full analysis of the 

features of sensor data can be found in Section 6.2. The limitation of resources in an 

on-site ER environment and the high demand of real-time or near real-time system 

behaviour such as sensor data processing further increases the challenge of making 

sense of the large amount of data collected from WSNs.  

This thesis addressed the challenge of making sensor data work for on-site ER by 

investigating the use of sensor data processing technology. The sensor data that has 

meaning to ICs within the context of on-site ER is considered as “emergency 

information”. An architecture of Emergency Information Management System was 

proposed. Three main necessary steps - sensor data storage, sensor data cleaning, and 

sensor data meaning extraction - were further investigated in details.  

This thesis has primarily had a technical focus. However a key theme throughout the 

thesis has been to consider the link between the human factors perspective on what 
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benefits sensor data can bring to on-site ER, and the design and implementation of 

technology support to bring such benefits. 

9.2 Research Objectives Revisited 

The research questions and objectives stated in the introduction are revisited here as 

follows: 

RQ1: Out of all the potential user groups existing in the ER domain, which is the user 

group that can benefit the most from the information provided by sensor data? 

Objective associated with RQ1: Investigate the existing literature available on ER 

from a human factors’ perspective to understand the generic theory and practice in ER 

as well as to choose a targeted user group in the first responders. 

Objectives Revisited: Through the literature review on ER, the IC and his command 

support team were identified as the targeted user group in the scenario of on-site ER. 

This was because of the ICs’ special position in first responders: 

1) The IC is the highest rank in the first responders’ hierarchy and is responsible 

for all activities on-site (Bigley & Roberts, 2001), thus his decisions have 

significant impacts on the overall performance of ER. 

2) The IC is an information intensive position (Jiang et al., 2004). The position of 

the IC and his command support team on-site is usually out of the premises and 

their hands are usually free, therefore they can have more information 

displayed to them to facilitate decision-making processes. 

RQ2: What are the goals, tasks, information requirements of the targeted user group? 

RQ3: What are the opportunities for WSN technology to address the gaps related to 

retrieving the required information? 

Objective associated with RQ2 and RQ3: Understand the goals, tasks and 

information requirements of the chosen user group through interviews and 

observations, with the purpose of identifying gaps in the current ER practice and 

analysing potential opportunities for the use of technology. 



Chapter 9: Conclusions and Future Work 

 162 

Objectives Revisited: Through the requirement analysis of ICs, a comprehensive 

analysis of what information is required by the ICs, and the current means of retrieving 

such information was undertaken. It was initially assumed after the literature review 

that using sensor data to find safe exit routes for fire-fighters and building occupants 

would be useful. However technical support for this activity was proved unnecessary 

during the interviews and analysis. The requirement analysis of ICs managed to 

identify the real gaps existing in gathering the required information for ICs using their 

current means, and the true usefulness of some technical proposals to address these 

gaps. As a result, a list of gaps and technology opportunities were identified. Sensor 

data can contribute to all the identified technology opportunities discussed in Section 

4.4.6. However, ICs will benefit the most from the opportunity of ‘seeing inside’ the 

premises and receiving information during the mobilisation phase (i.e. when travelling 

to an incident). Consequently, those two opportunities were taken forward to technical 

development. 

RQ4: How can the technology capabilities of WSN be implemented in an on-site ER 

system? 

Objective associated with RQ4:  

• Research the existing literature available on information extraction from sensor 

data, and the associated process and techniques of information extraction from 

sensor data. 

• Design a suitable system architecture for a WSN-based Emergency 

Information Management System (EIMS); specify the system functions and the 

associated system components. 

Objectives Revisited: Through the literature review on information extraction from 

sensor data, the process of information extraction and the available sensor data 

processing techniques in the process were analysed. The challenge of making sense of 

large amount of collected sensor data was revealed. What constitutes suitable data 

processing techniques for sensor data was evaluated. 

