301,262 research outputs found

    On Extended Quadratic Hazard Rate Distribution: Development, Properties, Characterizations and Applications

    Get PDF
    In this paper, we propose a flexible extended quadratic hazard rate (EQHR) distribution with increasing, decreasing, bathtub and upside-down bathtub hazard rate function. The EQHR density is arc, right-skewed and symmetrical shaped. This distribution is also obtained from compounding mixture distributions. Stochastic orderings, descriptive measures on the basis of quantiles, order statistics and reliability measures are theoretically established. Characterizations of the EQHR distribution are studied via different techniques. Parameters of the EQHR distribution are estimated using the maximum likelihood method. Goodness of fit of this distribution through different methods is studied

    Degradation Analysis of Probabilistic Parallel Choice Systems

    Full text link
    Degradation analysis is used to analyze the useful lifetimes of systems, their failure rates, and various other system parameters like mean time to failure (MTTF), mean time between failures (MTBF), and the system failure rate (SFR). In many systems, certain possible parallel paths of execution that have greater chances of success are preferred over others. Thus we introduce here the concept of probabilistic parallel choice. We use binary and nn-ary probabilistic choice operators in describing the selections of parallel paths. These binary and nn-ary probabilistic choice operators are considered so as to represent the complete system (described as a series-parallel system) in terms of the probabilities of selection of parallel paths and their relevant parameters. Our approach allows us to derive new and generalized formulae for system parameters like MTTF, MTBF, and SFR. We use a generalized exponential distribution, allowing distinct installation times for individual components, and use this model to derive expressions for such system parameters

    Screening and metamodeling of computer experiments with functional outputs. Application to thermal-hydraulic computations

    Get PDF
    To perform uncertainty, sensitivity or optimization analysis on scalar variables calculated by a cpu time expensive computer code, a widely accepted methodology consists in first identifying the most influential uncertain inputs (by screening techniques), and then in replacing the cpu time expensive model by a cpu inexpensive mathematical function, called a metamodel. This paper extends this methodology to the functional output case, for instance when the model output variables are curves. The screening approach is based on the analysis of variance and principal component analysis of output curves. The functional metamodeling consists in a curve classification step, a dimension reduction step, then a classical metamodeling step. An industrial nuclear reactor application (dealing with uncertainties in the pressurized thermal shock analysis) illustrates all these steps

    An a posteriori verification method for generalized real-symmetric eigenvalue problems in large-scale electronic state calculations

    Full text link
    An a posteriori verification method is proposed for the generalized real-symmetric eigenvalue problem and is applied to densely clustered eigenvalue problems in large-scale electronic state calculations. The proposed method is realized by a two-stage process in which the approximate solution is computed by existing numerical libraries and is then verified in a moderate computational time. The procedure returns intervals containing one exact eigenvalue in each interval. Test calculations were carried out for organic device materials, and the verification method confirms that all exact eigenvalues are well separated in the obtained intervals. This verification method will be integrated into EigenKernel (https://github.com/eigenkernel/), which is middleware for various parallel solvers for the generalized eigenvalue problem. Such an a posteriori verification method will be important in future computational science.Comment: 15 pages, 7 figure
    • …
    corecore