Through the proposed on-site Emergency Information Management System (EIMS) 

architecture, the essential characteristics of a suitable system architecture for the 

WSN-based EIMS were identified to be 1) adaptive to different incident stages, and 2) 
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incorporating fusion of multiple data sources. The proposed architecture demonstrated 

these two essential characteristics and showed how the technology capabilities can be 

integrated in a system. The essential components of the system were identified as data 

storage, data cleaning, and meaning extraction. How multiple data sources can be 

fused in the system was discussed in detail. Each component and the interaction 

among different system components were specified. In addition, the adaptive system 

behaviours were specified for different incident stages. 

RQ5: What constitutes a suitable sensor data storage mechanism for on-site ER? 

Objectives associated with RQ5: 

• Accomplish a comprehensive analysis of the features of sensor data 

• Evaluate and propose a suitable data storage mechanism for the WSN-based 

EIMS, with an emphasis on managing and maintaining the query efficiency 

regardless of the increase of data volume. 

• Evaluate the efficiency of the proposed data storage mechanism and its cost-

effectiveness. 

Objectives Revisited: A comprehensive analysis of the features of sensor data in 

comparison to traditional data was provided. Through the proposed data storage 

mechanism, what constitutes a suitable data storage mechanism was evaluated. The 

proposed data storage mechanism can accommodate the challenges presented by the 

features of sensor data. The design of the proposed storage mechanism includes a 

database schema that maintains the tempo-spatial correlations typically existing in 

sensor data, a time-driven sensor data management, and adaptive support for different 

incident stages. The performance evaluation demonstrated that the proposed data 

storage mechanism can support timely response to queries (up to 100 times faster than 

a database without partitioning) in spite of the increase in the volume of data.  

RQ6: What constitutes a suitable sensor data cleaning approach for on-site ER? 

Objectives associated with RQ6: 
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• Analyse and propose a suitable data cleaning approach for the WSN-based 

EIMS, with the emphasis on separating outliers from real environmental 

changes and dealing with them separately. 

• Evaluate the effectiveness of the proposed data cleaning approach in 

comparison to the existing data cleaning approaches.  

Objectives Revisited: Through the proposed data cleaning approach, outliers can be 

separated from real environmental changes and can be dealt with differently. The 

design of the proposed data cleaning approach addressed the features of sensor data – 

typically with the existence of noise in the data. It proposed the use of state-awareness 

rules, to check and confirm whether a suspicious sensor data is an outlier or a real 

environmental change. The performance evaluation demonstrated that the proposed 

data cleaning approach not only reduces noise, but also effectively removes outliers 

and quickly detects the real environmental changes (reduces the delay of detecting 

environmental changes on temperature, smoke, CO, and flame sensors by 50% to 

90%). 

RQ7: How to extract the defined “meaning” from sensor data? 

Objectives associated with RQ7: 

• Analyse and specify what “meaning” can be in the context of WSN-based on-

site EIMS, and propose a meaning extraction approach. 

• Evaluate the performance of the proposed meaning extraction approach and 

discuss its application. 

Objectives Revisited: Through the proposed meaning extraction analysis and the 

study of event detection, the cleaned sensor data is further processed to extract 

information that can be interpreted by ICs and their command support team. An 

example of “meaning” in the context of ER can be defined as the occurrence and 

characteristics of an incident, and real-time development of an incident. Taking the 

occurrence and characteristics of an incident as an example of key meaning that data 

must convey, the problem of meaning extraction was converted to a problem of event 

detection. A generic state model of emergency event detection in Wireless Sensor 

Networks was proposed, which addresses the key requirements of identifying the 
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occurrence and characteristics of an incident based on sensor networks. It was applied 

in both threshold-based and tempo-spatial pattern-based categories of event detection. 

The performance evaluation demonstrated that the proposed event detection model is 

2-5 times faster than the example threshold-based event detection, and approximately 

10 times faster than the example tempo-spatial pattern-based event detection. The 

proposed event detection model also increased reliability by 10% in the threshold-

based event detection and increased robustness by maintaining greater than 60% 

precision when the outlier rate was up to 20% in both event detection categories. 

Therefore, it can improve the efficiency and accuracy of existing examples of event 

detection method in both threshold-based event detection and tempo-spatial pattern-

based event detection.  

9.3 Contributions to Knowledge 

The research contained in the thesis expanded the current body of knowledge in 

relation to sensor data processing for emergency response. The contributions to 

existing knowledge from the research undertaken are considered to be five-fold. 

Contribution 1: A list of identified technology opportunities to address the 

current gaps relating to ICs retrieving the information they require during 

emergency response 

The existing research in the literature revealed the impacts of ICs’ decision making on 

the overall effectiveness of ER, the importance of information to ICs’ decision making, 

and information required in order for them to complete their key tasks. However, how 

the ICs retrieve and utilise the required information in real practice, and whether there 

are any gaps related to being able to retrieve the required information were not clear. 

The literature review also revealed that WSNs have great potential in facilitating ER 

However, little research was found that described how the underlying technology 

capabilities of WSN can contribute to ER. 

Therefore, there is a need for a comprehensive analysis of ICs’ information 

requirements that can link ICs’ goals to technology capabilities. 

This thesis provided a thorough analysis of ICs’ requirements for information and 

communication of the information under the framework of goals, tasks/decisions, 
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information and means of retrieving information, inability to retrieve the required 

information and technology opportunities. Both information needed by ICs for their 

decision making and information that would be a distraction to them were analysed. A 

list of capability gaps was identified and the issue of trust of technology was revealed 

based on the data collected from observations of fire ER and interviews undertaken 

with fire ICs. As a result of the analysis, eight technology-based opportunities to 

address information retrieval limitations were proposed, and the added value of each 

opportunity was discussed with ICs. All the ideas were validated by the majority of the 

participants during the validation phase. 

The analysis of ICs’ requirements undertaken in this thesis differs from traditional task 

analysis by extending the focus from human factors to technology capabilities. It 

contributes to the existing knowledge in the way that it highlighted how the underlying 

technology capabilities can contribute to ICs’ goals and bring added benefits to ICs 

during emergency response. Task analysis methods from a pure human factor 

perspective have been well implemented in the domain of emergency response, 

however, they usually focus only on goals and physical and cognitive tasks. Although 

some researchers attempted to establish the link from tasks to information 

requirements (e.g. Prasanna et al. (2007)), the information requirements was gathered 

by Prasanna et al. (2007) with the aim of interface design rather than analysing the 

required underlying technology capabilities. This research undertaken established a 

link between user requirements and the desired underlying technology capabilities, 

with the emphasis on the benefits that the technology can provide to the users. Most of 

the technology opportunities apply not only in fire ER, but also in other types of 

emergencies. 

Contribution 2: A proposed on-site Emergency Information System Architecture 

that fuses multiple data sources and is adaptive to different incident stages 

Some system architectures designed for emergency response management have been 

suggested by researchers (e.g., Turoff et al., 2006; Zlatanova, 2005). However, they 

are off-site EIMS. The existing off-site EIMS architectures emphasized the 

requirements for coordination among different responding agencies to handle the 

interoperability issues, and the communication of issued commands both within a 

responding agency and among different responding agencies. In addition, they are 
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typically systems for emergency centres. Although there has been an attempt to study 

system design for ICs (Jiang et al., 2004a), the prototypes proposed focused on 

interface design rather than addressing underlying technology capabilities.  

Therefore, there is a need for an on-site system design to support frontline first 

responders that addresses the capabilities of WSN and the need to take into 

account the dynamic nature of ER. 

The proposed EIMS was designed in order to support ICs and their command support 

team among first responders on-site. It incorporates the capabilities of WSNs and 

addresses the requirements of the dynamic nature of ER revealed in the literature 

(Kyng, 2006). The proposed on-site EIMS architecture consists of four main 

components: data storage, data cleaning, meaning extraction and data presentation. 

Each component was specified, and the interaction between components was analysed. 

The interaction between the EIMS system and its lower data collection layer and upper 

command and control layer in the context of an Emergency Response system was 

discussed. The detailed system functions to facilitate ER before, during and after 

incidents were specified. 

The proposed on-site EIMS architecture differs from the existing EIMS architectures 

because it incorporates the domain-specific requirements to the link between users’ 

goal space and system design space. The requirements to support frontline first 

responders were captured by goal-action diagram and each system action was 

modelled and integrated to an abstract level architecture. The proposed EIMS 

architecture highlighted capabilities of WSN and the essential technical components of 

an EIMS as well as addressed he dynamic nature of Emergency Response.  

The proposed architecture can also be flexibly developed in order to apply it to other 

application areas. These include: emergency detection systems, risk assessment 

systems, decision support systems, historical statistics or an integrated multi-purposes 

emergency response support system according to different context of use. 

Contribution 3: A proposed data storage mechanism that addresses the features 

of sensor data and is suitable for on-site ER applications 

The majority of the existing research on sensor data storage focused on purely 

technical issues such as storage placement (Ganesan et al., 2003) or energy 
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consumption (Mathur et al., 2006). However, little attention has been paid to the 

impacts that the features of sensor data have on Data Storage Mechanism (DSM). In 

addition, the in-network data storage placement that has been suggested by most 

existing research is not a satisfactory fit for on-site ER applications. In spite of the 

stated benefits, e.g. shared storage load, reduced impacts of single node failure, the 

data stored solely in sensor nodes within a WSN could be destroyed and lost during an 

incident such as fire. 

Therefore, there is a need for an alternative sensor data storage mechanism that 

takes into account the features of sensor data and is suitable for on-site ER 

applications. 

This thesis proposed a data storage mechanism that accommodates the challenges 

presented by the features of sensor data as well as maintaining the query efficiency for 

the entire ER process. The design of the proposed storage mechanism includes a 

database schema that maintains the tempo-spatial correlations typically existing in 

sensor data, a time-driven sensor data management, and adaptive support for different 

incident stages. Simulations demonstrated that the proposed data storage mechanism 

can achieve the benefits of efficient querying (up to 100 times faster than database 

without partitioning) with neither additional updating cost nor the introduction of 

unacceptable storage costs.  

The proposed data storage mechanism differs from existing research and contributes to 

knowledge in that it focuses on (1) the impacts that the features of sensor data have on 

data storage mechanisms and (2) the demands of consistent efficiency of on-site ER. It 

stores and manages sensor readings, time-related information and location-related 

information. It supports timely response to queries in spite of the increase in the 

volume of data. And it is dynamic and flexible to accommodate different needs at 

different incident stages. These characteristics made the proposed data storage 

mechanism suitable for on-site ER applications based on WSN. 

Contribution 4: A data cleaning approach that is state-aware, and not only 

reduces noise but also separates outliers from real environmental changes 

Existing research has revealed the data quality problems that a data cleaning approach 

has to deal with, including noise and outliers. Existing research efforts on cleaning and 

querying noisy sensor data (e.g. Elnahrawy and Nath, 2003) focus mainly on 
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smoothing noise and outliers. However, they did not separate outliers from real 

environmental changes. This results in a compromise between the prior knowledge 

and the observed noisy sensor data, or in other words, simple smoothing regardless of 

the state. Simple smoothing means that an extreme sensor reading caused by a real 

environmental change could be considered to be an outlier and be smoothed. This 

would result in a delay in detecting the real environmental change that indicates the 

occurrence of an incident. 

Therefore, there is a need for a different data cleaning approach for ER 

scenarios that can separate outliers from real environmental changes, and treat 

them differently. 

The proposed data cleaning approach within this thesis integrated a set of state-

awareness rules with a Kalman Filter, the result is referred to as a state-aware Kalman 

Filter. The proposed state-aware Kalman Filter addresses three different states of a 

sensor reading: normal, outlier and abnormal and deal with them differently. The data 

cleaning experiments demonstrated that by introducing the state-awareness rules and 

integrating it with a Kalman Filter, the resulting state-aware Kalman Filter can reduce 

noise, remove outliers as well as quickly detect real environmental changes. 

The proposed state-aware Kalman Filter differs from the existing data cleaning 

approaches and contributes to knowledge by providing state-aware smoothing rather 

than compromising between the observations and the system estimation regardless of 

the state. It can be argued that being state-aware is a new advantage in addition to 

those inherited from a Kalman Filter: e.g. effectively smoothing of noise and being 

light-weight. As a result, it can be concluded that the proposed state-aware Kalman 

Filter would be a satisfactory fit for on-site ER applications. 

Contribution 5: A generic state model for emergency event detection from sensor 

data as an example of meaning extraction 

Meaning extraction is an emerging field that identifies elements of information 

contained in datasets that imply meaning in the context of application and can be 

interpreted by the users to facilitate their tasks. The existing meaning extraction 

research is highly domain-specific. What was considered as “meaning” in the existing 

research on meaning extraction varied in different contexts. An example of “meaning” 
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in natural language processing has been defined as the part of sentence, whereas the 

similarity distances of literal objects was considered as “meaning” in web semantics 

analysis. Thus, the subsequent meaning extraction method was chosen differently 

according to the specific domain. However, there is a lack of research on the context 

of meaning extraction from sensor data streams for on-site ER. The existing meaning 

extraction methods typically utilised statistical methods, including Markov Logic 

(Bajwa, 2010), Bayesian networks, decision trees, logistic regression, neural network 

etc., to extract meaning in the form of meta-data, features or frequently occurred 

patterns. However, statistically significant patterns may not be of significance in the 

context of ER because emergencies such as fires are usually events of low probability.  

Therefore, there is a need for an analysis of what constitutes meaning in the 

context of on-site ER, and the detailed technology proposal to extract the 

defined meaning. 

The research undertaken in the thesis determined that ‘meaning’ in the context of on-

site ER can be defined as the occurrence and characteristics of an incident, and the 

real-time development of an incident. Taking the occurrence and characteristics of an 

incident as a key concept, a generic model for emergency event detection from sensor 

data was proposed. The bottom-up event-driven detection process involves a sensor 

node level state model for suspicious behaviour detection, Neighbourhood Support 

checking to confirm or deny the event, and network level fusion to characterize the 

event (e.g. the affected area, the type and the severity of the event). The simulation 

results demonstrated that applying the proposed event detection model improved 

reliability of the typical example in the category of threshold-based event detection, 

and improved the computation efficiency of the typical example in the category of 

tempo-spatial pattern-based event detection. It also improved scalability in terms of 

network size and robustness in terms of data quality in both event detection categories. 

The proposed generic emergency event detection model contributes to the knowledge 

in that  

• the proposed model operates in an event-driven mode, in contrast to constant 

monitoring - therefore, it can save on unnecessary usage of network resources 

and storage space caused by constant monitoring;  
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• the concept of Neighbourhood Support integrated the high temporal spatial 

correlations typically existing in sensor data to separate real alarms from 

outliers, thus improving the reliability of existing emergency event detection; 

• it maintains the trade-off between early detection and detection reliability. 

The characteristics of being event-driven, improving reliability and being light-weight 

make the model suitable for on-site emergency response systems, where the 

requirement of computation efficiency and reliability is high whilst resources are 

limited. 

9.4 Future work 

A number of further research issues can be identified as a result of the research 

undertaken for this thesis and a range of potential avenues for further research have 

come out of this thesis.  

Addressing other features of sensor data 

This thesis identified the need of addressing the special features of sensor data (as 

analysed in Section 6.2) in sensor data processing and attempted to address some of 

the features of sensor data in the research contained therein. The proposed data storage 

mechanism addressed the streaming feature of sensor data and provided a base for 

associating sensor data with time and location information. The concept of 

Neighbourhood Support suggested in Section 8.4.2 utilised the typical existence of 

high tempo-spatial correlations in WSNs to improve the reliability of event detection 

based on sensor data. However, further investigation on addressing other identified 

features of sensor data is still needed. Examples of future work in this area are: 

• Location-specific or time-specific information retrieval, which focuses on 

associating time and location information with sensor data 

• Further investigation on the high redundancy typically existing in sensor data 

and a development of a suitable approach to manage sensor data redundancy 
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Further investigation on meaning extraction method  in the context of 
on-site ER 

As stated by Römer (2008), “it remains a major challenge to make sense of the 

collected data, i.e., to extract the relevant knowledge from the raw data.”  This thesis 

investigated what constitutes meaning in the context of on-site ER. Due to time 

constraints, it only investigated the occurrence and characteristics of an incident as an 

example meaning. Further investigation on extracting the real-time development of an 

incident is needed.  

In addition, a generic meaning extraction method for on-site ER would be desirable. 

The need for a unified system has been raised by the ICs (as discussed in Section 

4.4.5). They believe such unified system would be one of the key characteristics for 

future systems, since it improves the efficiency and accuracy of decision making. 

Whether different pieces of information that constitute “meaning” are extracted by 

different methods or a generic method is not important to the users, as long as the 

desired information is provided in a unified system. However, a generic method if 

exists would have benefits such as more efficient use of computation resources, which 

would be an advantage for on-site ER where resources are limited. Therefore, it would 

be interesting to further investigate whether there is a generic meaning extraction 

method that applies to all pieces of information that constitute “meaning”. 

Incident-Site Information Space (ISIS) 

This concept was suggested in section 4.4.5 as a technical proposal for integrating all 

the required categories of emergency information in a unified system. This thesis 

investigated the steps needed and sensor data processing technology suitable to make 

sensor data work for ER. It focused on understanding the nature of the incident based 

on sensor data. However, the integration of the nature of the incident with other 

categories of required information, e.g. water resources, hazard, staff deployment, is 

an important characteristic for future systems. It has been proposed to organise the 

required categories of information into an ISIS. Further research on how the ISIS can 

be formally defined, modelled and implemented, as well as investigation on the 

underlying data fusion technology required for organising such ISIS would be 

beneficial to the ICs.  



Chapter 9: Conclusions and Future Work 

 173 

Broadening sensor data processing to wider ER communities and 
beyond 

The research contained in the thesis could be beneficial to wider emergency response 

communities by further broadening it to other types of ER. Fire ER was chosen as the 

representative example of ER for the purpose of this thesis based on the understanding 

that the requirements gathered and sensor data processing technology developed for 

one type of ER could apply on other types of ER.  Further investigation of the 

feasibility of applying the proposed sensor data processing methods in other types of 

emergencies will be beneficial for a wider ER community.  

Another way of broadening sensor data processing to wider emergency response 

communities is to further investigate the feasibility of applying sensor data processing 

techniques to other possible user groups existing in the ER domain. Different user 

groups have different responsibilities, and therefore different goals. As a result, 

information requirements may differ. It would be interesting to further investigate how 

sensor data processing technology can accommodate varied needs of different types of 

users. 

The sensor data processing techniques developed in this PhD research were for 

emergency response, future work should investigate the possibility of applying them 

beyond ER communities. 
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Appendix 

I. Interviews of Incident Commanders  

1. Brief introduction about the research project, purpose of the interview and 

reason. 

The research aims to investigate how to make use of the sensor readings collected to 

provide useful information for Incident Commanders. The research is technical, but it 

also focuses on what real incident commanders’ needs are, it aims to provide technical 

solutions to meet Incident Commanders’ information requirements.  

So far, based on the documented literature, hypotheses have been extracted about the 

incident commanders’ goals, and the required information and required format that the 

system should provide derived from the user goals. The interview aims to verify the 

hypotheses and find out what an Incident Commander’s real goals are, what tasks are 

required to achieve the goals, what information is required to make decisions and how 

the required information are gathered at the moment. 

2. Interview Questions 

1. As an incident commander, what are your main goals when you arrive on site? What 

kind of site/incident? Are the goals different according to the specific type or situation 

of incident?  

Hypothesis: Protect fire-fighters, rescue people, fire fighting, etc. 

2. What are the priorities of these goals? Are the goals/priorities different for different 

incidents/building/situation at different incident stages? 

Hypothesis: Protecting people is more important 

3. What would you do to make sure that you achieve the priorities of goals? 
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Hypothesis: Do not send the crew into the building when it is not necessary. If it is 

necessary to send them in, then make sure the safe exiting route is clear. 

4. What information do you need to know? 

5. Where do you get that information at the moment? 

6. What is missing at the moment? 

Hypothesis: incident seriousness distribution, safe escaping route 

7. What role does escape routes play? 

Continue with question 8-14 if safe escaping routes are important, otherwise find out 

what is important, and propose other potential technical solutions and verify them. 

8. How do you work out safe escape routes? 

9. How do you tell these to the fire-fighters? 

10. What is the best way of telling fire-fighters what/where the safe escape routes are? 

11. How do you do these at the moment? 

12. Does these work well at the moment? 

13. At what types of fires would safe escape routes be particularly important? 

14. Describe a typical situation where the potential technical solution based on sensor 

data (e.g. safe escape routes) can make a difference. 

15. Describe a story of what you do at an incident, from start to finish. What do you 

need to know and what do you have to do at each stage? 

Stages: S1- alarm call 

 S2- on your way (mobilisation phase) 

 S3- arrive on scene  

16. Where is your position on scene? Stay in vehicle? Portable device? Go into 

building? 
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17. How do you communicate information to the fire-fighters?  

18. Do fire-fighters have a map? Do fire-fighters get navigation instructions? If you 

get shown fire fighter moving, how do you give directions etc. 

19. What level of detail do you want? e.g. a detailed plan of the building or simple 

plan, just showing exits and water points or something else? 

20. Sketch how you want the information to be presented, e.g. the type of map/plan. 

20. What information do you not want? 

21. A real example of fire-fighters get trapped or in the danger of getting trapped 

because of the lack of information. 

3. Summary 

The hypotheses are: 

• Main user goals are to protect fire-fighters, rescue people, fire fighting. 

• Protecting people has higher priority than save properties.  

• Incident Commanders always make sure they are clear about the safe exit route if 

they have to send fire-fighters into a building. 

• Incident Commanders need better situation awareness about seriousness and 

seriousness distribution of incident in the building. 

Therefore, the initial plan is to produce incident seriousness distribution in the building 

for situation awareness and fire fighting goals, and produce safe exit routes calculation 

for people deployed in the building for the goals of protecting fire-fighters and 

rescuing people. 
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II. Architecture Models for Each Captured System Action (in 
ArchiMate language) 

Before the Incident:  

System action/service

Users and goals

HCI

Ensure the
knowledge base

is up-to-date
Users

User
interface

Knowledge base

Maps of
premises

Resources Incident
actions

 

Figure AII-0-1: Architecture model for the system action: Prompt users to 
update the information and store the most up-to-date information 

 

System action/service

Users and goals

HCI

Ensure the
system runs

smoothly
Users

User
interface

Real-time database

Sensors
Fault
detection

 

Figure AII-0-2: Architecture model for the system action: Run regular test 
and generate report on faulty parts 
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System action/service

Users and goals

HCI

Predict possible
incidents

Users

User
interface

Real-time database

Sensors
Event
detection

Alarm
filter

 

Figure AII-0-3: Architecture model for the system action: Generate warning 
of abnormal phenomenon detected 

 

During the incident: 

System action/service

Users and goals

HCI

Identify the
incident

Users

User
interface

Real-time
database

Sensors

Knowledge base

Data
cleaning

Maps of premises

Situation
assessment

 

Figure AII-0-4: Architecture model for the system actions: Generate real-
time monitoring of incident, integrate location map/floor plan with real-time 

incident development 
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System action/service

Users and goals

HCI

Identify risksUsers

User
interface

Knowledge base

Maps of premises
Situation
assessment Risks

 

Figure AII-0-5: Architecture model for the system action: Integrate dynamic 
risks with floor plan 

 

System action/service

Users and goals

HCI

Forward
projection

Users

User
interface

Real-time database

Sensors
Historical trends
analyser

 

Figure AII-0-6: Architecture model for the system action: Calculate 
historical trends and forward projection, and display them on request 
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System action/service

Users and goals

HCI

Resource
deployment

Users

User
interface

Knowledge base

Water
Situation
assessment Personnel

Maps of
premises

 

Figure AII-0-7: Architecture model for the system action: Store resources 
information, integrate them with location map/floor plans 

 

After incident 

Knowledge
base

System action/service

Users and goals

HCI

Analysis and
statistics

Users

User
interface

Real-time
databaseStatistics

SensorsSummary

 

Figure AII-0-8: Architecture model for the system action: Store the 
statistical information of the incident 




